NetBSD/gnu/dist/gcc4/gcc/config/vax/vax.c
matt aa3062f197 Step 2. Produces PIC code but doesn't satisfies the constraints needed
by userland.  (external symbols can still be indirected and relocs for
symbol + offset are emitted).
2007-03-31 00:59:47 +00:00

1864 lines
48 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Subroutines for insn-output.c for VAX.
Copyright (C) 1987, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002,
2004, 2005
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "function.h"
#include "output.h"
#include "insn-attr.h"
#include "recog.h"
#include "expr.h"
#include "optabs.h"
#include "flags.h"
#include "debug.h"
#include "toplev.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
static void vax_output_function_prologue (FILE *, HOST_WIDE_INT);
static void vax_file_start (void);
static void vax_init_libfuncs (void);
static void vax_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
HOST_WIDE_INT, tree);
static int vax_address_cost_1 (rtx);
static int vax_address_cost (rtx);
static bool vax_rtx_costs (rtx, int, int, int *);
static rtx vax_struct_value_rtx (tree, int);
/* Initialize the GCC target structure. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE vax_output_function_prologue
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START vax_file_start
#undef TARGET_ASM_FILE_START_APP_OFF
#define TARGET_ASM_FILE_START_APP_OFF true
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS vax_init_libfuncs
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK vax_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS TARGET_DEFAULT
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS vax_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST vax_address_cost
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX vax_struct_value_rtx
struct gcc_target targetm = TARGET_INITIALIZER;
/* Set global variables as needed for the options enabled. */
void
override_options (void)
{
/* We're VAX floating point, not IEEE floating point. */
if (TARGET_G_FLOAT)
REAL_MODE_FORMAT (DFmode) = &vax_g_format;
}
/* Generate the assembly code for function entry. FILE is a stdio
stream to output the code to. SIZE is an int: how many units of
temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers to
save; `regs_ever_live[I]' is nonzero if register number I is ever
used in the function. This function is responsible for knowing
which registers should not be saved even if used. */
static void
vax_output_function_prologue (FILE * file, HOST_WIDE_INT size)
{
int regno;
int mask = 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (regs_ever_live[regno] && !call_used_regs[regno])
mask |= 1 << regno;
fprintf (file, "\t.word 0x%x\n", mask);
if (dwarf2out_do_frame ())
{
const char *label = dwarf2out_cfi_label ();
int offset = 0;
for (regno = FIRST_PSEUDO_REGISTER-1; regno >= 0; --regno)
if (regs_ever_live[regno] && !call_used_regs[regno])
dwarf2out_reg_save (label, regno, offset -= 4);
dwarf2out_reg_save (label, PC_REGNUM, offset -= 4);
dwarf2out_reg_save (label, FRAME_POINTER_REGNUM, offset -= 4);
dwarf2out_reg_save (label, ARG_POINTER_REGNUM, offset -= 4);
dwarf2out_def_cfa (label, FRAME_POINTER_REGNUM, -(offset - 4));
}
size -= STARTING_FRAME_OFFSET;
if (size >= 64)
asm_fprintf (file, "\tmovab %wd(%Rsp),%Rsp\n", -size);
else if (size)
asm_fprintf (file, "\tsubl2 $%wd,%Rsp\n", size);
}
/* When debugging with stabs, we want to output an extra dummy label
so that gas can distinguish between D_float and G_float prior to
processing the .stabs directive identifying type double. */
static void
vax_file_start (void)
{
default_file_start ();
if (write_symbols == DBX_DEBUG)
fprintf (asm_out_file, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR);
}
/* We can use the BSD C library routines for the libgcc calls that are
still generated, since that's what they boil down to anyways. When
ELF, avoid the user's namespace. */
static void
vax_init_libfuncs (void)
{
set_optab_libfunc (udiv_optab, SImode, TARGET_ELF ? "*__udiv" : "*udiv");
set_optab_libfunc (umod_optab, SImode, TARGET_ELF ? "*__urem" : "*urem");
}
/* This is like nonimmediate_operand with a restriction on the type of MEM. */
static void
split_quadword_operands (rtx insn, rtx * operands, rtx * low, int n)
{
int i;
for (i = 0; i < n; i++)
low[i] = 0;
for (i = 0; i < n; i++)
{
if (MEM_P (operands[i])
&& (GET_CODE (XEXP (operands[i], 0)) == PRE_DEC
|| GET_CODE (XEXP (operands[i], 0)) == POST_INC))
{
rtx addr = XEXP (operands[i], 0);
operands[i] = low[i] = gen_rtx_MEM (SImode, addr);
}
else if (optimize_size && MEM_P (operands[i])
&& REG_P (XEXP (operands[i], 0))
&& find_regno_note (insn, REG_DEAD,
REGNO (XEXP (operands[i], 0))))
{
low[i] = gen_rtx_MEM (SImode,
gen_rtx_POST_INC (Pmode,
XEXP (operands[i], 0)));
operands[i] = gen_rtx_MEM (SImode, XEXP (operands[i], 0));
}
else
{
low[i] = operand_subword (operands[i], 0, 0, DImode);
operands[i] = operand_subword (operands[i], 1, 0, DImode);
}
}
}
void
print_operand_address (FILE * file, rtx addr)
{
rtx orig = addr;
rtx reg1, breg, ireg;
rtx offset;
retry:
switch (GET_CODE (addr))
{
case MEM:
fprintf (file, "*");
addr = XEXP (addr, 0);
goto retry;
case REG:
fprintf (file, "(%s)", reg_names[REGNO (addr)]);
break;
case PRE_DEC:
fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
break;
case POST_INC:
fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
break;
case PLUS:
/* There can be either two or three things added here. One must be a
REG. One can be either a REG or a MULT of a REG and an appropriate
constant, and the third can only be a constant or a MEM.
We get these two or three things and put the constant or MEM in
OFFSET, the MULT or REG in IREG, and the REG in BREG. If we have
a register and can't tell yet if it is a base or index register,
put it into REG1. */
reg1 = 0; ireg = 0; breg = 0; offset = 0;
if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
|| MEM_P (XEXP (addr, 0)))
{
offset = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
|| MEM_P (XEXP (addr, 1)))
{
offset = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (GET_CODE (XEXP (addr, 1)) == MULT)
{
ireg = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (GET_CODE (XEXP (addr, 0)) == MULT)
{
ireg = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (REG_P (XEXP (addr, 1)))
{
reg1 = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (REG_P (XEXP (addr, 0)))
{
reg1 = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else
gcc_unreachable ();
if (REG_P (addr))
{
if (reg1)
ireg = addr;
else
reg1 = addr;
}
else if (GET_CODE (addr) == MULT)
ireg = addr;
else
{
gcc_assert (GET_CODE (addr) == PLUS);
if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
|| MEM_P (XEXP (addr, 0)))
{
if (offset)
{
if (CONST_INT_P (offset))
offset = plus_constant (XEXP (addr, 0), INTVAL (offset));
else
{
gcc_assert (CONST_INT_P (XEXP (addr, 0)));
offset = plus_constant (offset, INTVAL (XEXP (addr, 0)));
}
}
offset = XEXP (addr, 0);
}
else if (REG_P (XEXP (addr, 0)))
{
if (reg1)
ireg = reg1, breg = XEXP (addr, 0), reg1 = 0;
else
reg1 = XEXP (addr, 0);
}
else
{
gcc_assert (GET_CODE (XEXP (addr, 0)) == MULT);
gcc_assert (!ireg);
ireg = XEXP (addr, 0);
}
if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
|| MEM_P (XEXP (addr, 1)))
{
if (offset)
{
if (CONST_INT_P (offset))
offset = plus_constant (XEXP (addr, 1), INTVAL (offset));
else
{
gcc_assert (CONST_INT_P (XEXP (addr, 1)));
offset = plus_constant (offset, INTVAL (XEXP (addr, 1)));
}
}
offset = XEXP (addr, 1);
}
else if (REG_P (XEXP (addr, 1)))
{
if (reg1)
ireg = reg1, breg = XEXP (addr, 1), reg1 = 0;
else
reg1 = XEXP (addr, 1);
}
else
{
gcc_assert (GET_CODE (XEXP (addr, 1)) == MULT);
gcc_assert (!ireg);
ireg = XEXP (addr, 1);
}
}
/* If REG1 is nonzero, figure out if it is a base or index register. */
if (reg1)
{
if (breg
|| (flag_pic && GET_CODE (addr) == SYMBOL_REF)
|| (offset
&& (MEM_P (offset)
|| (flag_pic && symbolic_operand (offset, SImode)))))
{
gcc_assert (!ireg);
ireg = reg1;
}
else
breg = reg1;
}
if (offset != 0)
{
if (flag_pic && symbolic_operand (offset, SImode))
{
if (breg && ireg)
{
debug_rtx (orig);
output_operand_lossage ("symbol used with both base and indexed registers");
}
#ifdef NO_EXTERNAL_INDIRECT_ADDRESS
if (GET_CODE (offset) == CONST
&& GET_CODE (XEXP (XEXP (offset, 0), 0)) == SYMBOL_REF
&& !SYMBOL_REF_LOCAL_P (XEXP (XEXP (offset, 0), 0)))
{
debug_rtx (orig);
output_operand_lossage ("symbol with offset used in PIC mode");
}
#endif
/* symbol(reg) isn't PIC, but symbol[reg] is. */
if (breg)
{
ireg = breg;
breg = 0;
}
}
output_address (offset);
}
if (breg != 0)
fprintf (file, "(%s)", reg_names[REGNO (breg)]);
if (ireg != 0)
{
if (GET_CODE (ireg) == MULT)
ireg = XEXP (ireg, 0);
gcc_assert (REG_P (ireg));
fprintf (file, "[%s]", reg_names[REGNO (ireg)]);
}
break;
default:
output_addr_const (file, addr);
}
}
void
print_operand (FILE *file, rtx x, int code)
{
if (code == '#')
fputc (ASM_DOUBLE_CHAR, file);
else if (code == '|')
fputs (REGISTER_PREFIX, file);
else if (code == 'C')
fputs (rev_cond_name (x), file);
else if (code == 'D' && CONST_INT_P (x) && INTVAL (x) < 0)
fprintf (file, "$" NEG_HWI_PRINT_HEX16, INTVAL (x));
else if (code == 'P' && CONST_INT_P (x))
fprintf (file, "$" HOST_WIDE_INT_PRINT_DEC, INTVAL (x) + 1);
else if (code == 'N' && CONST_INT_P (x))
fprintf (file, "$" HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x));
/* rotl instruction cannot deal with negative arguments. */
else if (code == 'R' && CONST_INT_P (x))
fprintf (file, "$" HOST_WIDE_INT_PRINT_DEC, 32 - INTVAL (x));
else if (code == 'H' && CONST_INT_P (x))
fprintf (file, "$%d", (int) (0xffff & ~ INTVAL (x)));
else if (code == 'h' && CONST_INT_P (x))
fprintf (file, "$%d", (short) - INTVAL (x));
else if (code == 'B' && CONST_INT_P (x))
fprintf (file, "$%d", (int) (0xff & ~ INTVAL (x)));
else if (code == 'b' && CONST_INT_P (x))
fprintf (file, "$%d", (int) (0xff & - INTVAL (x)));
else if (code == 'M' && CONST_INT_P (x))
fprintf (file, "$%d", ~((1 << INTVAL (x)) - 1));
else if (REG_P (x))
fprintf (file, "%s", reg_names[REGNO (x)]);
else if (MEM_P (x))
output_address (XEXP (x, 0));
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode)
{
char dstr[30];
real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x),
sizeof (dstr), 0, 1);
fprintf (file, "$0f%s", dstr);
}
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode)
{
char dstr[30];
real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x),
sizeof (dstr), 0, 1);
fprintf (file, "$0%c%s", ASM_DOUBLE_CHAR, dstr);
}
else
{
if (flag_pic && symbolic_operand (x, SImode))
{
debug_rtx (x);
output_operand_lossage ("symbol used as immediate operand");
}
putc ('$', file);
output_addr_const (file, x);
}
}
const char *
rev_cond_name (rtx op)
{
switch (GET_CODE (op))
{
case EQ:
return "neq";
case NE:
return "eql";
case LT:
return "geq";
case LE:
return "gtr";
case GT:
return "leq";
case GE:
return "lss";
case LTU:
return "gequ";
case LEU:
return "gtru";
case GTU:
return "lequ";
case GEU:
return "lssu";
default:
gcc_unreachable ();
}
}
static bool
vax_float_literal(rtx c)
{
enum machine_mode mode;
REAL_VALUE_TYPE r, s;
int i;
if (GET_CODE (c) != CONST_DOUBLE)
return false;
mode = GET_MODE (c);
if (c == const_tiny_rtx[(int) mode][0]
|| c == const_tiny_rtx[(int) mode][1]
|| c == const_tiny_rtx[(int) mode][2])
return true;
REAL_VALUE_FROM_CONST_DOUBLE (r, c);
for (i = 0; i < 7; i++)
{
int x = 1 << i;
bool ok;
REAL_VALUE_FROM_INT (s, x, 0, mode);
if (REAL_VALUES_EQUAL (r, s))
return true;
ok = exact_real_inverse (mode, &s);
gcc_assert (ok);
if (REAL_VALUES_EQUAL (r, s))
return true;
}
return false;
}
/* Return the cost in cycles of a memory address, relative to register
indirect.
Each of the following adds the indicated number of cycles:
1 - symbolic address
1 - pre-decrement
1 - indexing and/or offset(register)
2 - indirect */
static int
vax_address_cost_1 (rtx addr)
{
int reg = 0, indexed = 0, indir = 0, offset = 0, predec = 0;
rtx plus_op0 = 0, plus_op1 = 0;
restart:
switch (GET_CODE (addr))
{
case PRE_DEC:
predec = 1;
case REG:
case SUBREG:
case POST_INC:
reg = 1;
break;
case MULT:
indexed = 1; /* 2 on VAX 2 */
break;
case CONST_INT:
/* byte offsets cost nothing (on a VAX 2, they cost 1 cycle) */
if (offset == 0)
offset = (unsigned HOST_WIDE_INT)(INTVAL(addr)+128) > 256;
break;
case CONST:
case SYMBOL_REF:
offset = 1; /* 2 on VAX 2 */
break;
case LABEL_REF: /* this is probably a byte offset from the pc */
if (offset == 0)
offset = 1;
break;
case PLUS:
if (plus_op0)
plus_op1 = XEXP (addr, 0);
else
plus_op0 = XEXP (addr, 0);
addr = XEXP (addr, 1);
goto restart;
case MEM:
indir = 2; /* 3 on VAX 2 */
addr = XEXP (addr, 0);
goto restart;
default:
break;
}
/* Up to 3 things can be added in an address. They are stored in
plus_op0, plus_op1, and addr. */
if (plus_op0)
{
addr = plus_op0;
plus_op0 = 0;
goto restart;
}
if (plus_op1)
{
addr = plus_op1;
plus_op1 = 0;
goto restart;
}
/* Indexing and register+offset can both be used (except on a VAX 2)
without increasing execution time over either one alone. */
if (reg && indexed && offset)
return reg + indir + offset + predec;
return reg + indexed + indir + offset + predec;
}
static int
vax_address_cost (rtx x)
{
return (1 + (REG_P (x) ? 0 : vax_address_cost_1 (x)));
}
/* Cost of an expression on a VAX. This version has costs tuned for the
CVAX chip (found in the VAX 3 series) with comments for variations on
other models.
FIXME: The costs need review, particularly for TRUNCATE, FLOAT_EXTEND
and FLOAT_TRUNCATE. We need a -mcpu option to allow provision of
costs on a per cpu basis. */
static bool
vax_rtx_costs (rtx x, int code, int outer_code, int *total)
{
enum machine_mode mode = GET_MODE (x);
int i = 0; /* may be modified in switch */
const char *fmt = GET_RTX_FORMAT (code); /* may be modified in switch */
switch (code)
{
/* On a VAX, constants from 0..63 are cheap because they can use the
1 byte literal constant format. Compare to -1 should be made cheap
so that decrement-and-branch insns can be formed more easily (if
the value -1 is copied to a register some decrement-and-branch
patterns will not match). */
case CONST_INT:
if (INTVAL (x) == 0)
{
*total = 0;
return true;
}
if (outer_code == AND)
{
*total = ((unsigned HOST_WIDE_INT) ~INTVAL (x) <= 077) ? 1 : 2;
return true;
}
if ((unsigned HOST_WIDE_INT) INTVAL (x) <= 077
|| (outer_code == COMPARE
&& INTVAL (x) == -1)
|| ((outer_code == PLUS || outer_code == MINUS)
&& (unsigned HOST_WIDE_INT) -INTVAL (x) <= 077))
{
*total = 1;
return true;
}
/* FALLTHRU */
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total = 3;
return true;
case CONST_DOUBLE:
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
*total = vax_float_literal (x) ? 5 : 8;
else
*total = ((CONST_DOUBLE_HIGH (x) == 0
&& (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x) < 64)
|| (outer_code == PLUS
&& CONST_DOUBLE_HIGH (x) == -1
&& (unsigned HOST_WIDE_INT)-CONST_DOUBLE_LOW (x) < 64))
? 2 : 5;
return true;
case POST_INC:
*total = 2;
return true; /* Implies register operand. */
case PRE_DEC:
*total = 3;
return true; /* Implies register operand. */
case MULT:
switch (mode)
{
case DFmode:
*total = 16; /* 4 on VAX 9000 */
break;
case SFmode:
*total = 9; /* 4 on VAX 9000, 12 on VAX 2 */
break;
case DImode:
*total = 16; /* 6 on VAX 9000, 28 on VAX 2 */
break;
case SImode:
case HImode:
case QImode:
*total = 10; /* 3-4 on VAX 9000, 20-28 on VAX 2 */
break;
default:
*total = MAX_COST; /* Mode is not supported. */
return true;
}
break;
case UDIV:
if (mode != SImode)
{
*total = MAX_COST; /* Mode is not supported. */
return true;
}
*total = 17;
break;
case DIV:
if (mode == DImode)
*total = 30; /* Highly variable. */
else if (mode == DFmode)
/* divide takes 28 cycles if the result is not zero, 13 otherwise */
*total = 24;
else
*total = 11; /* 25 on VAX 2 */
break;
case MOD:
*total = 23;
break;
case UMOD:
if (mode != SImode)
{
*total = MAX_COST; /* Mode is not supported. */
return true;
}
*total = 29;
break;
case FLOAT:
*total = (6 /* 4 on VAX 9000 */
+ (mode == DFmode) + (GET_MODE (XEXP (x, 0)) != SImode));
break;
case FIX:
*total = 7; /* 17 on VAX 2 */
break;
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
if (mode == DImode)
*total = 12;
else
*total = 10; /* 6 on VAX 9000 */
break;
case ROTATE:
case ROTATERT:
*total = 6; /* 5 on VAX 2, 4 on VAX 9000 */
if (CONST_INT_P (XEXP (x, 1)))
fmt = "e"; /* all constant rotate counts are short */
break;
case PLUS:
case MINUS:
*total = (mode == DFmode) ? 13 : 8; /* 6/8 on VAX 9000, 16/15 on VAX 2 */
/* Small integer operands can use subl2 and addl2. */
if ((CONST_INT_P (XEXP (x, 1)))
&& (unsigned HOST_WIDE_INT)(INTVAL (XEXP (x, 1)) + 63) < 127)
fmt = "e";
break;
case IOR:
case XOR:
*total = 3;
break;
case AND:
/* AND is special because the first operand is complemented. */
*total = 3;
if (CONST_INT_P (XEXP (x, 0)))
{
if ((unsigned HOST_WIDE_INT)~INTVAL (XEXP (x, 0)) > 63)
*total = 4;
fmt = "e";
i = 1;
}
break;
case NEG:
if (mode == DFmode)
*total = 9;
else if (mode == SFmode)
*total = 6;
else if (mode == DImode)
*total = 4;
else
*total = 2;
break;
case NOT:
*total = 2;
break;
case ZERO_EXTRACT:
case SIGN_EXTRACT:
*total = 15;
break;
case MEM:
if (mode == DImode || mode == DFmode)
*total = 5; /* 7 on VAX 2 */
else
*total = 3; /* 4 on VAX 2 */
x = XEXP (x, 0);
if (!REG_P (x) && GET_CODE (x) != POST_INC)
*total += vax_address_cost_1 (x);
return true;
case FLOAT_EXTEND:
case FLOAT_TRUNCATE:
case TRUNCATE:
*total = 3; /* FIXME: Costs need to be checked */
break;
default:
return false;
}
/* Now look inside the expression. Operands which are not registers or
short constants add to the cost.
FMT and I may have been adjusted in the switch above for instructions
which require special handling. */
while (*fmt++ == 'e')
{
rtx op = XEXP (x, i);
i += 1;
code = GET_CODE (op);
/* A NOT is likely to be found as the first operand of an AND
(in which case the relevant cost is of the operand inside
the not) and not likely to be found anywhere else. */
if (code == NOT)
op = XEXP (op, 0), code = GET_CODE (op);
switch (code)
{
case CONST_INT:
if ((unsigned HOST_WIDE_INT)INTVAL (op) > 63
&& GET_MODE (x) != QImode)
*total += 1; /* 2 on VAX 2 */
break;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total += 1; /* 2 on VAX 2 */
break;
case CONST_DOUBLE:
if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT)
{
/* Registers are faster than floating point constants -- even
those constants which can be encoded in a single byte. */
if (vax_float_literal (op))
*total += 1;
else
*total += (GET_MODE (x) == DFmode) ? 3 : 2;
}
else
{
if (CONST_DOUBLE_HIGH (op) != 0
|| (unsigned HOST_WIDE_INT)CONST_DOUBLE_LOW (op) > 63)
*total += 2;
}
break;
case MEM:
*total += 1; /* 2 on VAX 2 */
if (!REG_P (XEXP (op, 0)))
*total += vax_address_cost_1 (XEXP (op, 0));
break;
case REG:
case SUBREG:
break;
default:
*total += 1;
break;
}
}
return true;
}
/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
Used for C++ multiple inheritance.
.mask ^m<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11> #conservative entry mask
addl2 $DELTA, 4(ap) #adjust first argument
jmp FUNCTION+2 #jump beyond FUNCTION's entry mask
*/
static void
vax_output_mi_thunk (FILE * file,
tree thunk ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
tree function)
{
fprintf (file, "\t.word 0x0ffc\n\taddl2 $" HOST_WIDE_INT_PRINT_DEC, delta);
asm_fprintf (file, ",4(%Rap)\n");
fprintf (file, "\tjmp ");
assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
fprintf (file, "+2\n");
}
static rtx
vax_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (Pmode, VAX_STRUCT_VALUE_REGNUM);
}
/* Worker function for NOTICE_UPDATE_CC. */
void
vax_notice_update_cc (rtx exp, rtx insn ATTRIBUTE_UNUSED)
{
if (GET_CODE (exp) == SET)
{
if (GET_CODE (SET_SRC (exp)) == CALL)
CC_STATUS_INIT;
else if (GET_CODE (SET_DEST (exp)) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (exp)) != PC)
{
cc_status.flags = 0;
/* The integer operations below don't set carry or
set it in an incompatible way. That's ok though
as the Z bit is all we need when doing unsigned
comparisons on the result of these insns (since
they're always with 0). Set CC_NO_OVERFLOW to
generate the correct unsigned branches. */
switch (GET_CODE (SET_SRC (exp)))
{
case NEG:
if (GET_MODE_CLASS (GET_MODE (exp)) == MODE_FLOAT)
break;
case AND:
case IOR:
case XOR:
case NOT:
case MEM:
case REG:
cc_status.flags = CC_NO_OVERFLOW;
break;
default:
break;
}
cc_status.value1 = SET_DEST (exp);
cc_status.value2 = SET_SRC (exp);
}
}
else if (GET_CODE (exp) == PARALLEL
&& GET_CODE (XVECEXP (exp, 0, 0)) == SET)
{
if (GET_CODE (SET_SRC (XVECEXP (exp, 0, 0))) == CALL)
CC_STATUS_INIT;
else if (GET_CODE (SET_DEST (XVECEXP (exp, 0, 0))) != PC)
{
cc_status.flags = 0;
cc_status.value1 = SET_DEST (XVECEXP (exp, 0, 0));
cc_status.value2 = SET_SRC (XVECEXP (exp, 0, 0));
}
else
/* PARALLELs whose first element sets the PC are aob,
sob insns. They do change the cc's. */
CC_STATUS_INIT;
}
else
CC_STATUS_INIT;
if (cc_status.value1 && REG_P (cc_status.value1)
&& cc_status.value2
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
cc_status.value2 = 0;
if (cc_status.value1 && MEM_P (cc_status.value1)
&& cc_status.value2
&& MEM_P (cc_status.value2))
cc_status.value2 = 0;
/* Actual condition, one line up, should be that value2's address
depends on value1, but that is too much of a pain. */
}
/* Output integer move instructions. */
const char *
vax_output_int_move (rtx insn ATTRIBUTE_UNUSED, rtx *operands,
enum machine_mode mode)
{
rtx hi[3], lo[3];
const char *pattern_hi, *pattern_lo;
switch (mode)
{
case DImode:
if (operands[1] == const0_rtx)
return "clrq %0";
if (TARGET_QMATH && optimize_size
&& (CONST_INT_P (operands[1])
|| GET_CODE (operands[1]) == CONST_DOUBLE))
{
unsigned HOST_WIDE_INT hval, lval;
int n;
if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
gcc_assert (HOST_BITS_PER_WIDE_INT != 64);
/* Make sure only the low 32 bits are valid. */
lval = CONST_DOUBLE_LOW (operands[1]) & 0xffffffff;
hval = CONST_DOUBLE_HIGH (operands[1]) & 0xffffffff;
}
else
{
lval = INTVAL (operands[1]);
hval = 0;
}
/* Here we see if we are trying to see if the 64bit value is really
a 6bit shifted some arbitrary amount. If so, we can use ashq to
shift it to the correct value saving 7 bytes (1 addr-mode-byte +
8 bytes - 1 shift byte - 1 short literal byte. */
if (lval != 0
&& (n = exact_log2 (lval & (- lval))) != -1
&& (lval >> n) < 64)
{
lval >>= n;
#if HOST_BITS_PER_WIDE_INT == 32
/* On 32bit platforms, if the 6bits didn't overflow into the
upper 32bit value that value better be 0. If we have
overflowed, make sure it wasn't too much. */
if (hval != 0)
{
if (n <= 26 || hval >= ((unsigned)1 << (n - 26)))
n = 0; /* failure */
else
lval |= hval << (32 - n);
}
#endif
/* If n is 0, then ashq is not the best way to emit this. */
if (n > 0)
{
operands[2] = GEN_INT (lval);
operands[1] = GEN_INT (n);
return "ashq %2,%1,%0";
}
#if HOST_BITS_PER_WIDE_INT == 32
}
/* On 32bit platforms, if the low 32bit value is 0, checkout the
upper 32bit value. */
else if (hval != 0
&& (n = exact_log2 (hval & (- hval)) - 1) != -1
&& (hval >> n) < 64)
{
operands[2] = GEN_INT (hval >> n);
operands[1] = GEN_INT (n + 32);
return "ashq %2,%1,%0";
#endif
}
}
if (TARGET_QMATH
&& (!MEM_P (operands[0])
|| GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
|| GET_CODE (XEXP (operands[0], 0)) == POST_INC
|| !illegal_addsub_di_memory_operand (operands[0], DImode))
&& ((GET_CODE (operands[1]) == CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (operands[1]) >= 64)
|| GET_CODE (operands[1]) == CONST_DOUBLE))
{
hi[0] = operands[0];
hi[1] = operands[1];
split_quadword_operands(insn, hi, lo, 2);
pattern_lo = vax_output_int_move (NULL, lo, SImode);
pattern_hi = vax_output_int_move (NULL, hi, SImode);
/* The patterns are just movl/movl or pushl/pushl then a movq will
be shorter (1 opcode byte + 1 addrmode byte + 8 immediate value
bytes .vs. 2 opcode bytes + 2 addrmode bytes + 8 immediate value
value bytes. */
if ((!strncmp (pattern_lo, "movl", 4)
&& !strncmp (pattern_hi, "movl", 4))
|| (!strncmp (pattern_lo, "pushl", 5)
&& !strncmp (pattern_hi, "pushl", 5)))
return "movq %1,%0";
if (MEM_P (operands[0])
&& GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
{
output_asm_insn (vax_output_int_move (NULL, hi, SImode), hi);
operands[0] = lo[0];
operands[1] = lo[1];
operands[2] = lo[2];
return pattern_lo;
}
else
{
output_asm_insn (vax_output_int_move (NULL, lo, SImode), lo);
operands[0] = hi[0];
operands[1] = hi[1];
operands[2] = hi[2];
return pattern_hi;
}
}
return "movq %1,%0";
case SImode:
if (symbolic_operand (operands[1], SImode))
{
if (push_operand (operands[0], SImode))
return "pushab %a1";
return "movab %a1,%0";
}
if (operands[1] == const0_rtx)
{
if (push_operand (operands[1], SImode))
return "pushl %1";
return "clrl %0";
}
if (CONST_INT_P (operands[1])
&& (unsigned HOST_WIDE_INT) INTVAL (operands[1]) >= 64)
{
HOST_WIDE_INT i = INTVAL (operands[1]);
int n;
if ((unsigned HOST_WIDE_INT)(~i) < 64)
return "mcoml %N1,%0";
if ((unsigned HOST_WIDE_INT)i < 0x10000)
if ((unsigned HOST_WIDE_INT)i < 0x100)
return "movzbl %1,%0";
if (i >= -0x80 && i < 0)
return "cvtbl %1,%0";
if (optimize_size
&& (n = exact_log2 (i & (-i))) != -1
&& ((unsigned HOST_WIDE_INT)i >> n) < 64)
{
operands[1] = GEN_INT ((unsigned HOST_WIDE_INT)i >> n);
operands[2] = GEN_INT (n);
return "ashl %2,%1,%0";
}
if ((unsigned HOST_WIDE_INT)i < 0x10000)
return "movzwl %1,%0";
if (i >= -0x8000 && i < 0)
return "cvtwl %1,%0";
}
if (push_operand (operands[0], SImode))
return "pushl %1";
return "movl %1,%0";
case HImode:
if (CONST_INT_P (operands[1]))
{
HOST_WIDE_INT i = INTVAL (operands[1]);
if (i == 0)
return "clrw %0";
else if ((unsigned HOST_WIDE_INT)i < 64)
return "movw %1,%0";
else if ((unsigned HOST_WIDE_INT)~i < 64)
return "mcomw %H1,%0";
else if ((unsigned HOST_WIDE_INT)i < 256)
return "movzbw %1,%0";
else if (i >= -0x80 && i < 0)
return "cvtbw %1,%0";
}
return "movw %1,%0";
case QImode:
if (CONST_INT_P (operands[1]))
{
HOST_WIDE_INT i = INTVAL (operands[1]);
if (i == 0)
return "clrb %0";
else if ((unsigned HOST_WIDE_INT)~i < 64)
return "mcomb %B1,%0";
}
return "movb %1,%0";
default:
gcc_unreachable ();
}
}
/* Output integer add instructions.
The space-time-opcode tradeoffs for addition vary by model of VAX.
On a VAX 3 "movab (r1)[r2],r3" is faster than "addl3 r1,r2,r3",
but it not faster on other models.
"movab #(r1),r2" is usually shorter than "addl3 #,r1,r2", and is
faster on a VAX 3, but some VAXen (e.g. VAX 9000) will stall if
a register is used in an address too soon after it is set.
Compromise by using movab only when it is shorter than the add
or the base register in the address is one of sp, ap, and fp,
which are not modified very often. */
const char *
vax_output_int_add (rtx insn ATTRIBUTE_UNUSED, rtx *operands,
enum machine_mode mode)
{
switch (mode)
{
case DImode:
{
rtx low[3];
const char *pattern;
int carry = 1;
if (TARGET_QMATH && 0)
debug_rtx (insn);
split_quadword_operands (insn, operands, low, 3);
if (TARGET_QMATH)
{
gcc_assert (rtx_equal_p (operands[0], operands[1]));
/* No reason to add a 0 to the low part and thus no carry, so just
emit the appropriate add/sub instruction. */
if (low[2] == const0_rtx)
return vax_output_int_add (NULL, operands, SImode);
/* Select the add pattern for the low part using the SImode
add instruction selector. No need to duplicate that work. */
output_asm_insn (vax_output_int_add (NULL, low, SImode), low);
/* In 2's complement, -n = ~n + 1. Since we are dealing with
two 32bit parts, we complement each and then add one to
low part. We know that the low part can't overflow since
it's value can never be 0. */
if (CONST_INT_P (operands[2]) && INTVAL (operands[2]) < 0)
return "sbwc %N2,%0";
return "adwc %2,%0";
}
/* Add low parts. */
if (rtx_equal_p (operands[0], operands[1]))
{
if (low[2] == const0_rtx)
/* Should examine operand, punt if not POST_INC. */
pattern = "tstl %0", carry = 0;
else if (low[2] == const1_rtx)
pattern = "incl %0";
else
pattern = "addl2 %2,%0";
}
else
{
if (low[2] == const0_rtx)
pattern = "movl %1,%0", carry = 0;
else
pattern = "addl3 %2,%1,%0";
}
if (pattern)
output_asm_insn (pattern, low);
if (!carry)
/* If CARRY is 0, we don't have any carry value to worry about. */
return get_insn_template (CODE_FOR_addsi3, insn);
/* %0 = C + %1 + %2 */
if (!rtx_equal_p (operands[0], operands[1]))
output_asm_insn ((operands[1] == const0_rtx
? "clrl %0"
: "movl %1,%0"), operands);
return "adwc %2,%0";
}
case SImode:
if (rtx_equal_p (operands[0], operands[1]))
{
if (operands[2] == const1_rtx)
return "incl %0";
if (operands[2] == constm1_rtx)
return "decl %0";
if (CONST_INT_P (operands[2])
&& (unsigned HOST_WIDE_INT) (- INTVAL (operands[2])) < 64)
return "subl2 $%n2,%0";
if (CONST_INT_P (operands[2])
&& (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 64
&& REG_P (operands[1])
&& ((INTVAL (operands[2]) < 32767 && INTVAL (operands[2]) > -32768)
|| REGNO (operands[1]) > 11))
return "movab %c2(%1),%0";
if (REG_P (operands[0]) && symbolic_operand (operands[2], SImode))
return "movab %a2[%0],%0";
return "addl2 %2,%0";
}
if (rtx_equal_p (operands[0], operands[2]))
{
if (REG_P (operands[0]) && symbolic_operand (operands[1], SImode))
return "movab %a1[%0],%0";
return "addl2 %1,%0";
}
if (CONST_INT_P (operands[2])
&& INTVAL (operands[2]) < 32767
&& INTVAL (operands[2]) > -32768
&& REG_P (operands[1])
&& push_operand (operands[0], SImode))
return "pushab %c2(%1)";
if (CONST_INT_P (operands[2])
&& (unsigned HOST_WIDE_INT) (- INTVAL (operands[2])) < 64)
return "subl3 $%n2,%1,%0";
if (CONST_INT_P (operands[2])
&& (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 64
&& REG_P (operands[1])
&& ((INTVAL (operands[2]) < 32767 && INTVAL (operands[2]) > -32768)
|| REGNO (operands[1]) > 11))
return "movab %c2(%1),%0";
/* Add this if using gcc on a VAX 3xxx:
if (REG_P (operands[1]) && REG_P (operands[2]))
return "movab (%1)[%2],%0";
*/
if (REG_P (operands[1]) && symbolic_operand (operands[2], SImode))
{
if (push_operand (operands[0], SImode))
return "pushab %a2[%1]";
return "movab %a2[%1],%0";
}
if (REG_P (operands[2]) && symbolic_operand (operands[1], SImode))
{
if (push_operand (operands[0], SImode))
return "pushab %a1[%2]";
return "movab %a1[%2],%0";
}
if (flag_pic && REG_P (operands[0])
&& symbolic_operand (operands[2], SImode))
return "movab %a2,%0;addl2 %1,%0";
if (flag_pic
&& (symbolic_operand (operands[1], SImode)
|| symbolic_operand (operands[1], SImode)))
debug_rtx (insn);
return "addl3 %1,%2,%0";
case HImode:
if (rtx_equal_p (operands[0], operands[1]))
{
if (operands[2] == const1_rtx)
return "incw %0";
if (operands[2] == constm1_rtx)
return "decw %0";
if (CONST_INT_P (operands[2])
&& (unsigned HOST_WIDE_INT) (- INTVAL (operands[2])) < 64)
return "subw2 $%n2,%0";
return "addw2 %2,%0";
}
if (rtx_equal_p (operands[0], operands[2]))
return "addw2 %1,%0";
if (CONST_INT_P (operands[2])
&& (unsigned HOST_WIDE_INT) (- INTVAL (operands[2])) < 64)
return "subw3 $%n2,%1,%0";
return "addw3 %1,%2,%0";
case QImode:
if (rtx_equal_p (operands[0], operands[1]))
{
if (operands[2] == const1_rtx)
return "incb %0";
if (operands[2] == constm1_rtx)
return "decb %0";
if (CONST_INT_P (operands[2])
&& (unsigned HOST_WIDE_INT) (- INTVAL (operands[2])) < 64)
return "subb2 $%n2,%0";
return "addb2 %2,%0";
}
if (rtx_equal_p (operands[0], operands[2]))
return "addb2 %1,%0";
if (CONST_INT_P (operands[2])
&& (unsigned HOST_WIDE_INT) (- INTVAL (operands[2])) < 64)
return "subb3 $%n2,%1,%0";
return "addb3 %1,%2,%0";
default:
gcc_unreachable ();
}
}
const char *
vax_output_int_subtract (rtx insn, rtx *operands, enum machine_mode mode)
{
switch (mode)
{
case DImode:
{
rtx low[3];
const char *pattern;
int carry = 1;
if (TARGET_QMATH && 0)
debug_rtx (insn);
split_quadword_operands (insn, operands, low, 3);
if (TARGET_QMATH)
{
gcc_assert (!CONSTANT_P (operands[2]) && !CONSTANT_P (low[2]));
if (operands[1] == const0_rtx && low[1] == const0_rtx)
{
output_asm_insn ("mnegl %2,%0", low);
return "mnegl %2,%0";
}
gcc_assert (rtx_equal_p (operands[0], operands[1]));
gcc_assert (rtx_equal_p (low[0], low[1]));
output_asm_insn ("subl2 %2,%0", low);
return "sbwc %2,%0";
}
/* Subtract low parts. */
if (rtx_equal_p (operands[0], operands[1]))
{
if (low[2] == const0_rtx)
pattern = 0, carry = 0;
else if (low[2] == constm1_rtx)
pattern = "decl %0";
else
pattern = "subl2 %2,%0";
}
else
{
if (low[2] == constm1_rtx)
pattern = "decl %0";
else if (low[2] == const0_rtx)
pattern = get_insn_template (CODE_FOR_movsi, insn), carry = 0;
else
pattern = "subl3 %2,%1,%0";
}
if (pattern)
output_asm_insn (pattern, low);
if (carry)
{
if (!rtx_equal_p (operands[0], operands[1]))
return "movl %1,%0;sbwc %2,%0";
return "sbwc %2,%0";
/* %0 = %2 - %1 - C */
}
return get_insn_template (CODE_FOR_subsi3, insn);
}
default:
gcc_unreachable ();
}
}
/* Output a conditional branch. */
const char *
vax_output_conditional_branch (enum rtx_code code)
{
switch (code)
{
case EQ: return "jeql %l0";
case NE: return "jneq %l0";
case GT: return "jgtr %l0";
case LT: return "jlss %l0";
case GTU: return "jgtru %l0";
case LTU: return "jlssu %l0";
case GE: return "jgeq %l0";
case LE: return "jleq %l0";
case GEU: return "jgequ %l0";
case LEU: return "jlequ %l0";
default:
gcc_unreachable ();
}
}
/* 1 if X is an rtx for a constant that is a valid address. */
bool
legitimate_constant_address_p (rtx x)
{
return (GET_CODE (x) == LABEL_REF || GET_CODE (x) == SYMBOL_REF
|| CONST_INT_P (x) || GET_CODE (x) == CONST
|| GET_CODE (x) == HIGH);
}
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
bool
legitimate_constant_p (rtx x ATTRIBUTE_UNUSED)
{
return true;
}
/* The other macros defined here are used only in legitimate_address_p (). */
/* Nonzero if X is a hard reg that can be used as an index
or, if not strict, if it is a pseudo reg. */
#define INDEX_REGISTER_P(X, STRICT) \
(REG_P (X) && (!(STRICT) || REGNO_OK_FOR_INDEX_P (REGNO (X))))
/* Nonzero if X is a hard reg that can be used as a base reg
or, if not strict, if it is a pseudo reg. */
#define BASE_REGISTER_P(X, STRICT) \
(REG_P (X) && (!(STRICT) || REGNO_OK_FOR_BASE_P (REGNO (X))))
#ifdef NO_EXTERNAL_INDIRECT_ADDRESS
/* Re-definition of CONSTANT_ADDRESS_P, which is true only when there
are no SYMBOL_REFs for external symbols present. */
static bool
indirectable_constant_address_p (rtx x)
{
if (!CONSTANT_ADDRESS_P (x))
return false;
if (GET_CODE (x) == CONST && GET_CODE (XEXP ((x), 0)) == PLUS)
x = XEXP (XEXP (x, 0), 0);
if (GET_CODE (x) == SYMBOL_REF && !SYMBOL_REF_LOCAL_P (x))
return false;
return true;
}
#else /* not NO_EXTERNAL_INDIRECT_ADDRESS */
static bool
indirectable_constant_address_p (rtx x)
{
return CONSTANT_ADDRESS_P (x);
}
#endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */
/* Nonzero if X is an address which can be indirected. External symbols
could be in a sharable image library, so we disallow those. */
static bool
indirectable_address_p(rtx x, bool strict)
{
if (indirectable_constant_address_p (x)
|| BASE_REGISTER_P (x, strict))
return true;
if (GET_CODE (x) != PLUS
|| !BASE_REGISTER_P (XEXP (x, 0), strict)
|| (flag_pic && !CONST_INT_P (XEXP (x, 1))))
return false;
return indirectable_constant_address_p (XEXP (x, 1));
}
/* Return 1 if x is a valid address not using indexing.
(This much is the easy part.) */
static bool
nonindexed_address_p (rtx x, bool strict)
{
rtx xfoo0;
if (REG_P (x))
{
extern rtx *reg_equiv_mem;
if (! reload_in_progress
|| reg_equiv_mem[REGNO (x)] == 0
|| indirectable_address_p (reg_equiv_mem[REGNO (x)], strict))
return true;
}
if (indirectable_constant_address_p (x))
return true;
if (indirectable_address_p (x, strict))
return true;
xfoo0 = XEXP (x, 0);
if (MEM_P (x) && indirectable_address_p (xfoo0, strict))
return true;
if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
&& BASE_REGISTER_P (xfoo0, strict))
return true;
return false;
}
/* 1 if PROD is either a reg times size of mode MODE and MODE is less
than or equal 8 bytes, or just a reg if MODE is one byte. */
static bool
index_term_p (rtx prod, enum machine_mode mode, bool strict)
{
rtx xfoo0, xfoo1;
if (GET_MODE_SIZE (mode) == 1)
return BASE_REGISTER_P (prod, strict);
if (GET_CODE (prod) != MULT || GET_MODE_SIZE (mode) > 8)
return false;
xfoo0 = XEXP (prod, 0);
xfoo1 = XEXP (prod, 1);
if (CONST_INT_P (xfoo0)
&& INTVAL (xfoo0) == (int)GET_MODE_SIZE (mode)
&& INDEX_REGISTER_P (xfoo1, strict))
return true;
if (CONST_INT_P (xfoo1)
&& INTVAL (xfoo1) == (int)GET_MODE_SIZE (mode)
&& INDEX_REGISTER_P (xfoo0, strict))
return true;
return false;
}
/* Return 1 if X is the sum of a register
and a valid index term for mode MODE. */
static bool
reg_plus_index_p (rtx x, enum machine_mode mode, bool strict)
{
rtx xfoo0, xfoo1;
if (GET_CODE (x) != PLUS)
return false;
xfoo0 = XEXP (x, 0);
xfoo1 = XEXP (x, 1);
if (BASE_REGISTER_P (xfoo0, strict) && index_term_p (xfoo1, mode, strict))
return true;
if (BASE_REGISTER_P (xfoo1, strict) && index_term_p (xfoo0, mode, strict))
return true;
return false;
}
/* legitimate_address_p returns 1 if it recognizes an RTL expression "x"
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address. */
bool
legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
{
rtx xfoo0, xfoo1;
if (nonindexed_address_p (x, strict))
return true;
if (GET_CODE (x) != PLUS)
return false;
/* Handle <address>[index] represented with index-sum outermost */
xfoo0 = XEXP (x, 0);
xfoo1 = XEXP (x, 1);
if (index_term_p (xfoo0, mode, strict)
&& nonindexed_address_p (xfoo1, strict))
return true;
if (index_term_p (xfoo1, mode, strict)
&& nonindexed_address_p (xfoo0, strict))
return true;
/* Handle offset(reg)[index] with offset added outermost */
if (indirectable_constant_address_p (xfoo0)
&& (BASE_REGISTER_P (xfoo1, strict)
|| reg_plus_index_p (xfoo1, mode, strict)))
return true;
if (indirectable_constant_address_p (xfoo1)
&& (BASE_REGISTER_P (xfoo0, strict)
|| reg_plus_index_p (xfoo0, mode, strict)))
return true;
return false;
}
/* Return 1 if x (a legitimate address expression) has an effect that
depends on the machine mode it is used for. On the VAX, the predecrement
and postincrement address depend thus (the amount of decrement or
increment being the length of the operand) and all indexed address depend
thus (because the index scale factor is the length of the operand). */
bool
vax_mode_dependent_address_p (rtx x)
{
rtx xfoo0, xfoo1;
if (GET_CODE (x) == POST_INC || GET_CODE (x) == PRE_DEC)
return true;
if (GET_CODE (x) != PLUS)
return false;
xfoo0 = XEXP (x, 0);
xfoo1 = XEXP (x, 1);
if (CONSTANT_ADDRESS_P (xfoo0) && REG_P (xfoo1))
return false;
if (CONSTANT_ADDRESS_P (xfoo1) && REG_P (xfoo0))
return false;
return true;
}
static rtx
fixup_mathdi_operand (rtx x, enum machine_mode mode)
{
if (illegal_addsub_di_memory_operand (x, mode))
{
rtx addr = XEXP (x, 0);
rtx temp = gen_reg_rtx (Pmode);
rtx offset = 0;
#if 0
if (GET_CODE (addr) == CONST && CHECK_PICADDR)
{
offset = XEXP (XEXP (addr, 0), 1);
addr = XEXP (XEXP (addr, 0), 0);
}
#endif
emit_move_insn (temp, addr);
if (offset)
temp = gen_rtx_PLUS (Pmode, temp, offset);
x = gen_rtx_MEM (DImode, temp);
}
return x;
}
void
vax_expand_addsub_di_operands (rtx * operands, enum rtx_code code)
{
int hi_only = operand_subword (operands[2], 0, 0, DImode) == const0_rtx;
rtx temp;
rtx (*gen_old_insn)(rtx, rtx, rtx);
rtx (*gen_si_insn)(rtx, rtx, rtx);
rtx (*gen_insn)(rtx, rtx, rtx);
if (code == PLUS)
{
gen_old_insn = gen_adddi3_old;
gen_si_insn = gen_addsi3;
gen_insn = gen_adcdi3;
}
else if (code == MINUS)
{
gen_old_insn = gen_subdi3_old;
gen_si_insn = gen_subsi3;
gen_insn = gen_sbcdi3;
}
else
gcc_unreachable ();
/* If this is addition (thus operands are commutative) and if there is one
addend that duplicates the desination, we want that addend to be the
first addend. */
if (code == PLUS
&& rtx_equal_p (operands[0], operands[2])
&& !rtx_equal_p (operands[1], operands[2]))
{
temp = operands[2];
operands[2] = operands[1];
operands[1] = temp;
}
if (!TARGET_QMATH)
{
emit_insn ((*gen_old_insn) (operands[0], operands[1], operands[2]));
}
else if (hi_only)
{
if (!rtx_equal_p (operands[0], operands[1])
&& (REG_P (operands[0]) && MEM_P (operands[1])))
{
emit_move_insn (operands[0], operands[1]);
operands[1] = operands[0];
}
operands[0] = fixup_mathdi_operand (operands[0], DImode);
operands[1] = fixup_mathdi_operand (operands[1], DImode);
operands[2] = fixup_mathdi_operand (operands[2], DImode);
if (!rtx_equal_p (operands[0], operands[1]))
emit_move_insn (operand_subword (operands[0], 0, 0, DImode),
operand_subword (operands[1], 0, 0, DImode));
emit_insn ((*gen_si_insn) (operand_subword (operands[0], 1, 0, DImode),
operand_subword (operands[1], 1, 0, DImode),
operand_subword (operands[2], 1, 0, DImode)));
}
else
{
/* If are adding the same value together, that's really a multiply by 2,
and that's just a left shift of 1. */
if (rtx_equal_p (operands[1], operands[2]))
{
gcc_assert (code != MINUS);
emit_insn (gen_ashldi3 (operands[0], operands[1], const1_rtx));
return;
}
operands[0] = fixup_mathdi_operand (operands[0], DImode);
/* If an operand is the same as operand[0], use the operand[0] rtx
because fixup will an equivalent rtx but not an equal one. */
if (rtx_equal_p (operands[0], operands[1]))
operands[1] = operands[0];
else
operands[1] = fixup_mathdi_operand (operands[1], DImode);
if (rtx_equal_p (operands[0], operands[2]))
operands[2] = operands[0];
else
operands[2] = fixup_mathdi_operand (operands[2], DImode);
/* If we are subtracting not from ourselves [d = a - b], and because the
carry ops are two operand only, we would need to do a move prior to
the subtract. And if d == b, we would need a temp otherwise
[d = a, d -= d] and we end up with 0. Instead we rewrite d = a - b
into d = -b, d += a. Since -b can never overflow, even if b == d,
no temp is needed.
If we are doing addition, since the carry ops are two operand, if
we aren't adding to ourselves, move the first addend to the
destination first. */
gcc_assert (operands[1] != const0_rtx || code == MINUS);
if (!rtx_equal_p (operands[0], operands[1]) && operands[1] != const0_rtx)
{
if (code == MINUS && CONSTANT_P (operands[1]))
{
temp = gen_reg_rtx (DImode);
emit_insn (gen_sbcdi3 (operands[0], const0_rtx, operands[2]));
code = PLUS;
gen_insn = gen_adcdi3;
operands[2] = operands[1];
operands[1] = operands[0];
}
else
emit_move_insn (operands[0], operands[1]);
}
/* Subtracting a constant will have been rewritten to an addition of the
negative of that constant before we get here. */
gcc_assert (!CONSTANT_P (operands[2]) || code == PLUS);
emit_insn ((*gen_insn) (operands[0], operands[1], operands[2]));
}
}