NetBSD/sys/dev/usb/usb_mem.c
2016-04-30 14:31:39 +00:00

425 lines
11 KiB
C

/* $NetBSD: usb_mem.c,v 1.68 2016/04/30 14:31:39 skrll Exp $ */
/*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB DMA memory allocation.
* We need to allocate a lot of small (many 8 byte, some larger)
* memory blocks that can be used for DMA. Using the bus_dma
* routines directly would incur large overheads in space and time.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: usb_mem.c,v 1.68 2016/04/30 14:31:39 skrll Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/queue.h>
#include <sys/device.h> /* for usbdivar.h */
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/once.h>
#ifdef DIAGNOSTIC
#include <sys/proc.h>
#endif
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h> /* just for usb_dma_t */
#include <dev/usb/usb_mem.h>
#include <dev/usb/usbhist.h>
#define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(usbdebug,FMT,A,B,C,D)
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usbdebug,N,FMT,A,B,C,D)
#define USB_MEM_SMALL roundup(64, CACHE_LINE_SIZE)
#define USB_MEM_CHUNKS 64
#define USB_MEM_BLOCK (USB_MEM_SMALL * USB_MEM_CHUNKS)
/* This struct is overlayed on free fragments. */
struct usb_frag_dma {
usb_dma_block_t *ufd_block;
u_int ufd_offs;
LIST_ENTRY(usb_frag_dma) ufd_next;
};
Static usbd_status usb_block_allocmem(bus_dma_tag_t, size_t, size_t,
usb_dma_block_t **, bool);
Static void usb_block_freemem(usb_dma_block_t *);
LIST_HEAD(usb_dma_block_qh, usb_dma_block);
Static struct usb_dma_block_qh usb_blk_freelist =
LIST_HEAD_INITIALIZER(usb_blk_freelist);
kmutex_t usb_blk_lock;
#ifdef DEBUG
Static struct usb_dma_block_qh usb_blk_fraglist =
LIST_HEAD_INITIALIZER(usb_blk_fraglist);
Static struct usb_dma_block_qh usb_blk_fulllist =
LIST_HEAD_INITIALIZER(usb_blk_fulllist);
#endif
Static u_int usb_blk_nfree = 0;
/* XXX should have different free list for different tags (for speed) */
Static LIST_HEAD(, usb_frag_dma) usb_frag_freelist =
LIST_HEAD_INITIALIZER(usb_frag_freelist);
Static int usb_mem_init(void);
Static int
usb_mem_init(void)
{
mutex_init(&usb_blk_lock, MUTEX_DEFAULT, IPL_NONE);
return 0;
}
Static usbd_status
usb_block_allocmem(bus_dma_tag_t tag, size_t size, size_t align,
usb_dma_block_t **dmap, bool multiseg)
{
usb_dma_block_t *b;
int error;
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
DPRINTFN(5, "size=%zu align=%zu", size, align, 0, 0);
ASSERT_SLEEPABLE();
KASSERT(size != 0);
KASSERT(mutex_owned(&usb_blk_lock));
/* First check the free list. */
LIST_FOREACH(b, &usb_blk_freelist, next) {
/* Don't allocate multiple segments to unwilling callers */
if (b->nsegs != 1 && !multiseg)
continue;
if (b->tag == tag && b->size >= size && b->align >= align) {
LIST_REMOVE(b, next);
usb_blk_nfree--;
*dmap = b;
DPRINTFN(6, "free list size=%zu", b->size, 0, 0, 0);
return USBD_NORMAL_COMPLETION;
}
}
DPRINTFN(6, "no free", 0, 0, 0, 0);
mutex_exit(&usb_blk_lock);
b = kmem_zalloc(sizeof(*b), KM_SLEEP);
if (b == NULL) {
goto fail;
}
b->tag = tag;
b->size = size;
b->align = align;
if (!multiseg)
/* Caller wants one segment */
b->nsegs = 1;
else
b->nsegs = (size + (PAGE_SIZE-1)) / PAGE_SIZE;
b->segs = kmem_alloc(b->nsegs * sizeof(*b->segs), KM_SLEEP);
if (b->segs == NULL) {
kmem_free(b, sizeof(*b));
goto fail;
}
b->nsegs_alloc = b->nsegs;
error = bus_dmamem_alloc(tag, b->size, align, 0,
b->segs, b->nsegs,
&b->nsegs, BUS_DMA_WAITOK);
if (error)
goto free0;
error = bus_dmamem_map(tag, b->segs, b->nsegs, b->size,
&b->kaddr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
if (error)
goto free1;
error = bus_dmamap_create(tag, b->size, b->nsegs, b->size,
0, BUS_DMA_WAITOK, &b->map);
if (error)
goto unmap;
error = bus_dmamap_load(tag, b->map, b->kaddr, b->size, NULL,
BUS_DMA_WAITOK);
if (error)
goto destroy;
*dmap = b;
#ifdef USB_FRAG_DMA_WORKAROUND
memset(b->kaddr, 0, b->size);
#endif
mutex_enter(&usb_blk_lock);
return USBD_NORMAL_COMPLETION;
destroy:
bus_dmamap_destroy(tag, b->map);
unmap:
bus_dmamem_unmap(tag, b->kaddr, b->size);
free1:
bus_dmamem_free(tag, b->segs, b->nsegs);
free0:
kmem_free(b->segs, b->nsegs_alloc * sizeof(*b->segs));
kmem_free(b, sizeof(*b));
fail:
mutex_enter(&usb_blk_lock);
return USBD_NOMEM;
}
#if 0
void
usb_block_real_freemem(usb_dma_block_t *b)
{
#ifdef DIAGNOSTIC
if (cpu_softintr_p() || cpu_intr_p()) {
printf("usb_block_real_freemem: in interrupt context\n");
return;
}
#endif
bus_dmamap_unload(b->tag, b->map);
bus_dmamap_destroy(b->tag, b->map);
bus_dmamem_unmap(b->tag, b->kaddr, b->size);
bus_dmamem_free(b->tag, b->segs, b->nsegs);
kmem_free(b->segs, b->nsegs_alloc * sizeof(*b->segs));
kmem_free(b, sizeof(*b));
}
#endif
#ifdef DEBUG
static bool
usb_valid_block_p(usb_dma_block_t *b, struct usb_dma_block_qh *qh)
{
usb_dma_block_t *xb;
LIST_FOREACH(xb, qh, next) {
if (xb == b)
return true;
}
return false;
}
#endif
/*
* Do not free the memory unconditionally since we might be called
* from an interrupt context and that is BAD.
* XXX when should we really free?
*/
Static void
usb_block_freemem(usb_dma_block_t *b)
{
KASSERT(mutex_owned(&usb_blk_lock));
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
DPRINTFN(6, "size=%zu", b->size, 0, 0, 0);
#ifdef DEBUG
LIST_REMOVE(b, next);
#endif
LIST_INSERT_HEAD(&usb_blk_freelist, b, next);
usb_blk_nfree++;
}
usbd_status
usb_allocmem(struct usbd_bus *bus, size_t size, size_t align, usb_dma_t *p)
{
return usb_allocmem_flags(bus, size, align, p, 0);
}
usbd_status
usb_allocmem_flags(struct usbd_bus *bus, size_t size, size_t align, usb_dma_t *p,
int flags)
{
bus_dma_tag_t tag = bus->ub_dmatag;
usbd_status err;
struct usb_frag_dma *f;
usb_dma_block_t *b;
int i;
static ONCE_DECL(init_control);
bool frag;
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
ASSERT_SLEEPABLE();
RUN_ONCE(&init_control, usb_mem_init);
frag = (flags & USBMALLOC_MULTISEG);
/* If the request is large then just use a full block. */
if (size > USB_MEM_SMALL || align > USB_MEM_SMALL) {
DPRINTFN(1, "large alloc %d", size, 0, 0, 0);
size = (size + USB_MEM_BLOCK - 1) & ~(USB_MEM_BLOCK - 1);
mutex_enter(&usb_blk_lock);
err = usb_block_allocmem(tag, size, align, &p->udma_block, frag);
if (!err) {
#ifdef DEBUG
LIST_INSERT_HEAD(&usb_blk_fulllist, p->udma_block, next);
#endif
p->udma_block->flags = USB_DMA_FULLBLOCK;
p->udma_offs = 0;
}
mutex_exit(&usb_blk_lock);
return err;
}
mutex_enter(&usb_blk_lock);
/* Check for free fragments. */
LIST_FOREACH(f, &usb_frag_freelist, ufd_next) {
KDASSERTMSG(usb_valid_block_p(f->ufd_block, &usb_blk_fraglist),
"%s: usb frag %p: unknown block pointer %p",
__func__, f, f->ufd_block);
if (f->ufd_block->tag == tag)
break;
}
if (f == NULL) {
DPRINTFN(1, "adding fragments", 0, 0, 0, 0);
err = usb_block_allocmem(tag, USB_MEM_BLOCK, USB_MEM_SMALL, &b,
false);
if (err) {
mutex_exit(&usb_blk_lock);
return err;
}
#ifdef DEBUG
LIST_INSERT_HEAD(&usb_blk_fraglist, b, next);
#endif
b->flags = 0;
for (i = 0; i < USB_MEM_BLOCK; i += USB_MEM_SMALL) {
f = (struct usb_frag_dma *)((char *)b->kaddr + i);
f->ufd_block = b;
f->ufd_offs = i;
LIST_INSERT_HEAD(&usb_frag_freelist, f, ufd_next);
#ifdef USB_FRAG_DMA_WORKAROUND
i += 1 * USB_MEM_SMALL;
#endif
}
f = LIST_FIRST(&usb_frag_freelist);
}
p->udma_block = f->ufd_block;
p->udma_offs = f->ufd_offs;
#ifdef USB_FRAG_DMA_WORKAROUND
p->udma_offs += USB_MEM_SMALL;
#endif
LIST_REMOVE(f, ufd_next);
mutex_exit(&usb_blk_lock);
DPRINTFN(5, "use frag=%p size=%d", f, size, 0, 0);
return USBD_NORMAL_COMPLETION;
}
void
usb_freemem(struct usbd_bus *bus, usb_dma_t *p)
{
struct usb_frag_dma *f;
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
mutex_enter(&usb_blk_lock);
if (p->udma_block->flags & USB_DMA_FULLBLOCK) {
KDASSERTMSG(usb_valid_block_p(p->udma_block, &usb_blk_fulllist),
"%s: dma %p: invalid block pointer %p",
__func__, p, p->udma_block);
DPRINTFN(1, "large free", 0, 0, 0, 0);
usb_block_freemem(p->udma_block);
mutex_exit(&usb_blk_lock);
return;
}
KDASSERTMSG(usb_valid_block_p(p->udma_block, &usb_blk_fraglist),
"%s: dma %p: invalid block pointer %p",
__func__, p, p->udma_block);
//usb_syncmem(p, 0, USB_MEM_SMALL, BUS_DMASYNC_POSTREAD);
f = KERNADDR(p, 0);
#ifdef USB_FRAG_DMA_WORKAROUND
f = (void *)((uintptr_t)f - USB_MEM_SMALL);
#endif
f->ufd_block = p->udma_block;
f->ufd_offs = p->udma_offs;
#ifdef USB_FRAG_DMA_WORKAROUND
f->ufd_offs -= USB_MEM_SMALL;
#endif
LIST_INSERT_HEAD(&usb_frag_freelist, f, ufd_next);
mutex_exit(&usb_blk_lock);
DPRINTFN(5, "frag=%p", f, 0, 0, 0);
}
bus_addr_t
usb_dmaaddr(usb_dma_t *dma, unsigned int offset)
{
unsigned int i;
bus_size_t seg_offs;
offset += dma->udma_offs;
KASSERTMSG(offset < dma->udma_block->size, "offset %d vs %zu", offset,
dma->udma_block->size);
if (dma->udma_block->nsegs == 1) {
KASSERT(dma->udma_block->map->dm_segs[0].ds_len > offset);
return dma->udma_block->map->dm_segs[0].ds_addr + offset;
}
/*
* Search for a bus_segment_t corresponding to this offset. With no
* record of the offset in the map to a particular dma_segment_t, we
* have to iterate from the start of the list each time. Could be
* improved
*/
seg_offs = 0;
for (i = 0; i < dma->udma_block->nsegs; i++) {
if (seg_offs + dma->udma_block->map->dm_segs[i].ds_len > offset)
break;
seg_offs += dma->udma_block->map->dm_segs[i].ds_len;
}
KASSERT(i != dma->udma_block->nsegs);
offset -= seg_offs;
return dma->udma_block->map->dm_segs[i].ds_addr + offset;
}
void
usb_syncmem(usb_dma_t *p, bus_addr_t offset, bus_size_t len, int ops)
{
bus_dmamap_sync(p->udma_block->tag, p->udma_block->map, p->udma_offs + offset,
len, ops);
}