bd52d17906
too large to list, but see: http://gcc.gnu.org/gcc-3.4/changes.html http://gcc.gnu.org/gcc-4.0/changes.html http://gcc.gnu.org/gcc-4.1/changes.html for the details.
1603 lines
48 KiB
C
1603 lines
48 KiB
C
/* Perform simple optimizations to clean up the result of reload.
|
||
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
|
||
#include "machmode.h"
|
||
#include "hard-reg-set.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "obstack.h"
|
||
#include "insn-config.h"
|
||
#include "flags.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "optabs.h"
|
||
#include "regs.h"
|
||
#include "basic-block.h"
|
||
#include "reload.h"
|
||
#include "recog.h"
|
||
#include "output.h"
|
||
#include "cselib.h"
|
||
#include "real.h"
|
||
#include "toplev.h"
|
||
#include "except.h"
|
||
#include "tree.h"
|
||
#include "timevar.h"
|
||
#include "tree-pass.h"
|
||
|
||
static int reload_cse_noop_set_p (rtx);
|
||
static void reload_cse_simplify (rtx, rtx);
|
||
static void reload_cse_regs_1 (rtx);
|
||
static int reload_cse_simplify_set (rtx, rtx);
|
||
static int reload_cse_simplify_operands (rtx, rtx);
|
||
|
||
static void reload_combine (void);
|
||
static void reload_combine_note_use (rtx *, rtx);
|
||
static void reload_combine_note_store (rtx, rtx, void *);
|
||
|
||
static void reload_cse_move2add (rtx);
|
||
static void move2add_note_store (rtx, rtx, void *);
|
||
|
||
/* Call cse / combine like post-reload optimization phases.
|
||
FIRST is the first instruction. */
|
||
void
|
||
reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
|
||
{
|
||
reload_cse_regs_1 (first);
|
||
reload_combine ();
|
||
reload_cse_move2add (first);
|
||
if (flag_expensive_optimizations)
|
||
reload_cse_regs_1 (first);
|
||
}
|
||
|
||
/* See whether a single set SET is a noop. */
|
||
static int
|
||
reload_cse_noop_set_p (rtx set)
|
||
{
|
||
if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
|
||
return 0;
|
||
|
||
return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
|
||
}
|
||
|
||
/* Try to simplify INSN. */
|
||
static void
|
||
reload_cse_simplify (rtx insn, rtx testreg)
|
||
{
|
||
rtx body = PATTERN (insn);
|
||
|
||
if (GET_CODE (body) == SET)
|
||
{
|
||
int count = 0;
|
||
|
||
/* Simplify even if we may think it is a no-op.
|
||
We may think a memory load of a value smaller than WORD_SIZE
|
||
is redundant because we haven't taken into account possible
|
||
implicit extension. reload_cse_simplify_set() will bring
|
||
this out, so it's safer to simplify before we delete. */
|
||
count += reload_cse_simplify_set (body, insn);
|
||
|
||
if (!count && reload_cse_noop_set_p (body))
|
||
{
|
||
rtx value = SET_DEST (body);
|
||
if (REG_P (value)
|
||
&& ! REG_FUNCTION_VALUE_P (value))
|
||
value = 0;
|
||
delete_insn_and_edges (insn);
|
||
return;
|
||
}
|
||
|
||
if (count > 0)
|
||
apply_change_group ();
|
||
else
|
||
reload_cse_simplify_operands (insn, testreg);
|
||
}
|
||
else if (GET_CODE (body) == PARALLEL)
|
||
{
|
||
int i;
|
||
int count = 0;
|
||
rtx value = NULL_RTX;
|
||
|
||
/* Registers mentioned in the clobber list for an asm cannot be reused
|
||
within the body of the asm. Invalidate those registers now so that
|
||
we don't try to substitute values for them. */
|
||
if (asm_noperands (body) >= 0)
|
||
{
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
||
{
|
||
rtx part = XVECEXP (body, 0, i);
|
||
if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
|
||
cselib_invalidate_rtx (XEXP (part, 0));
|
||
}
|
||
}
|
||
|
||
/* If every action in a PARALLEL is a noop, we can delete
|
||
the entire PARALLEL. */
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
||
{
|
||
rtx part = XVECEXP (body, 0, i);
|
||
if (GET_CODE (part) == SET)
|
||
{
|
||
if (! reload_cse_noop_set_p (part))
|
||
break;
|
||
if (REG_P (SET_DEST (part))
|
||
&& REG_FUNCTION_VALUE_P (SET_DEST (part)))
|
||
{
|
||
if (value)
|
||
break;
|
||
value = SET_DEST (part);
|
||
}
|
||
}
|
||
else if (GET_CODE (part) != CLOBBER)
|
||
break;
|
||
}
|
||
|
||
if (i < 0)
|
||
{
|
||
delete_insn_and_edges (insn);
|
||
/* We're done with this insn. */
|
||
return;
|
||
}
|
||
|
||
/* It's not a no-op, but we can try to simplify it. */
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
||
if (GET_CODE (XVECEXP (body, 0, i)) == SET)
|
||
count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
|
||
|
||
if (count > 0)
|
||
apply_change_group ();
|
||
else
|
||
reload_cse_simplify_operands (insn, testreg);
|
||
}
|
||
}
|
||
|
||
/* Do a very simple CSE pass over the hard registers.
|
||
|
||
This function detects no-op moves where we happened to assign two
|
||
different pseudo-registers to the same hard register, and then
|
||
copied one to the other. Reload will generate a useless
|
||
instruction copying a register to itself.
|
||
|
||
This function also detects cases where we load a value from memory
|
||
into two different registers, and (if memory is more expensive than
|
||
registers) changes it to simply copy the first register into the
|
||
second register.
|
||
|
||
Another optimization is performed that scans the operands of each
|
||
instruction to see whether the value is already available in a
|
||
hard register. It then replaces the operand with the hard register
|
||
if possible, much like an optional reload would. */
|
||
|
||
static void
|
||
reload_cse_regs_1 (rtx first)
|
||
{
|
||
rtx insn;
|
||
rtx testreg = gen_rtx_REG (VOIDmode, -1);
|
||
|
||
cselib_init (true);
|
||
init_alias_analysis ();
|
||
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (INSN_P (insn))
|
||
reload_cse_simplify (insn, testreg);
|
||
|
||
cselib_process_insn (insn);
|
||
}
|
||
|
||
/* Clean up. */
|
||
end_alias_analysis ();
|
||
cselib_finish ();
|
||
}
|
||
|
||
/* Try to simplify a single SET instruction. SET is the set pattern.
|
||
INSN is the instruction it came from.
|
||
This function only handles one case: if we set a register to a value
|
||
which is not a register, we try to find that value in some other register
|
||
and change the set into a register copy. */
|
||
|
||
static int
|
||
reload_cse_simplify_set (rtx set, rtx insn)
|
||
{
|
||
int did_change = 0;
|
||
int dreg;
|
||
rtx src;
|
||
enum reg_class dclass;
|
||
int old_cost;
|
||
cselib_val *val;
|
||
struct elt_loc_list *l;
|
||
#ifdef LOAD_EXTEND_OP
|
||
enum rtx_code extend_op = UNKNOWN;
|
||
#endif
|
||
|
||
dreg = true_regnum (SET_DEST (set));
|
||
if (dreg < 0)
|
||
return 0;
|
||
|
||
src = SET_SRC (set);
|
||
if (side_effects_p (src) || true_regnum (src) >= 0)
|
||
return 0;
|
||
|
||
dclass = REGNO_REG_CLASS (dreg);
|
||
|
||
#ifdef LOAD_EXTEND_OP
|
||
/* When replacing a memory with a register, we need to honor assumptions
|
||
that combine made wrt the contents of sign bits. We'll do this by
|
||
generating an extend instruction instead of a reg->reg copy. Thus
|
||
the destination must be a register that we can widen. */
|
||
if (MEM_P (src)
|
||
&& GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
|
||
&& (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
|
||
&& !REG_P (SET_DEST (set)))
|
||
return 0;
|
||
#endif
|
||
|
||
val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
|
||
if (! val)
|
||
return 0;
|
||
|
||
/* If memory loads are cheaper than register copies, don't change them. */
|
||
if (MEM_P (src))
|
||
old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
|
||
else if (REG_P (src))
|
||
old_cost = REGISTER_MOVE_COST (GET_MODE (src),
|
||
REGNO_REG_CLASS (REGNO (src)), dclass);
|
||
else
|
||
old_cost = rtx_cost (src, SET);
|
||
|
||
for (l = val->locs; l; l = l->next)
|
||
{
|
||
rtx this_rtx = l->loc;
|
||
int this_cost;
|
||
|
||
if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
|
||
{
|
||
#ifdef LOAD_EXTEND_OP
|
||
if (extend_op != UNKNOWN)
|
||
{
|
||
HOST_WIDE_INT this_val;
|
||
|
||
/* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
|
||
constants, such as SYMBOL_REF, cannot be extended. */
|
||
if (GET_CODE (this_rtx) != CONST_INT)
|
||
continue;
|
||
|
||
this_val = INTVAL (this_rtx);
|
||
switch (extend_op)
|
||
{
|
||
case ZERO_EXTEND:
|
||
this_val &= GET_MODE_MASK (GET_MODE (src));
|
||
break;
|
||
case SIGN_EXTEND:
|
||
/* ??? In theory we're already extended. */
|
||
if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
this_rtx = GEN_INT (this_val);
|
||
}
|
||
#endif
|
||
this_cost = rtx_cost (this_rtx, SET);
|
||
}
|
||
else if (REG_P (this_rtx))
|
||
{
|
||
#ifdef LOAD_EXTEND_OP
|
||
if (extend_op != UNKNOWN)
|
||
{
|
||
this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
|
||
this_cost = rtx_cost (this_rtx, SET);
|
||
}
|
||
else
|
||
#endif
|
||
this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
|
||
REGNO_REG_CLASS (REGNO (this_rtx)),
|
||
dclass);
|
||
}
|
||
else
|
||
continue;
|
||
|
||
/* If equal costs, prefer registers over anything else. That
|
||
tends to lead to smaller instructions on some machines. */
|
||
if (this_cost < old_cost
|
||
|| (this_cost == old_cost
|
||
&& REG_P (this_rtx)
|
||
&& !REG_P (SET_SRC (set))))
|
||
{
|
||
#ifdef LOAD_EXTEND_OP
|
||
if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
|
||
&& extend_op != UNKNOWN
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
&& !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
|
||
word_mode,
|
||
REGNO_REG_CLASS (REGNO (SET_DEST (set))))
|
||
#endif
|
||
)
|
||
{
|
||
rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
|
||
ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
|
||
validate_change (insn, &SET_DEST (set), wide_dest, 1);
|
||
}
|
||
#endif
|
||
|
||
validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
|
||
old_cost = this_cost, did_change = 1;
|
||
}
|
||
}
|
||
|
||
return did_change;
|
||
}
|
||
|
||
/* Try to replace operands in INSN with equivalent values that are already
|
||
in registers. This can be viewed as optional reloading.
|
||
|
||
For each non-register operand in the insn, see if any hard regs are
|
||
known to be equivalent to that operand. Record the alternatives which
|
||
can accept these hard registers. Among all alternatives, select the
|
||
ones which are better or equal to the one currently matching, where
|
||
"better" is in terms of '?' and '!' constraints. Among the remaining
|
||
alternatives, select the one which replaces most operands with
|
||
hard registers. */
|
||
|
||
static int
|
||
reload_cse_simplify_operands (rtx insn, rtx testreg)
|
||
{
|
||
int i, j;
|
||
|
||
/* For each operand, all registers that are equivalent to it. */
|
||
HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
|
||
|
||
const char *constraints[MAX_RECOG_OPERANDS];
|
||
|
||
/* Vector recording how bad an alternative is. */
|
||
int *alternative_reject;
|
||
/* Vector recording how many registers can be introduced by choosing
|
||
this alternative. */
|
||
int *alternative_nregs;
|
||
/* Array of vectors recording, for each operand and each alternative,
|
||
which hard register to substitute, or -1 if the operand should be
|
||
left as it is. */
|
||
int *op_alt_regno[MAX_RECOG_OPERANDS];
|
||
/* Array of alternatives, sorted in order of decreasing desirability. */
|
||
int *alternative_order;
|
||
|
||
extract_insn (insn);
|
||
|
||
if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
|
||
return 0;
|
||
|
||
/* Figure out which alternative currently matches. */
|
||
if (! constrain_operands (1))
|
||
fatal_insn_not_found (insn);
|
||
|
||
alternative_reject = alloca (recog_data.n_alternatives * sizeof (int));
|
||
alternative_nregs = alloca (recog_data.n_alternatives * sizeof (int));
|
||
alternative_order = alloca (recog_data.n_alternatives * sizeof (int));
|
||
memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
|
||
memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
|
||
|
||
/* For each operand, find out which regs are equivalent. */
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
{
|
||
cselib_val *v;
|
||
struct elt_loc_list *l;
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
|
||
CLEAR_HARD_REG_SET (equiv_regs[i]);
|
||
|
||
/* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
|
||
right, so avoid the problem here. Likewise if we have a constant
|
||
and the insn pattern doesn't tell us the mode we need. */
|
||
if (LABEL_P (recog_data.operand[i])
|
||
|| (CONSTANT_P (recog_data.operand[i])
|
||
&& recog_data.operand_mode[i] == VOIDmode))
|
||
continue;
|
||
|
||
op = recog_data.operand[i];
|
||
mode = GET_MODE (op);
|
||
#ifdef LOAD_EXTEND_OP
|
||
if (MEM_P (op)
|
||
&& GET_MODE_BITSIZE (mode) < BITS_PER_WORD
|
||
&& LOAD_EXTEND_OP (mode) != UNKNOWN)
|
||
{
|
||
rtx set = single_set (insn);
|
||
|
||
/* We might have multiple sets, some of which do implicit
|
||
extension. Punt on this for now. */
|
||
if (! set)
|
||
continue;
|
||
/* If the destination is also a MEM or a STRICT_LOW_PART, no
|
||
extension applies.
|
||
Also, if there is an explicit extension, we don't have to
|
||
worry about an implicit one. */
|
||
else if (MEM_P (SET_DEST (set))
|
||
|| GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
|
||
|| GET_CODE (SET_SRC (set)) == ZERO_EXTEND
|
||
|| GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
|
||
; /* Continue ordinary processing. */
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
/* If the register cannot change mode to word_mode, it follows that
|
||
it cannot have been used in word_mode. */
|
||
else if (REG_P (SET_DEST (set))
|
||
&& CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
|
||
word_mode,
|
||
REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
|
||
; /* Continue ordinary processing. */
|
||
#endif
|
||
/* If this is a straight load, make the extension explicit. */
|
||
else if (REG_P (SET_DEST (set))
|
||
&& recog_data.n_operands == 2
|
||
&& SET_SRC (set) == op
|
||
&& SET_DEST (set) == recog_data.operand[1-i])
|
||
{
|
||
validate_change (insn, recog_data.operand_loc[i],
|
||
gen_rtx_fmt_e (LOAD_EXTEND_OP (mode),
|
||
word_mode, op),
|
||
1);
|
||
validate_change (insn, recog_data.operand_loc[1-i],
|
||
gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
|
||
1);
|
||
if (! apply_change_group ())
|
||
return 0;
|
||
return reload_cse_simplify_operands (insn, testreg);
|
||
}
|
||
else
|
||
/* ??? There might be arithmetic operations with memory that are
|
||
safe to optimize, but is it worth the trouble? */
|
||
continue;
|
||
}
|
||
#endif /* LOAD_EXTEND_OP */
|
||
v = cselib_lookup (op, recog_data.operand_mode[i], 0);
|
||
if (! v)
|
||
continue;
|
||
|
||
for (l = v->locs; l; l = l->next)
|
||
if (REG_P (l->loc))
|
||
SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
|
||
}
|
||
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
{
|
||
enum machine_mode mode;
|
||
int regno;
|
||
const char *p;
|
||
|
||
op_alt_regno[i] = alloca (recog_data.n_alternatives * sizeof (int));
|
||
for (j = 0; j < recog_data.n_alternatives; j++)
|
||
op_alt_regno[i][j] = -1;
|
||
|
||
p = constraints[i] = recog_data.constraints[i];
|
||
mode = recog_data.operand_mode[i];
|
||
|
||
/* Add the reject values for each alternative given by the constraints
|
||
for this operand. */
|
||
j = 0;
|
||
while (*p != '\0')
|
||
{
|
||
char c = *p++;
|
||
if (c == ',')
|
||
j++;
|
||
else if (c == '?')
|
||
alternative_reject[j] += 3;
|
||
else if (c == '!')
|
||
alternative_reject[j] += 300;
|
||
}
|
||
|
||
/* We won't change operands which are already registers. We
|
||
also don't want to modify output operands. */
|
||
regno = true_regnum (recog_data.operand[i]);
|
||
if (regno >= 0
|
||
|| constraints[i][0] == '='
|
||
|| constraints[i][0] == '+')
|
||
continue;
|
||
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
{
|
||
int class = (int) NO_REGS;
|
||
|
||
if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
|
||
continue;
|
||
|
||
REGNO (testreg) = regno;
|
||
PUT_MODE (testreg, mode);
|
||
|
||
/* We found a register equal to this operand. Now look for all
|
||
alternatives that can accept this register and have not been
|
||
assigned a register they can use yet. */
|
||
j = 0;
|
||
p = constraints[i];
|
||
for (;;)
|
||
{
|
||
char c = *p;
|
||
|
||
switch (c)
|
||
{
|
||
case '=': case '+': case '?':
|
||
case '#': case '&': case '!':
|
||
case '*': case '%':
|
||
case '0': case '1': case '2': case '3': case '4':
|
||
case '5': case '6': case '7': case '8': case '9':
|
||
case 'm': case '<': case '>': case 'V': case 'o':
|
||
case 'E': case 'F': case 'G': case 'H':
|
||
case 's': case 'i': case 'n':
|
||
case 'I': case 'J': case 'K': case 'L':
|
||
case 'M': case 'N': case 'O': case 'P':
|
||
case 'p': case 'X':
|
||
/* These don't say anything we care about. */
|
||
break;
|
||
|
||
case 'g': case 'r':
|
||
class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
|
||
break;
|
||
|
||
default:
|
||
class
|
||
= (reg_class_subunion
|
||
[(int) class]
|
||
[(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
|
||
break;
|
||
|
||
case ',': case '\0':
|
||
/* See if REGNO fits this alternative, and set it up as the
|
||
replacement register if we don't have one for this
|
||
alternative yet and the operand being replaced is not
|
||
a cheap CONST_INT. */
|
||
if (op_alt_regno[i][j] == -1
|
||
&& reg_fits_class_p (testreg, class, 0, mode)
|
||
&& (GET_CODE (recog_data.operand[i]) != CONST_INT
|
||
|| (rtx_cost (recog_data.operand[i], SET)
|
||
> rtx_cost (testreg, SET))))
|
||
{
|
||
alternative_nregs[j]++;
|
||
op_alt_regno[i][j] = regno;
|
||
}
|
||
j++;
|
||
class = (int) NO_REGS;
|
||
break;
|
||
}
|
||
p += CONSTRAINT_LEN (c, p);
|
||
|
||
if (c == '\0')
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Record all alternatives which are better or equal to the currently
|
||
matching one in the alternative_order array. */
|
||
for (i = j = 0; i < recog_data.n_alternatives; i++)
|
||
if (alternative_reject[i] <= alternative_reject[which_alternative])
|
||
alternative_order[j++] = i;
|
||
recog_data.n_alternatives = j;
|
||
|
||
/* Sort it. Given a small number of alternatives, a dumb algorithm
|
||
won't hurt too much. */
|
||
for (i = 0; i < recog_data.n_alternatives - 1; i++)
|
||
{
|
||
int best = i;
|
||
int best_reject = alternative_reject[alternative_order[i]];
|
||
int best_nregs = alternative_nregs[alternative_order[i]];
|
||
int tmp;
|
||
|
||
for (j = i + 1; j < recog_data.n_alternatives; j++)
|
||
{
|
||
int this_reject = alternative_reject[alternative_order[j]];
|
||
int this_nregs = alternative_nregs[alternative_order[j]];
|
||
|
||
if (this_reject < best_reject
|
||
|| (this_reject == best_reject && this_nregs > best_nregs))
|
||
{
|
||
best = j;
|
||
best_reject = this_reject;
|
||
best_nregs = this_nregs;
|
||
}
|
||
}
|
||
|
||
tmp = alternative_order[best];
|
||
alternative_order[best] = alternative_order[i];
|
||
alternative_order[i] = tmp;
|
||
}
|
||
|
||
/* Substitute the operands as determined by op_alt_regno for the best
|
||
alternative. */
|
||
j = alternative_order[0];
|
||
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
{
|
||
enum machine_mode mode = recog_data.operand_mode[i];
|
||
if (op_alt_regno[i][j] == -1)
|
||
continue;
|
||
|
||
validate_change (insn, recog_data.operand_loc[i],
|
||
gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
|
||
}
|
||
|
||
for (i = recog_data.n_dups - 1; i >= 0; i--)
|
||
{
|
||
int op = recog_data.dup_num[i];
|
||
enum machine_mode mode = recog_data.operand_mode[op];
|
||
|
||
if (op_alt_regno[op][j] == -1)
|
||
continue;
|
||
|
||
validate_change (insn, recog_data.dup_loc[i],
|
||
gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
|
||
}
|
||
|
||
return apply_change_group ();
|
||
}
|
||
|
||
/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
|
||
addressing now.
|
||
This code might also be useful when reload gave up on reg+reg addressing
|
||
because of clashes between the return register and INDEX_REG_CLASS. */
|
||
|
||
/* The maximum number of uses of a register we can keep track of to
|
||
replace them with reg+reg addressing. */
|
||
#define RELOAD_COMBINE_MAX_USES 6
|
||
|
||
/* INSN is the insn where a register has ben used, and USEP points to the
|
||
location of the register within the rtl. */
|
||
struct reg_use { rtx insn, *usep; };
|
||
|
||
/* If the register is used in some unknown fashion, USE_INDEX is negative.
|
||
If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
|
||
indicates where it becomes live again.
|
||
Otherwise, USE_INDEX is the index of the last encountered use of the
|
||
register (which is first among these we have seen since we scan backwards),
|
||
OFFSET contains the constant offset that is added to the register in
|
||
all encountered uses, and USE_RUID indicates the first encountered, i.e.
|
||
last, of these uses.
|
||
STORE_RUID is always meaningful if we only want to use a value in a
|
||
register in a different place: it denotes the next insn in the insn
|
||
stream (i.e. the last encountered) that sets or clobbers the register. */
|
||
static struct
|
||
{
|
||
struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
|
||
int use_index;
|
||
rtx offset;
|
||
int store_ruid;
|
||
int use_ruid;
|
||
} reg_state[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Reverse linear uid. This is increased in reload_combine while scanning
|
||
the instructions from last to first. It is used to set last_label_ruid
|
||
and the store_ruid / use_ruid fields in reg_state. */
|
||
static int reload_combine_ruid;
|
||
|
||
#define LABEL_LIVE(LABEL) \
|
||
(label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
|
||
|
||
static void
|
||
reload_combine (void)
|
||
{
|
||
rtx insn, set;
|
||
int first_index_reg = -1;
|
||
int last_index_reg = 0;
|
||
int i;
|
||
basic_block bb;
|
||
unsigned int r;
|
||
int last_label_ruid;
|
||
int min_labelno, n_labels;
|
||
HARD_REG_SET ever_live_at_start, *label_live;
|
||
|
||
/* If reg+reg can be used in offsetable memory addresses, the main chunk of
|
||
reload has already used it where appropriate, so there is no use in
|
||
trying to generate it now. */
|
||
if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
|
||
return;
|
||
|
||
/* To avoid wasting too much time later searching for an index register,
|
||
determine the minimum and maximum index register numbers. */
|
||
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
|
||
{
|
||
if (first_index_reg == -1)
|
||
first_index_reg = r;
|
||
|
||
last_index_reg = r;
|
||
}
|
||
|
||
/* If no index register is available, we can quit now. */
|
||
if (first_index_reg == -1)
|
||
return;
|
||
|
||
/* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
|
||
information is a bit fuzzy immediately after reload, but it's
|
||
still good enough to determine which registers are live at a jump
|
||
destination. */
|
||
min_labelno = get_first_label_num ();
|
||
n_labels = max_label_num () - min_labelno;
|
||
label_live = xmalloc (n_labels * sizeof (HARD_REG_SET));
|
||
CLEAR_HARD_REG_SET (ever_live_at_start);
|
||
|
||
FOR_EACH_BB_REVERSE (bb)
|
||
{
|
||
insn = BB_HEAD (bb);
|
||
if (LABEL_P (insn))
|
||
{
|
||
HARD_REG_SET live;
|
||
|
||
REG_SET_TO_HARD_REG_SET (live,
|
||
bb->il.rtl->global_live_at_start);
|
||
compute_use_by_pseudos (&live,
|
||
bb->il.rtl->global_live_at_start);
|
||
COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
|
||
IOR_HARD_REG_SET (ever_live_at_start, live);
|
||
}
|
||
}
|
||
|
||
/* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
|
||
last_label_ruid = reload_combine_ruid = 0;
|
||
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
|
||
{
|
||
reg_state[r].store_ruid = reload_combine_ruid;
|
||
if (fixed_regs[r])
|
||
reg_state[r].use_index = -1;
|
||
else
|
||
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
|
||
}
|
||
|
||
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
|
||
{
|
||
rtx note;
|
||
|
||
/* We cannot do our optimization across labels. Invalidating all the use
|
||
information we have would be costly, so we just note where the label
|
||
is and then later disable any optimization that would cross it. */
|
||
if (LABEL_P (insn))
|
||
last_label_ruid = reload_combine_ruid;
|
||
else if (BARRIER_P (insn))
|
||
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
|
||
if (! fixed_regs[r])
|
||
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
|
||
|
||
if (! INSN_P (insn))
|
||
continue;
|
||
|
||
reload_combine_ruid++;
|
||
|
||
/* Look for (set (REGX) (CONST_INT))
|
||
(set (REGX) (PLUS (REGX) (REGY)))
|
||
...
|
||
... (MEM (REGX)) ...
|
||
and convert it to
|
||
(set (REGZ) (CONST_INT))
|
||
...
|
||
... (MEM (PLUS (REGZ) (REGY)))... .
|
||
|
||
First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
|
||
and that we know all uses of REGX before it dies.
|
||
Also, explicitly check that REGX != REGY; our life information
|
||
does not yet show whether REGY changes in this insn. */
|
||
set = single_set (insn);
|
||
if (set != NULL_RTX
|
||
&& REG_P (SET_DEST (set))
|
||
&& (hard_regno_nregs[REGNO (SET_DEST (set))]
|
||
[GET_MODE (SET_DEST (set))]
|
||
== 1)
|
||
&& GET_CODE (SET_SRC (set)) == PLUS
|
||
&& REG_P (XEXP (SET_SRC (set), 1))
|
||
&& rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
|
||
&& !rtx_equal_p (XEXP (SET_SRC (set), 1), SET_DEST (set))
|
||
&& last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
|
||
{
|
||
rtx reg = SET_DEST (set);
|
||
rtx plus = SET_SRC (set);
|
||
rtx base = XEXP (plus, 1);
|
||
rtx prev = prev_nonnote_insn (insn);
|
||
rtx prev_set = prev ? single_set (prev) : NULL_RTX;
|
||
unsigned int regno = REGNO (reg);
|
||
rtx const_reg = NULL_RTX;
|
||
rtx reg_sum = NULL_RTX;
|
||
|
||
/* Now, we need an index register.
|
||
We'll set index_reg to this index register, const_reg to the
|
||
register that is to be loaded with the constant
|
||
(denoted as REGZ in the substitution illustration above),
|
||
and reg_sum to the register-register that we want to use to
|
||
substitute uses of REG (typically in MEMs) with.
|
||
First check REG and BASE for being index registers;
|
||
we can use them even if they are not dead. */
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
|
||
|| TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
|
||
REGNO (base)))
|
||
{
|
||
const_reg = reg;
|
||
reg_sum = plus;
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise, look for a free index register. Since we have
|
||
checked above that neither REG nor BASE are index registers,
|
||
if we find anything at all, it will be different from these
|
||
two registers. */
|
||
for (i = first_index_reg; i <= last_index_reg; i++)
|
||
{
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
|
||
i)
|
||
&& reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
|
||
&& reg_state[i].store_ruid <= reg_state[regno].use_ruid
|
||
&& hard_regno_nregs[i][GET_MODE (reg)] == 1)
|
||
{
|
||
rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
|
||
|
||
const_reg = index_reg;
|
||
reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
|
||
(REGY), i.e. BASE, is not clobbered before the last use we'll
|
||
create. */
|
||
if (prev_set != 0
|
||
&& GET_CODE (SET_SRC (prev_set)) == CONST_INT
|
||
&& rtx_equal_p (SET_DEST (prev_set), reg)
|
||
&& reg_state[regno].use_index >= 0
|
||
&& (reg_state[REGNO (base)].store_ruid
|
||
<= reg_state[regno].use_ruid)
|
||
&& reg_sum != 0)
|
||
{
|
||
int i;
|
||
|
||
/* Change destination register and, if necessary, the
|
||
constant value in PREV, the constant loading instruction. */
|
||
validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
|
||
if (reg_state[regno].offset != const0_rtx)
|
||
validate_change (prev,
|
||
&SET_SRC (prev_set),
|
||
GEN_INT (INTVAL (SET_SRC (prev_set))
|
||
+ INTVAL (reg_state[regno].offset)),
|
||
1);
|
||
|
||
/* Now for every use of REG that we have recorded, replace REG
|
||
with REG_SUM. */
|
||
for (i = reg_state[regno].use_index;
|
||
i < RELOAD_COMBINE_MAX_USES; i++)
|
||
validate_change (reg_state[regno].reg_use[i].insn,
|
||
reg_state[regno].reg_use[i].usep,
|
||
/* Each change must have its own
|
||
replacement. */
|
||
copy_rtx (reg_sum), 1);
|
||
|
||
if (apply_change_group ())
|
||
{
|
||
rtx *np;
|
||
|
||
/* Delete the reg-reg addition. */
|
||
delete_insn (insn);
|
||
|
||
if (reg_state[regno].offset != const0_rtx)
|
||
/* Previous REG_EQUIV / REG_EQUAL notes for PREV
|
||
are now invalid. */
|
||
for (np = ®_NOTES (prev); *np;)
|
||
{
|
||
if (REG_NOTE_KIND (*np) == REG_EQUAL
|
||
|| REG_NOTE_KIND (*np) == REG_EQUIV)
|
||
*np = XEXP (*np, 1);
|
||
else
|
||
np = &XEXP (*np, 1);
|
||
}
|
||
|
||
reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
|
||
reg_state[REGNO (const_reg)].store_ruid
|
||
= reload_combine_ruid;
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
|
||
note_stores (PATTERN (insn), reload_combine_note_store, NULL);
|
||
|
||
if (CALL_P (insn))
|
||
{
|
||
rtx link;
|
||
|
||
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
|
||
if (call_used_regs[r])
|
||
{
|
||
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
|
||
reg_state[r].store_ruid = reload_combine_ruid;
|
||
}
|
||
|
||
for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
|
||
link = XEXP (link, 1))
|
||
{
|
||
rtx usage_rtx = XEXP (XEXP (link, 0), 0);
|
||
if (REG_P (usage_rtx))
|
||
{
|
||
unsigned int i;
|
||
unsigned int start_reg = REGNO (usage_rtx);
|
||
unsigned int num_regs =
|
||
hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
|
||
unsigned int end_reg = start_reg + num_regs - 1;
|
||
for (i = start_reg; i <= end_reg; i++)
|
||
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
|
||
{
|
||
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
|
||
reg_state[i].store_ruid = reload_combine_ruid;
|
||
}
|
||
else
|
||
reg_state[i].use_index = -1;
|
||
}
|
||
}
|
||
|
||
}
|
||
else if (JUMP_P (insn)
|
||
&& GET_CODE (PATTERN (insn)) != RETURN)
|
||
{
|
||
/* Non-spill registers might be used at the call destination in
|
||
some unknown fashion, so we have to mark the unknown use. */
|
||
HARD_REG_SET *live;
|
||
|
||
if ((condjump_p (insn) || condjump_in_parallel_p (insn))
|
||
&& JUMP_LABEL (insn))
|
||
live = &LABEL_LIVE (JUMP_LABEL (insn));
|
||
else
|
||
live = &ever_live_at_start;
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
|
||
if (TEST_HARD_REG_BIT (*live, i))
|
||
reg_state[i].use_index = -1;
|
||
}
|
||
|
||
reload_combine_note_use (&PATTERN (insn), insn);
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
{
|
||
if (REG_NOTE_KIND (note) == REG_INC
|
||
&& REG_P (XEXP (note, 0)))
|
||
{
|
||
int regno = REGNO (XEXP (note, 0));
|
||
|
||
reg_state[regno].store_ruid = reload_combine_ruid;
|
||
reg_state[regno].use_index = -1;
|
||
}
|
||
}
|
||
}
|
||
|
||
free (label_live);
|
||
}
|
||
|
||
/* Check if DST is a register or a subreg of a register; if it is,
|
||
update reg_state[regno].store_ruid and reg_state[regno].use_index
|
||
accordingly. Called via note_stores from reload_combine. */
|
||
|
||
static void
|
||
reload_combine_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
int regno = 0;
|
||
int i;
|
||
enum machine_mode mode = GET_MODE (dst);
|
||
|
||
if (GET_CODE (dst) == SUBREG)
|
||
{
|
||
regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
|
||
GET_MODE (SUBREG_REG (dst)),
|
||
SUBREG_BYTE (dst),
|
||
GET_MODE (dst));
|
||
dst = SUBREG_REG (dst);
|
||
}
|
||
if (!REG_P (dst))
|
||
return;
|
||
regno += REGNO (dst);
|
||
|
||
/* note_stores might have stripped a STRICT_LOW_PART, so we have to be
|
||
careful with registers / register parts that are not full words.
|
||
Similarly for ZERO_EXTRACT. */
|
||
if (GET_CODE (set) != SET
|
||
|| GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
|
||
|| GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
|
||
{
|
||
for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
|
||
{
|
||
reg_state[i].use_index = -1;
|
||
reg_state[i].store_ruid = reload_combine_ruid;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
|
||
{
|
||
reg_state[i].store_ruid = reload_combine_ruid;
|
||
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* XP points to a piece of rtl that has to be checked for any uses of
|
||
registers.
|
||
*XP is the pattern of INSN, or a part of it.
|
||
Called from reload_combine, and recursively by itself. */
|
||
static void
|
||
reload_combine_note_use (rtx *xp, rtx insn)
|
||
{
|
||
rtx x = *xp;
|
||
enum rtx_code code = x->code;
|
||
const char *fmt;
|
||
int i, j;
|
||
rtx offset = const0_rtx; /* For the REG case below. */
|
||
|
||
switch (code)
|
||
{
|
||
case SET:
|
||
if (REG_P (SET_DEST (x)))
|
||
{
|
||
reload_combine_note_use (&SET_SRC (x), insn);
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case USE:
|
||
/* If this is the USE of a return value, we can't change it. */
|
||
if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
|
||
{
|
||
/* Mark the return register as used in an unknown fashion. */
|
||
rtx reg = XEXP (x, 0);
|
||
int regno = REGNO (reg);
|
||
int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
|
||
|
||
while (--nregs >= 0)
|
||
reg_state[regno + nregs].use_index = -1;
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case CLOBBER:
|
||
if (REG_P (SET_DEST (x)))
|
||
{
|
||
/* No spurious CLOBBERs of pseudo registers may remain. */
|
||
gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case PLUS:
|
||
/* We are interested in (plus (reg) (const_int)) . */
|
||
if (!REG_P (XEXP (x, 0))
|
||
|| GET_CODE (XEXP (x, 1)) != CONST_INT)
|
||
break;
|
||
offset = XEXP (x, 1);
|
||
x = XEXP (x, 0);
|
||
/* Fall through. */
|
||
case REG:
|
||
{
|
||
int regno = REGNO (x);
|
||
int use_index;
|
||
int nregs;
|
||
|
||
/* No spurious USEs of pseudo registers may remain. */
|
||
gcc_assert (regno < FIRST_PSEUDO_REGISTER);
|
||
|
||
nregs = hard_regno_nregs[regno][GET_MODE (x)];
|
||
|
||
/* We can't substitute into multi-hard-reg uses. */
|
||
if (nregs > 1)
|
||
{
|
||
while (--nregs >= 0)
|
||
reg_state[regno + nregs].use_index = -1;
|
||
return;
|
||
}
|
||
|
||
/* If this register is already used in some unknown fashion, we
|
||
can't do anything.
|
||
If we decrement the index from zero to -1, we can't store more
|
||
uses, so this register becomes used in an unknown fashion. */
|
||
use_index = --reg_state[regno].use_index;
|
||
if (use_index < 0)
|
||
return;
|
||
|
||
if (use_index != RELOAD_COMBINE_MAX_USES - 1)
|
||
{
|
||
/* We have found another use for a register that is already
|
||
used later. Check if the offsets match; if not, mark the
|
||
register as used in an unknown fashion. */
|
||
if (! rtx_equal_p (offset, reg_state[regno].offset))
|
||
{
|
||
reg_state[regno].use_index = -1;
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This is the first use of this register we have seen since we
|
||
marked it as dead. */
|
||
reg_state[regno].offset = offset;
|
||
reg_state[regno].use_ruid = reload_combine_ruid;
|
||
}
|
||
reg_state[regno].reg_use[use_index].insn = insn;
|
||
reg_state[regno].reg_use[use_index].usep = xp;
|
||
return;
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Recursively process the components of X. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
reload_combine_note_use (&XEXP (x, i), insn);
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
reload_combine_note_use (&XVECEXP (x, i, j), insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See if we can reduce the cost of a constant by replacing a move
|
||
with an add. We track situations in which a register is set to a
|
||
constant or to a register plus a constant. */
|
||
/* We cannot do our optimization across labels. Invalidating all the
|
||
information about register contents we have would be costly, so we
|
||
use move2add_last_label_luid to note where the label is and then
|
||
later disable any optimization that would cross it.
|
||
reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
|
||
reg_set_luid[n] is greater than move2add_last_label_luid. */
|
||
static int reg_set_luid[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* If reg_base_reg[n] is negative, register n has been set to
|
||
reg_offset[n] in mode reg_mode[n] .
|
||
If reg_base_reg[n] is non-negative, register n has been set to the
|
||
sum of reg_offset[n] and the value of register reg_base_reg[n]
|
||
before reg_set_luid[n], calculated in mode reg_mode[n] . */
|
||
static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
|
||
static int reg_base_reg[FIRST_PSEUDO_REGISTER];
|
||
static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* move2add_luid is linearly increased while scanning the instructions
|
||
from first to last. It is used to set reg_set_luid in
|
||
reload_cse_move2add and move2add_note_store. */
|
||
static int move2add_luid;
|
||
|
||
/* move2add_last_label_luid is set whenever a label is found. Labels
|
||
invalidate all previously collected reg_offset data. */
|
||
static int move2add_last_label_luid;
|
||
|
||
/* ??? We don't know how zero / sign extension is handled, hence we
|
||
can't go from a narrower to a wider mode. */
|
||
#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
|
||
(GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
|
||
|| (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
|
||
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
|
||
GET_MODE_BITSIZE (INMODE))))
|
||
|
||
static void
|
||
reload_cse_move2add (rtx first)
|
||
{
|
||
int i;
|
||
rtx insn;
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
|
||
reg_set_luid[i] = 0;
|
||
|
||
move2add_last_label_luid = 0;
|
||
move2add_luid = 2;
|
||
for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
|
||
{
|
||
rtx pat, note;
|
||
|
||
if (LABEL_P (insn))
|
||
{
|
||
move2add_last_label_luid = move2add_luid;
|
||
/* We're going to increment move2add_luid twice after a
|
||
label, so that we can use move2add_last_label_luid + 1 as
|
||
the luid for constants. */
|
||
move2add_luid++;
|
||
continue;
|
||
}
|
||
if (! INSN_P (insn))
|
||
continue;
|
||
pat = PATTERN (insn);
|
||
/* For simplicity, we only perform this optimization on
|
||
straightforward SETs. */
|
||
if (GET_CODE (pat) == SET
|
||
&& REG_P (SET_DEST (pat)))
|
||
{
|
||
rtx reg = SET_DEST (pat);
|
||
int regno = REGNO (reg);
|
||
rtx src = SET_SRC (pat);
|
||
|
||
/* Check if we have valid information on the contents of this
|
||
register in the mode of REG. */
|
||
if (reg_set_luid[regno] > move2add_last_label_luid
|
||
&& MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
|
||
{
|
||
/* Try to transform (set (REGX) (CONST_INT A))
|
||
...
|
||
(set (REGX) (CONST_INT B))
|
||
to
|
||
(set (REGX) (CONST_INT A))
|
||
...
|
||
(set (REGX) (plus (REGX) (CONST_INT B-A)))
|
||
or
|
||
(set (REGX) (CONST_INT A))
|
||
...
|
||
(set (STRICT_LOW_PART (REGX)) (CONST_INT B))
|
||
*/
|
||
|
||
if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
|
||
{
|
||
rtx new_src = gen_int_mode (INTVAL (src) - reg_offset[regno],
|
||
GET_MODE (reg));
|
||
/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
|
||
use (set (reg) (reg)) instead.
|
||
We don't delete this insn, nor do we convert it into a
|
||
note, to avoid losing register notes or the return
|
||
value flag. jump2 already knows how to get rid of
|
||
no-op moves. */
|
||
if (new_src == const0_rtx)
|
||
{
|
||
/* If the constants are different, this is a
|
||
truncation, that, if turned into (set (reg)
|
||
(reg)), would be discarded. Maybe we should
|
||
try a truncMN pattern? */
|
||
if (INTVAL (src) == reg_offset [regno])
|
||
validate_change (insn, &SET_SRC (pat), reg, 0);
|
||
}
|
||
else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
|
||
&& have_add2_insn (reg, new_src))
|
||
{
|
||
rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
|
||
validate_change (insn, &SET_SRC (pat), tem, 0);
|
||
}
|
||
else if (GET_MODE (reg) != BImode)
|
||
{
|
||
enum machine_mode narrow_mode;
|
||
for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
narrow_mode != VOIDmode
|
||
&& narrow_mode != GET_MODE (reg);
|
||
narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
|
||
{
|
||
if (have_insn_for (STRICT_LOW_PART, narrow_mode)
|
||
&& ((reg_offset[regno]
|
||
& ~GET_MODE_MASK (narrow_mode))
|
||
== (INTVAL (src)
|
||
& ~GET_MODE_MASK (narrow_mode))))
|
||
{
|
||
rtx narrow_reg = gen_rtx_REG (narrow_mode,
|
||
REGNO (reg));
|
||
rtx narrow_src = gen_int_mode (INTVAL (src),
|
||
narrow_mode);
|
||
rtx new_set =
|
||
gen_rtx_SET (VOIDmode,
|
||
gen_rtx_STRICT_LOW_PART (VOIDmode,
|
||
narrow_reg),
|
||
narrow_src);
|
||
if (validate_change (insn, &PATTERN (insn),
|
||
new_set, 0))
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
reg_set_luid[regno] = move2add_luid;
|
||
reg_mode[regno] = GET_MODE (reg);
|
||
reg_offset[regno] = INTVAL (src);
|
||
continue;
|
||
}
|
||
|
||
/* Try to transform (set (REGX) (REGY))
|
||
(set (REGX) (PLUS (REGX) (CONST_INT A)))
|
||
...
|
||
(set (REGX) (REGY))
|
||
(set (REGX) (PLUS (REGX) (CONST_INT B)))
|
||
to
|
||
(set (REGX) (REGY))
|
||
(set (REGX) (PLUS (REGX) (CONST_INT A)))
|
||
...
|
||
(set (REGX) (plus (REGX) (CONST_INT B-A))) */
|
||
else if (REG_P (src)
|
||
&& reg_set_luid[regno] == reg_set_luid[REGNO (src)]
|
||
&& reg_base_reg[regno] == reg_base_reg[REGNO (src)]
|
||
&& MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
|
||
reg_mode[REGNO (src)]))
|
||
{
|
||
rtx next = next_nonnote_insn (insn);
|
||
rtx set = NULL_RTX;
|
||
if (next)
|
||
set = single_set (next);
|
||
if (set
|
||
&& SET_DEST (set) == reg
|
||
&& GET_CODE (SET_SRC (set)) == PLUS
|
||
&& XEXP (SET_SRC (set), 0) == reg
|
||
&& GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
|
||
{
|
||
rtx src3 = XEXP (SET_SRC (set), 1);
|
||
HOST_WIDE_INT added_offset = INTVAL (src3);
|
||
HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
|
||
HOST_WIDE_INT regno_offset = reg_offset[regno];
|
||
rtx new_src =
|
||
gen_int_mode (added_offset
|
||
+ base_offset
|
||
- regno_offset,
|
||
GET_MODE (reg));
|
||
int success = 0;
|
||
|
||
if (new_src == const0_rtx)
|
||
/* See above why we create (set (reg) (reg)) here. */
|
||
success
|
||
= validate_change (next, &SET_SRC (set), reg, 0);
|
||
else if ((rtx_cost (new_src, PLUS)
|
||
< COSTS_N_INSNS (1) + rtx_cost (src3, SET))
|
||
&& have_add2_insn (reg, new_src))
|
||
{
|
||
rtx newpat = gen_rtx_SET (VOIDmode,
|
||
reg,
|
||
gen_rtx_PLUS (GET_MODE (reg),
|
||
reg,
|
||
new_src));
|
||
success
|
||
= validate_change (next, &PATTERN (next),
|
||
newpat, 0);
|
||
}
|
||
if (success)
|
||
delete_insn (insn);
|
||
insn = next;
|
||
reg_mode[regno] = GET_MODE (reg);
|
||
reg_offset[regno] =
|
||
trunc_int_for_mode (added_offset + base_offset,
|
||
GET_MODE (reg));
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
{
|
||
if (REG_NOTE_KIND (note) == REG_INC
|
||
&& REG_P (XEXP (note, 0)))
|
||
{
|
||
/* Reset the information about this register. */
|
||
int regno = REGNO (XEXP (note, 0));
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
reg_set_luid[regno] = 0;
|
||
}
|
||
}
|
||
note_stores (PATTERN (insn), move2add_note_store, NULL);
|
||
|
||
/* If INSN is a conditional branch, we try to extract an
|
||
implicit set out of it. */
|
||
if (any_condjump_p (insn))
|
||
{
|
||
rtx cnd = fis_get_condition (insn);
|
||
|
||
if (cnd != NULL_RTX
|
||
&& GET_CODE (cnd) == NE
|
||
&& REG_P (XEXP (cnd, 0))
|
||
&& !reg_set_p (XEXP (cnd, 0), insn)
|
||
/* The following two checks, which are also in
|
||
move2add_note_store, are intended to reduce the
|
||
number of calls to gen_rtx_SET to avoid memory
|
||
allocation if possible. */
|
||
&& SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
|
||
&& hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
|
||
&& GET_CODE (XEXP (cnd, 1)) == CONST_INT)
|
||
{
|
||
rtx implicit_set =
|
||
gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
|
||
move2add_note_store (SET_DEST (implicit_set), implicit_set, 0);
|
||
}
|
||
}
|
||
|
||
/* If this is a CALL_INSN, all call used registers are stored with
|
||
unknown values. */
|
||
if (CALL_P (insn))
|
||
{
|
||
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
|
||
{
|
||
if (call_used_regs[i])
|
||
/* Reset the information about this register. */
|
||
reg_set_luid[i] = 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* SET is a SET or CLOBBER that sets DST.
|
||
Update reg_set_luid, reg_offset and reg_base_reg accordingly.
|
||
Called from reload_cse_move2add via note_stores. */
|
||
|
||
static void
|
||
move2add_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
unsigned int regno = 0;
|
||
unsigned int i;
|
||
enum machine_mode mode = GET_MODE (dst);
|
||
|
||
if (GET_CODE (dst) == SUBREG)
|
||
{
|
||
regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
|
||
GET_MODE (SUBREG_REG (dst)),
|
||
SUBREG_BYTE (dst),
|
||
GET_MODE (dst));
|
||
dst = SUBREG_REG (dst);
|
||
}
|
||
|
||
/* Some targets do argument pushes without adding REG_INC notes. */
|
||
|
||
if (MEM_P (dst))
|
||
{
|
||
dst = XEXP (dst, 0);
|
||
if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
|
||
|| GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
|
||
reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
|
||
return;
|
||
}
|
||
if (!REG_P (dst))
|
||
return;
|
||
|
||
regno += REGNO (dst);
|
||
|
||
if (SCALAR_INT_MODE_P (GET_MODE (dst))
|
||
&& hard_regno_nregs[regno][mode] == 1 && GET_CODE (set) == SET
|
||
&& GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
|
||
&& GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
|
||
{
|
||
rtx src = SET_SRC (set);
|
||
rtx base_reg;
|
||
HOST_WIDE_INT offset;
|
||
int base_regno;
|
||
/* This may be different from mode, if SET_DEST (set) is a
|
||
SUBREG. */
|
||
enum machine_mode dst_mode = GET_MODE (dst);
|
||
|
||
switch (GET_CODE (src))
|
||
{
|
||
case PLUS:
|
||
if (REG_P (XEXP (src, 0)))
|
||
{
|
||
base_reg = XEXP (src, 0);
|
||
|
||
if (GET_CODE (XEXP (src, 1)) == CONST_INT)
|
||
offset = INTVAL (XEXP (src, 1));
|
||
else if (REG_P (XEXP (src, 1))
|
||
&& (reg_set_luid[REGNO (XEXP (src, 1))]
|
||
> move2add_last_label_luid)
|
||
&& (MODES_OK_FOR_MOVE2ADD
|
||
(dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
|
||
{
|
||
if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
|
||
offset = reg_offset[REGNO (XEXP (src, 1))];
|
||
/* Maybe the first register is known to be a
|
||
constant. */
|
||
else if (reg_set_luid[REGNO (base_reg)]
|
||
> move2add_last_label_luid
|
||
&& (MODES_OK_FOR_MOVE2ADD
|
||
(dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
|
||
&& reg_base_reg[REGNO (base_reg)] < 0)
|
||
{
|
||
offset = reg_offset[REGNO (base_reg)];
|
||
base_reg = XEXP (src, 1);
|
||
}
|
||
else
|
||
goto invalidate;
|
||
}
|
||
else
|
||
goto invalidate;
|
||
|
||
break;
|
||
}
|
||
|
||
goto invalidate;
|
||
|
||
case REG:
|
||
base_reg = src;
|
||
offset = 0;
|
||
break;
|
||
|
||
case CONST_INT:
|
||
/* Start tracking the register as a constant. */
|
||
reg_base_reg[regno] = -1;
|
||
reg_offset[regno] = INTVAL (SET_SRC (set));
|
||
/* We assign the same luid to all registers set to constants. */
|
||
reg_set_luid[regno] = move2add_last_label_luid + 1;
|
||
reg_mode[regno] = mode;
|
||
return;
|
||
|
||
default:
|
||
invalidate:
|
||
/* Invalidate the contents of the register. */
|
||
reg_set_luid[regno] = 0;
|
||
return;
|
||
}
|
||
|
||
base_regno = REGNO (base_reg);
|
||
/* If information about the base register is not valid, set it
|
||
up as a new base register, pretending its value is known
|
||
starting from the current insn. */
|
||
if (reg_set_luid[base_regno] <= move2add_last_label_luid)
|
||
{
|
||
reg_base_reg[base_regno] = base_regno;
|
||
reg_offset[base_regno] = 0;
|
||
reg_set_luid[base_regno] = move2add_luid;
|
||
reg_mode[base_regno] = mode;
|
||
}
|
||
else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
|
||
reg_mode[base_regno]))
|
||
goto invalidate;
|
||
|
||
reg_mode[regno] = mode;
|
||
|
||
/* Copy base information from our base register. */
|
||
reg_set_luid[regno] = reg_set_luid[base_regno];
|
||
reg_base_reg[regno] = reg_base_reg[base_regno];
|
||
|
||
/* Compute the sum of the offsets or constants. */
|
||
reg_offset[regno] = trunc_int_for_mode (offset
|
||
+ reg_offset[base_regno],
|
||
dst_mode);
|
||
}
|
||
else
|
||
{
|
||
unsigned int endregno = regno + hard_regno_nregs[regno][mode];
|
||
|
||
for (i = regno; i < endregno; i++)
|
||
/* Reset the information about this register. */
|
||
reg_set_luid[i] = 0;
|
||
}
|
||
}
|
||
|
||
static bool
|
||
gate_handle_postreload (void)
|
||
{
|
||
return (optimize > 0);
|
||
}
|
||
|
||
|
||
static void
|
||
rest_of_handle_postreload (void)
|
||
{
|
||
/* Do a very simple CSE pass over just the hard registers. */
|
||
reload_cse_regs (get_insns ());
|
||
/* reload_cse_regs can eliminate potentially-trapping MEMs.
|
||
Remove any EH edges associated with them. */
|
||
if (flag_non_call_exceptions)
|
||
purge_all_dead_edges ();
|
||
}
|
||
|
||
struct tree_opt_pass pass_postreload_cse =
|
||
{
|
||
"postreload", /* name */
|
||
gate_handle_postreload, /* gate */
|
||
rest_of_handle_postreload, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_RELOAD_CSE_REGS, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func, /* todo_flags_finish */
|
||
'o' /* letter */
|
||
};
|
||
|