NetBSD/sys/dev/usb/ohci.c
2016-12-04 10:08:26 +00:00

3686 lines
97 KiB
C

/* $NetBSD: ohci.c,v 1.265 2016/12/04 10:12:35 skrll Exp $ */
/*
* Copyright (c) 1998, 2004, 2005, 2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology, Jared D. McNeill (jmcneill@invisible.ca)
* and Matthew R. Green (mrg@eterna.com.au).
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB Open Host Controller driver.
*
* OHCI spec: http://www.compaq.com/productinfo/development/openhci.html
* USB spec: http://www.usb.org/developers/docs/
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ohci.c,v 1.265 2016/12/04 10:12:35 skrll Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/select.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <machine/endian.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/ohcireg.h>
#include <dev/usb/ohcivar.h>
#include <dev/usb/usbroothub.h>
#include <dev/usb/usbhist.h>
#ifdef USB_DEBUG
#ifndef OHCI_DEBUG
#define ohcidebug 0
#else
static int ohcidebug = 10;
SYSCTL_SETUP(sysctl_hw_ohci_setup, "sysctl hw.ohci setup")
{
int err;
const struct sysctlnode *rnode;
const struct sysctlnode *cnode;
err = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "ohci",
SYSCTL_DESCR("ohci global controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (err)
goto fail;
/* control debugging printfs */
err = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable debugging output"),
NULL, 0, &ohcidebug, sizeof(ohcidebug), CTL_CREATE, CTL_EOL);
if (err)
goto fail;
return;
fail:
aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
}
#endif /* OHCI_DEBUG */
#endif /* USB_DEBUG */
#define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(ohcidebug,FMT,A,B,C,D)
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(ohcidebug,N,FMT,A,B,C,D)
#define OHCIHIST_FUNC() USBHIST_FUNC()
#define OHCIHIST_CALLED(name) USBHIST_CALLED(ohcidebug)
#if BYTE_ORDER == BIG_ENDIAN
#define SWAP_ENDIAN OHCI_LITTLE_ENDIAN
#else
#define SWAP_ENDIAN OHCI_BIG_ENDIAN
#endif
#define O16TOH(val) (sc->sc_endian == SWAP_ENDIAN ? bswap16(val) : val)
#define O32TOH(val) (sc->sc_endian == SWAP_ENDIAN ? bswap32(val) : val)
#define HTOO16(val) O16TOH(val)
#define HTOO32(val) O32TOH(val)
struct ohci_pipe;
Static ohci_soft_ed_t *ohci_alloc_sed(ohci_softc_t *);
Static void ohci_free_sed(ohci_softc_t *, ohci_soft_ed_t *);
Static ohci_soft_td_t *ohci_alloc_std(ohci_softc_t *);
Static void ohci_free_std(ohci_softc_t *, ohci_soft_td_t *);
Static void ohci_free_std_locked(ohci_softc_t *, ohci_soft_td_t *);
Static ohci_soft_itd_t *ohci_alloc_sitd(ohci_softc_t *);
Static void ohci_free_sitd(ohci_softc_t *,ohci_soft_itd_t *);
Static void ohci_free_sitd_locked(ohci_softc_t *,
ohci_soft_itd_t *);
Static int ohci_alloc_std_chain(ohci_softc_t *, struct usbd_xfer *,
int, int);
Static void ohci_free_stds(ohci_softc_t *, struct ohci_xfer *);
Static void ohci_reset_std_chain(ohci_softc_t *, struct usbd_xfer *,
int, int, ohci_soft_td_t *, ohci_soft_td_t **);
Static usbd_status ohci_open(struct usbd_pipe *);
Static void ohci_poll(struct usbd_bus *);
Static void ohci_softintr(void *);
Static void ohci_rhsc(ohci_softc_t *, struct usbd_xfer *);
Static void ohci_rhsc_softint(void *);
Static void ohci_add_ed(ohci_softc_t *, ohci_soft_ed_t *,
ohci_soft_ed_t *);
Static void ohci_rem_ed(ohci_softc_t *, ohci_soft_ed_t *,
ohci_soft_ed_t *);
Static void ohci_hash_add_td(ohci_softc_t *, ohci_soft_td_t *);
Static void ohci_hash_rem_td(ohci_softc_t *, ohci_soft_td_t *);
Static ohci_soft_td_t *ohci_hash_find_td(ohci_softc_t *, ohci_physaddr_t);
Static void ohci_hash_add_itd(ohci_softc_t *, ohci_soft_itd_t *);
Static void ohci_hash_rem_itd(ohci_softc_t *, ohci_soft_itd_t *);
Static ohci_soft_itd_t *ohci_hash_find_itd(ohci_softc_t *, ohci_physaddr_t);
Static usbd_status ohci_setup_isoc(struct usbd_pipe *);
Static void ohci_device_isoc_enter(struct usbd_xfer *);
Static struct usbd_xfer *
ohci_allocx(struct usbd_bus *, unsigned int);
Static void ohci_freex(struct usbd_bus *, struct usbd_xfer *);
Static void ohci_get_lock(struct usbd_bus *, kmutex_t **);
Static int ohci_roothub_ctrl(struct usbd_bus *,
usb_device_request_t *, void *, int);
Static usbd_status ohci_root_intr_transfer(struct usbd_xfer *);
Static usbd_status ohci_root_intr_start(struct usbd_xfer *);
Static void ohci_root_intr_abort(struct usbd_xfer *);
Static void ohci_root_intr_close(struct usbd_pipe *);
Static void ohci_root_intr_done(struct usbd_xfer *);
Static int ohci_device_ctrl_init(struct usbd_xfer *);
Static void ohci_device_ctrl_fini(struct usbd_xfer *);
Static usbd_status ohci_device_ctrl_transfer(struct usbd_xfer *);
Static usbd_status ohci_device_ctrl_start(struct usbd_xfer *);
Static void ohci_device_ctrl_abort(struct usbd_xfer *);
Static void ohci_device_ctrl_close(struct usbd_pipe *);
Static void ohci_device_ctrl_done(struct usbd_xfer *);
Static int ohci_device_bulk_init(struct usbd_xfer *);
Static void ohci_device_bulk_fini(struct usbd_xfer *);
Static usbd_status ohci_device_bulk_transfer(struct usbd_xfer *);
Static usbd_status ohci_device_bulk_start(struct usbd_xfer *);
Static void ohci_device_bulk_abort(struct usbd_xfer *);
Static void ohci_device_bulk_close(struct usbd_pipe *);
Static void ohci_device_bulk_done(struct usbd_xfer *);
Static int ohci_device_intr_init(struct usbd_xfer *);
Static void ohci_device_intr_fini(struct usbd_xfer *);
Static usbd_status ohci_device_intr_transfer(struct usbd_xfer *);
Static usbd_status ohci_device_intr_start(struct usbd_xfer *);
Static void ohci_device_intr_abort(struct usbd_xfer *);
Static void ohci_device_intr_close(struct usbd_pipe *);
Static void ohci_device_intr_done(struct usbd_xfer *);
Static int ohci_device_isoc_init(struct usbd_xfer *);
Static void ohci_device_isoc_fini(struct usbd_xfer *);
Static usbd_status ohci_device_isoc_transfer(struct usbd_xfer *);
Static void ohci_device_isoc_abort(struct usbd_xfer *);
Static void ohci_device_isoc_close(struct usbd_pipe *);
Static void ohci_device_isoc_done(struct usbd_xfer *);
Static usbd_status ohci_device_setintr(ohci_softc_t *,
struct ohci_pipe *, int);
Static void ohci_timeout(void *);
Static void ohci_timeout_task(void *);
Static void ohci_rhsc_enable(void *);
Static void ohci_close_pipe(struct usbd_pipe *, ohci_soft_ed_t *);
Static void ohci_abort_xfer(struct usbd_xfer *, usbd_status);
Static void ohci_device_clear_toggle(struct usbd_pipe *);
Static void ohci_noop(struct usbd_pipe *);
#ifdef OHCI_DEBUG
Static void ohci_dumpregs(ohci_softc_t *);
Static void ohci_dump_tds(ohci_softc_t *, ohci_soft_td_t *);
Static void ohci_dump_td(ohci_softc_t *, ohci_soft_td_t *);
Static void ohci_dump_ed(ohci_softc_t *, ohci_soft_ed_t *);
Static void ohci_dump_itd(ohci_softc_t *, ohci_soft_itd_t *);
Static void ohci_dump_itds(ohci_softc_t *, ohci_soft_itd_t *);
#endif
#define OBARR(sc) bus_space_barrier((sc)->iot, (sc)->ioh, 0, (sc)->sc_size, \
BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE)
#define OWRITE1(sc, r, x) \
do { OBARR(sc); bus_space_write_1((sc)->iot, (sc)->ioh, (r), (x)); } while (0)
#define OWRITE2(sc, r, x) \
do { OBARR(sc); bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x)); } while (0)
#define OWRITE4(sc, r, x) \
do { OBARR(sc); bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x)); } while (0)
static __inline uint32_t
OREAD4(ohci_softc_t *sc, bus_size_t r)
{
OBARR(sc);
return bus_space_read_4(sc->iot, sc->ioh, r);
}
/* Reverse the bits in a value 0 .. 31 */
Static uint8_t revbits[OHCI_NO_INTRS] =
{ 0x00, 0x10, 0x08, 0x18, 0x04, 0x14, 0x0c, 0x1c,
0x02, 0x12, 0x0a, 0x1a, 0x06, 0x16, 0x0e, 0x1e,
0x01, 0x11, 0x09, 0x19, 0x05, 0x15, 0x0d, 0x1d,
0x03, 0x13, 0x0b, 0x1b, 0x07, 0x17, 0x0f, 0x1f };
struct ohci_pipe {
struct usbd_pipe pipe;
ohci_soft_ed_t *sed;
union {
ohci_soft_td_t *td;
ohci_soft_itd_t *itd;
} tail;
/* Info needed for different pipe kinds. */
union {
/* Control pipe */
struct {
usb_dma_t reqdma;
} ctrl;
/* Interrupt pipe */
struct {
int nslots;
int pos;
} intr;
/* Isochronous pipe */
struct isoc {
int next, inuse;
} isoc;
};
};
Static const struct usbd_bus_methods ohci_bus_methods = {
.ubm_open = ohci_open,
.ubm_softint = ohci_softintr,
.ubm_dopoll = ohci_poll,
.ubm_allocx = ohci_allocx,
.ubm_freex = ohci_freex,
.ubm_getlock = ohci_get_lock,
.ubm_rhctrl = ohci_roothub_ctrl,
};
Static const struct usbd_pipe_methods ohci_root_intr_methods = {
.upm_transfer = ohci_root_intr_transfer,
.upm_start = ohci_root_intr_start,
.upm_abort = ohci_root_intr_abort,
.upm_close = ohci_root_intr_close,
.upm_cleartoggle = ohci_noop,
.upm_done = ohci_root_intr_done,
};
Static const struct usbd_pipe_methods ohci_device_ctrl_methods = {
.upm_init = ohci_device_ctrl_init,
.upm_fini = ohci_device_ctrl_fini,
.upm_transfer = ohci_device_ctrl_transfer,
.upm_start = ohci_device_ctrl_start,
.upm_abort = ohci_device_ctrl_abort,
.upm_close = ohci_device_ctrl_close,
.upm_cleartoggle = ohci_noop,
.upm_done = ohci_device_ctrl_done,
};
Static const struct usbd_pipe_methods ohci_device_intr_methods = {
.upm_init = ohci_device_intr_init,
.upm_fini = ohci_device_intr_fini,
.upm_transfer = ohci_device_intr_transfer,
.upm_start = ohci_device_intr_start,
.upm_abort = ohci_device_intr_abort,
.upm_close = ohci_device_intr_close,
.upm_cleartoggle = ohci_device_clear_toggle,
.upm_done = ohci_device_intr_done,
};
Static const struct usbd_pipe_methods ohci_device_bulk_methods = {
.upm_init = ohci_device_bulk_init,
.upm_fini = ohci_device_bulk_fini,
.upm_transfer = ohci_device_bulk_transfer,
.upm_start = ohci_device_bulk_start,
.upm_abort = ohci_device_bulk_abort,
.upm_close = ohci_device_bulk_close,
.upm_cleartoggle = ohci_device_clear_toggle,
.upm_done = ohci_device_bulk_done,
};
Static const struct usbd_pipe_methods ohci_device_isoc_methods = {
.upm_init = ohci_device_isoc_init,
.upm_fini = ohci_device_isoc_fini,
.upm_transfer = ohci_device_isoc_transfer,
.upm_abort = ohci_device_isoc_abort,
.upm_close = ohci_device_isoc_close,
.upm_cleartoggle = ohci_noop,
.upm_done = ohci_device_isoc_done,
};
int
ohci_activate(device_t self, enum devact act)
{
struct ohci_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
sc->sc_dying = 1;
return 0;
default:
return EOPNOTSUPP;
}
}
void
ohci_childdet(device_t self, device_t child)
{
struct ohci_softc *sc = device_private(self);
KASSERT(sc->sc_child == child);
sc->sc_child = NULL;
}
int
ohci_detach(struct ohci_softc *sc, int flags)
{
int rv = 0;
if (sc->sc_child != NULL)
rv = config_detach(sc->sc_child, flags);
if (rv != 0)
return rv;
callout_halt(&sc->sc_tmo_rhsc, &sc->sc_lock);
usb_delay_ms(&sc->sc_bus, 300); /* XXX let stray task complete */
callout_destroy(&sc->sc_tmo_rhsc);
softint_disestablish(sc->sc_rhsc_si);
cv_destroy(&sc->sc_softwake_cv);
mutex_destroy(&sc->sc_lock);
mutex_destroy(&sc->sc_intr_lock);
if (sc->sc_hcca != NULL)
usb_freemem(&sc->sc_bus, &sc->sc_hccadma);
pool_cache_destroy(sc->sc_xferpool);
return rv;
}
ohci_soft_ed_t *
ohci_alloc_sed(ohci_softc_t *sc)
{
ohci_soft_ed_t *sed;
usbd_status err;
int i, offs;
usb_dma_t dma;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
mutex_enter(&sc->sc_lock);
if (sc->sc_freeeds == NULL) {
DPRINTFN(2, "allocating chunk", 0, 0, 0, 0);
mutex_exit(&sc->sc_lock);
err = usb_allocmem(&sc->sc_bus, OHCI_SED_SIZE * OHCI_SED_CHUNK,
OHCI_ED_ALIGN, &dma);
if (err)
return 0;
mutex_enter(&sc->sc_lock);
for (i = 0; i < OHCI_SED_CHUNK; i++) {
offs = i * OHCI_SED_SIZE;
sed = KERNADDR(&dma, offs);
sed->physaddr = DMAADDR(&dma, offs);
sed->dma = dma;
sed->offs = offs;
sed->next = sc->sc_freeeds;
sc->sc_freeeds = sed;
}
}
sed = sc->sc_freeeds;
sc->sc_freeeds = sed->next;
mutex_exit(&sc->sc_lock);
memset(&sed->ed, 0, sizeof(ohci_ed_t));
sed->next = 0;
return sed;
}
static inline void
ohci_free_sed_locked(ohci_softc_t *sc, ohci_soft_ed_t *sed)
{
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
sed->next = sc->sc_freeeds;
sc->sc_freeeds = sed;
}
void
ohci_free_sed(ohci_softc_t *sc, ohci_soft_ed_t *sed)
{
mutex_enter(&sc->sc_lock);
ohci_free_sed_locked(sc, sed);
mutex_exit(&sc->sc_lock);
}
ohci_soft_td_t *
ohci_alloc_std(ohci_softc_t *sc)
{
ohci_soft_td_t *std;
usbd_status err;
int i, offs;
usb_dma_t dma;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
mutex_enter(&sc->sc_lock);
if (sc->sc_freetds == NULL) {
DPRINTFN(2, "allocating chunk", 0, 0, 0, 0);
mutex_exit(&sc->sc_lock);
err = usb_allocmem(&sc->sc_bus, OHCI_STD_SIZE * OHCI_STD_CHUNK,
OHCI_TD_ALIGN, &dma);
if (err)
return NULL;
mutex_enter(&sc->sc_lock);
for (i = 0; i < OHCI_STD_CHUNK; i++) {
offs = i * OHCI_STD_SIZE;
std = KERNADDR(&dma, offs);
std->physaddr = DMAADDR(&dma, offs);
std->dma = dma;
std->offs = offs;
std->nexttd = sc->sc_freetds;
sc->sc_freetds = std;
}
}
std = sc->sc_freetds;
sc->sc_freetds = std->nexttd;
mutex_exit(&sc->sc_lock);
memset(&std->td, 0, sizeof(ohci_td_t));
std->nexttd = NULL;
std->xfer = NULL;
return std;
}
void
ohci_free_std_locked(ohci_softc_t *sc, ohci_soft_td_t *std)
{
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
std->nexttd = sc->sc_freetds;
sc->sc_freetds = std;
}
void
ohci_free_std(ohci_softc_t *sc, ohci_soft_td_t *std)
{
mutex_enter(&sc->sc_lock);
ohci_free_std_locked(sc, std);
mutex_exit(&sc->sc_lock);
}
Static int
ohci_alloc_std_chain(ohci_softc_t *sc, struct usbd_xfer *xfer, int length, int rd)
{
struct ohci_xfer *ox = OHCI_XFER2OXFER(xfer);
uint16_t flags = xfer->ux_flags;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(8, "addr=%d endpt=%d len=%d speed=%d",
xfer->ux_pipe->up_dev->ud_addr,
UE_GET_ADDR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress),
length, xfer->ux_pipe->up_dev->ud_speed);
ASSERT_SLEEPABLE();
KASSERT(length != 0 || (!rd && (flags & USBD_FORCE_SHORT_XFER)));
size_t nstd = (!rd && (flags & USBD_FORCE_SHORT_XFER)) ? 1 : 0;
nstd += ((length + OHCI_PAGE_SIZE - 1) / OHCI_PAGE_SIZE);
ox->ox_stds = kmem_zalloc(sizeof(ohci_soft_td_t *) * nstd,
KM_SLEEP);
ox->ox_nstd = nstd;
DPRINTFN(8, "xfer %p nstd %d", xfer, nstd, 0, 0);
for (size_t j = 0; j < ox->ox_nstd;) {
ohci_soft_td_t *cur = ohci_alloc_std(sc);
if (cur == NULL)
goto nomem;
ox->ox_stds[j++] = cur;
cur->xfer = xfer;
cur->flags = 0;
}
return 0;
nomem:
ohci_free_stds(sc, ox);
kmem_free(ox->ox_stds, sizeof(ohci_soft_td_t *) * nstd);
return ENOMEM;
}
Static void
ohci_free_stds(ohci_softc_t *sc, struct ohci_xfer *ox)
{
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTF("ox=%p", ox, 0, 0, 0);
mutex_enter(&sc->sc_lock);
for (size_t i = 0; i < ox->ox_nstd; i++) {
ohci_soft_td_t *std = ox->ox_stds[i];
if (std == NULL)
break;
ohci_free_std_locked(sc, std);
}
mutex_exit(&sc->sc_lock);
}
void
ohci_reset_std_chain(ohci_softc_t *sc, struct usbd_xfer *xfer,
int alen, int rd, ohci_soft_td_t *sp, ohci_soft_td_t **ep)
{
struct ohci_xfer *ox = OHCI_XFER2OXFER(xfer);
ohci_soft_td_t *next, *cur;
int len, curlen;
usb_dma_t *dma = &xfer->ux_dmabuf;
uint16_t flags = xfer->ux_flags;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTF("start len=%d", alen, 0, 0, 0);
KASSERT(mutex_owned(&sc->sc_lock));
DPRINTFN(8, "addr=%d endpt=%d len=%d speed=%d",
xfer->ux_pipe->up_dev->ud_addr,
UE_GET_ADDR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress),
alen, xfer->ux_pipe->up_dev->ud_speed);
KASSERT(sp);
int mps = UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize);
/*
* Assign next for the len == 0 case where we don't go through the
* main loop.
*/
len = alen;
cur = next = sp;
usb_syncmem(dma, 0, len,
rd ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
const uint32_t tdflags = HTOO32(
(rd ? OHCI_TD_IN : OHCI_TD_OUT) |
OHCI_TD_NOCC | OHCI_TD_TOGGLE_CARRY | OHCI_TD_NOINTR);
size_t curoffs = 0;
for (size_t j = 1; len != 0;) {
if (j == ox->ox_nstd)
next = NULL;
else
next = ox->ox_stds[j++];
KASSERT(next != cur);
curlen = 0;
ohci_physaddr_t sdataphys = DMAADDR(dma, curoffs);
ohci_physaddr_t edataphys = DMAADDR(dma, curoffs + len - 1);
ohci_physaddr_t sphyspg = OHCI_PAGE(sdataphys);
ohci_physaddr_t ephyspg = OHCI_PAGE(edataphys);
/*
* The OHCI hardware can handle at most one page
* crossing per TD
*/
curlen = len;
if (!(sphyspg == ephyspg || sphyspg + 1 == ephyspg)) {
/* must use multiple TDs, fill as much as possible. */
curlen = 2 * OHCI_PAGE_SIZE -
(sdataphys & (OHCI_PAGE_SIZE - 1));
/* the length must be a multiple of the max size */
curlen -= curlen % mps;
}
KASSERT(curlen != 0);
DPRINTFN(4, "sdataphys=0x%08x edataphys=0x%08x "
"len=%d curlen=%d", sdataphys, edataphys, len, curlen);
cur->td.td_flags = tdflags;
cur->td.td_cbp = HTOO32(sdataphys);
cur->td.td_be = HTOO32(edataphys);
cur->td.td_nexttd = (next != NULL) ? HTOO32(next->physaddr) : 0;
cur->nexttd = next;
cur->len = curlen;
cur->flags = OHCI_ADD_LEN;
cur->xfer = xfer;
ohci_hash_add_td(sc, cur);
usb_syncmem(&cur->dma, cur->offs, sizeof(cur->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
curoffs += curlen;
len -= curlen;
if (len != 0) {
KASSERT(next != NULL);
DPRINTFN(10, "extend chain", 0, 0, 0, 0);
cur = next;
}
}
cur->td.td_flags |=
HTOO32(xfer->ux_flags & USBD_SHORT_XFER_OK ? OHCI_TD_R : 0);
if (!rd &&
(flags & USBD_FORCE_SHORT_XFER) &&
alen % mps == 0) {
/* Force a 0 length transfer at the end. */
KASSERT(next != NULL);
cur = next;
cur->td.td_flags = tdflags;
cur->td.td_cbp = 0; /* indicate 0 length packet */
cur->td.td_nexttd = 0;
cur->td.td_be = ~0;
cur->nexttd = NULL;
cur->len = 0;
cur->flags = 0;
cur->xfer = xfer;
ohci_hash_add_td(sc, cur);
usb_syncmem(&cur->dma, cur->offs, sizeof(cur->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
DPRINTFN(2, "add 0 xfer", 0, 0, 0, 0);
}
*ep = cur;
}
ohci_soft_itd_t *
ohci_alloc_sitd(ohci_softc_t *sc)
{
ohci_soft_itd_t *sitd;
usbd_status err;
int i, offs;
usb_dma_t dma;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
mutex_enter(&sc->sc_lock);
if (sc->sc_freeitds == NULL) {
DPRINTFN(2, "allocating chunk", 0, 0, 0, 0);
mutex_exit(&sc->sc_lock);
err = usb_allocmem(&sc->sc_bus, OHCI_SITD_SIZE * OHCI_SITD_CHUNK,
OHCI_ITD_ALIGN, &dma);
if (err)
return NULL;
mutex_enter(&sc->sc_lock);
for (i = 0; i < OHCI_SITD_CHUNK; i++) {
offs = i * OHCI_SITD_SIZE;
sitd = KERNADDR(&dma, offs);
sitd->physaddr = DMAADDR(&dma, offs);
sitd->dma = dma;
sitd->offs = offs;
sitd->nextitd = sc->sc_freeitds;
sc->sc_freeitds = sitd;
}
}
sitd = sc->sc_freeitds;
sc->sc_freeitds = sitd->nextitd;
mutex_exit(&sc->sc_lock);
memset(&sitd->itd, 0, sizeof(ohci_itd_t));
sitd->nextitd = NULL;
sitd->xfer = NULL;
#ifdef DIAGNOSTIC
sitd->isdone = true;
#endif
return sitd;
}
Static void
ohci_free_sitd_locked(ohci_softc_t *sc, ohci_soft_itd_t *sitd)
{
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(10, "sitd=%p", sitd, 0, 0, 0);
KASSERT(sitd->isdone);
#ifdef DIAGNOSTIC
/* Warn double free */
sitd->isdone = false;
#endif
sitd->nextitd = sc->sc_freeitds;
sc->sc_freeitds = sitd;
}
void
ohci_free_sitd(ohci_softc_t *sc, ohci_soft_itd_t *sitd)
{
OHCIHIST_FUNC(); OHCIHIST_CALLED();
mutex_enter(&sc->sc_lock);
ohci_free_sitd_locked(sc, sitd);
mutex_exit(&sc->sc_lock);
}
int
ohci_init(ohci_softc_t *sc)
{
ohci_soft_ed_t *sed, *psed;
usbd_status err;
int i;
uint32_t s, ctl, rwc, ival, hcr, fm, per, rev, desca /*, descb */;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
aprint_normal_dev(sc->sc_dev, "");
sc->sc_hcca = NULL;
callout_init(&sc->sc_tmo_rhsc, CALLOUT_MPSAFE);
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
cv_init(&sc->sc_softwake_cv, "ohciab");
sc->sc_rhsc_si = softint_establish(SOFTINT_USB | SOFTINT_MPSAFE,
ohci_rhsc_softint, sc);
for (i = 0; i < OHCI_HASH_SIZE; i++)
LIST_INIT(&sc->sc_hash_tds[i]);
for (i = 0; i < OHCI_HASH_SIZE; i++)
LIST_INIT(&sc->sc_hash_itds[i]);
sc->sc_xferpool = pool_cache_init(sizeof(struct ohci_xfer), 0, 0, 0,
"ohcixfer", NULL, IPL_USB, NULL, NULL, NULL);
rev = OREAD4(sc, OHCI_REVISION);
aprint_normal("OHCI version %d.%d%s\n",
OHCI_REV_HI(rev), OHCI_REV_LO(rev),
OHCI_REV_LEGACY(rev) ? ", legacy support" : "");
if (OHCI_REV_HI(rev) != 1 || OHCI_REV_LO(rev) != 0) {
aprint_error_dev(sc->sc_dev, "unsupported OHCI revision\n");
sc->sc_bus.ub_revision = USBREV_UNKNOWN;
return -1;
}
sc->sc_bus.ub_revision = USBREV_1_0;
sc->sc_bus.ub_usedma = true;
/* XXX determine alignment by R/W */
/* Allocate the HCCA area. */
err = usb_allocmem(&sc->sc_bus, OHCI_HCCA_SIZE,
OHCI_HCCA_ALIGN, &sc->sc_hccadma);
if (err) {
sc->sc_hcca = NULL;
return err;
}
sc->sc_hcca = KERNADDR(&sc->sc_hccadma, 0);
memset(sc->sc_hcca, 0, OHCI_HCCA_SIZE);
sc->sc_eintrs = OHCI_NORMAL_INTRS;
/* Allocate dummy ED that starts the control list. */
sc->sc_ctrl_head = ohci_alloc_sed(sc);
if (sc->sc_ctrl_head == NULL) {
err = ENOMEM;
goto bad1;
}
sc->sc_ctrl_head->ed.ed_flags |= HTOO32(OHCI_ED_SKIP);
/* Allocate dummy ED that starts the bulk list. */
sc->sc_bulk_head = ohci_alloc_sed(sc);
if (sc->sc_bulk_head == NULL) {
err = ENOMEM;
goto bad2;
}
sc->sc_bulk_head->ed.ed_flags |= HTOO32(OHCI_ED_SKIP);
usb_syncmem(&sc->sc_bulk_head->dma, sc->sc_bulk_head->offs,
sizeof(sc->sc_bulk_head->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/* Allocate dummy ED that starts the isochronous list. */
sc->sc_isoc_head = ohci_alloc_sed(sc);
if (sc->sc_isoc_head == NULL) {
err = ENOMEM;
goto bad3;
}
sc->sc_isoc_head->ed.ed_flags |= HTOO32(OHCI_ED_SKIP);
usb_syncmem(&sc->sc_isoc_head->dma, sc->sc_isoc_head->offs,
sizeof(sc->sc_isoc_head->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/* Allocate all the dummy EDs that make up the interrupt tree. */
for (i = 0; i < OHCI_NO_EDS; i++) {
sed = ohci_alloc_sed(sc);
if (sed == NULL) {
while (--i >= 0)
ohci_free_sed(sc, sc->sc_eds[i]);
err = ENOMEM;
goto bad4;
}
/* All ED fields are set to 0. */
sc->sc_eds[i] = sed;
sed->ed.ed_flags |= HTOO32(OHCI_ED_SKIP);
if (i != 0)
psed = sc->sc_eds[(i-1) / 2];
else
psed= sc->sc_isoc_head;
sed->next = psed;
sed->ed.ed_nexted = HTOO32(psed->physaddr);
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
/*
* Fill HCCA interrupt table. The bit reversal is to get
* the tree set up properly to spread the interrupts.
*/
for (i = 0; i < OHCI_NO_INTRS; i++)
sc->sc_hcca->hcca_interrupt_table[revbits[i]] =
HTOO32(sc->sc_eds[OHCI_NO_EDS-OHCI_NO_INTRS+i]->physaddr);
usb_syncmem(&sc->sc_hccadma, 0, OHCI_HCCA_SIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
#ifdef OHCI_DEBUG
DPRINTFN(15, "--- dump start ---", 0, 0, 0 ,0);
if (ohcidebug >= 15) {
for (i = 0; i < OHCI_NO_EDS; i++) {
DPRINTFN(15, "ed#%d ", i, 0, 0, 0);
ohci_dump_ed(sc, sc->sc_eds[i]);
}
DPRINTFN(15, "iso", 0, 0, 0 ,0);
ohci_dump_ed(sc, sc->sc_isoc_head);
}
DPRINTFN(15, "--- dump end ---", 0, 0, 0 ,0);
#endif
/* Preserve values programmed by SMM/BIOS but lost over reset. */
ctl = OREAD4(sc, OHCI_CONTROL);
rwc = ctl & OHCI_RWC;
fm = OREAD4(sc, OHCI_FM_INTERVAL);
desca = OREAD4(sc, OHCI_RH_DESCRIPTOR_A);
/* descb = OREAD4(sc, OHCI_RH_DESCRIPTOR_B); */
/* Determine in what context we are running. */
if (ctl & OHCI_IR) {
/* SMM active, request change */
DPRINTF("SMM active, request owner change", 0, 0, 0, 0);
if ((sc->sc_intre & (OHCI_OC | OHCI_MIE)) ==
(OHCI_OC | OHCI_MIE))
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, OHCI_MIE);
s = OREAD4(sc, OHCI_COMMAND_STATUS);
OWRITE4(sc, OHCI_COMMAND_STATUS, s | OHCI_OCR);
for (i = 0; i < 100 && (ctl & OHCI_IR); i++) {
usb_delay_ms(&sc->sc_bus, 1);
ctl = OREAD4(sc, OHCI_CONTROL);
}
OWRITE4(sc, OHCI_INTERRUPT_DISABLE, OHCI_MIE);
if ((ctl & OHCI_IR) == 0) {
aprint_error_dev(sc->sc_dev,
"SMM does not respond, resetting\n");
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET | rwc);
goto reset;
}
#if 0
/* Don't bother trying to reuse the BIOS init, we'll reset it anyway. */
} else if ((ctl & OHCI_HCFS_MASK) != OHCI_HCFS_RESET) {
/* BIOS started controller. */
DPRINTF("BIOS active", 0, 0, 0, 0);
if ((ctl & OHCI_HCFS_MASK) != OHCI_HCFS_OPERATIONAL) {
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_OPERATIONAL | rwc);
usb_delay_ms(&sc->sc_bus, USB_RESUME_DELAY);
}
#endif
} else {
DPRINTF("cold started", 0 ,0 ,0 ,0);
reset:
/* Controller was cold started. */
usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY);
}
/*
* This reset should not be necessary according to the OHCI spec, but
* without it some controllers do not start.
*/
DPRINTF("sc %p: resetting", sc, 0, 0, 0);
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET | rwc);
usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY);
/* We now own the host controller and the bus has been reset. */
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_HCR); /* Reset HC */
/* Nominal time for a reset is 10 us. */
for (i = 0; i < 10; i++) {
delay(10);
hcr = OREAD4(sc, OHCI_COMMAND_STATUS) & OHCI_HCR;
if (!hcr)
break;
}
if (hcr) {
aprint_error_dev(sc->sc_dev, "reset timeout\n");
err = EIO;
goto bad5;
}
#ifdef OHCI_DEBUG
if (ohcidebug >= 15)
ohci_dumpregs(sc);
#endif
/* The controller is now in SUSPEND state, we have 2ms to finish. */
/* Set up HC registers. */
OWRITE4(sc, OHCI_HCCA, DMAADDR(&sc->sc_hccadma, 0));
OWRITE4(sc, OHCI_CONTROL_HEAD_ED, sc->sc_ctrl_head->physaddr);
OWRITE4(sc, OHCI_BULK_HEAD_ED, sc->sc_bulk_head->physaddr);
/* disable all interrupts and then switch on all desired interrupts */
OWRITE4(sc, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
/* switch on desired functional features */
ctl = OREAD4(sc, OHCI_CONTROL);
ctl &= ~(OHCI_CBSR_MASK | OHCI_LES | OHCI_HCFS_MASK | OHCI_IR);
ctl |= OHCI_PLE | OHCI_IE | OHCI_CLE | OHCI_BLE |
OHCI_RATIO_1_4 | OHCI_HCFS_OPERATIONAL | rwc;
/* And finally start it! */
OWRITE4(sc, OHCI_CONTROL, ctl);
/*
* The controller is now OPERATIONAL. Set a some final
* registers that should be set earlier, but that the
* controller ignores when in the SUSPEND state.
*/
ival = OHCI_GET_IVAL(fm);
fm = (OREAD4(sc, OHCI_FM_INTERVAL) & OHCI_FIT) ^ OHCI_FIT;
fm |= OHCI_FSMPS(ival) | ival;
OWRITE4(sc, OHCI_FM_INTERVAL, fm);
per = OHCI_PERIODIC(ival); /* 90% periodic */
OWRITE4(sc, OHCI_PERIODIC_START, per);
if (sc->sc_flags & OHCIF_SUPERIO) {
/* no overcurrent protection */
desca |= OHCI_NOCP;
/*
* Clear NoPowerSwitching and PowerOnToPowerGoodTime meaning
* that
* - ports are always power switched
* - don't wait for powered root hub port
*/
desca &= ~(__SHIFTIN(0xff, OHCI_POTPGT_MASK) | OHCI_NPS);
}
/* Fiddle the No OverCurrent Protection bit to avoid chip bug. */
OWRITE4(sc, OHCI_RH_DESCRIPTOR_A, desca | OHCI_NOCP);
OWRITE4(sc, OHCI_RH_STATUS, OHCI_LPSC); /* Enable port power */
usb_delay_ms(&sc->sc_bus, OHCI_ENABLE_POWER_DELAY);
OWRITE4(sc, OHCI_RH_DESCRIPTOR_A, desca);
/*
* The AMD756 requires a delay before re-reading the register,
* otherwise it will occasionally report 0 ports.
*/
sc->sc_noport = 0;
for (i = 0; i < 10 && sc->sc_noport == 0; i++) {
usb_delay_ms(&sc->sc_bus, OHCI_READ_DESC_DELAY);
sc->sc_noport = OHCI_GET_NDP(OREAD4(sc, OHCI_RH_DESCRIPTOR_A));
}
#ifdef OHCI_DEBUG
if (ohcidebug >= 5)
ohci_dumpregs(sc);
#endif
/* Set up the bus struct. */
sc->sc_bus.ub_methods = &ohci_bus_methods;
sc->sc_bus.ub_pipesize = sizeof(struct ohci_pipe);
sc->sc_control = sc->sc_intre = 0;
/* Finally, turn on interrupts. */
DPRINTF("enabling %#x", sc->sc_eintrs | OHCI_MIE, 0, 0, 0);
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, sc->sc_eintrs | OHCI_MIE);
return 0;
bad5:
for (i = 0; i < OHCI_NO_EDS; i++)
ohci_free_sed(sc, sc->sc_eds[i]);
bad4:
ohci_free_sed(sc, sc->sc_isoc_head);
bad3:
ohci_free_sed(sc, sc->sc_bulk_head);
bad2:
ohci_free_sed(sc, sc->sc_ctrl_head);
bad1:
usb_freemem(&sc->sc_bus, &sc->sc_hccadma);
sc->sc_hcca = NULL;
return err;
}
struct usbd_xfer *
ohci_allocx(struct usbd_bus *bus, unsigned int nframes)
{
ohci_softc_t *sc = OHCI_BUS2SC(bus);
struct usbd_xfer *xfer;
xfer = pool_cache_get(sc->sc_xferpool, PR_NOWAIT);
if (xfer != NULL) {
memset(xfer, 0, sizeof(struct ohci_xfer));
#ifdef DIAGNOSTIC
xfer->ux_state = XFER_BUSY;
#endif
}
return xfer;
}
void
ohci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
{
ohci_softc_t *sc = OHCI_BUS2SC(bus);
KASSERTMSG(xfer->ux_state == XFER_BUSY,
"xfer=%p not busy, 0x%08x\n", xfer, xfer->ux_state);
#ifdef DIAGNOSTIC
xfer->ux_state = XFER_FREE;
#endif
pool_cache_put(sc->sc_xferpool, xfer);
}
Static void
ohci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
{
ohci_softc_t *sc = OHCI_BUS2SC(bus);
*lock = &sc->sc_lock;
}
/*
* Shut down the controller when the system is going down.
*/
bool
ohci_shutdown(device_t self, int flags)
{
ohci_softc_t *sc = device_private(self);
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTF("stopping the HC", 0, 0, 0, 0);
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET);
return true;
}
bool
ohci_resume(device_t dv, const pmf_qual_t *qual)
{
ohci_softc_t *sc = device_private(dv);
uint32_t ctl;
mutex_spin_enter(&sc->sc_intr_lock);
sc->sc_bus.ub_usepolling++;
mutex_spin_exit(&sc->sc_intr_lock);
/* Some broken BIOSes do not recover these values */
OWRITE4(sc, OHCI_HCCA, DMAADDR(&sc->sc_hccadma, 0));
OWRITE4(sc, OHCI_CONTROL_HEAD_ED,
sc->sc_ctrl_head->physaddr);
OWRITE4(sc, OHCI_BULK_HEAD_ED,
sc->sc_bulk_head->physaddr);
if (sc->sc_intre)
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, sc->sc_intre &
(OHCI_ALL_INTRS | OHCI_MIE));
if (sc->sc_control)
ctl = sc->sc_control;
else
ctl = OREAD4(sc, OHCI_CONTROL);
ctl |= OHCI_HCFS_RESUME;
OWRITE4(sc, OHCI_CONTROL, ctl);
usb_delay_ms(&sc->sc_bus, USB_RESUME_DELAY);
ctl = (ctl & ~OHCI_HCFS_MASK) | OHCI_HCFS_OPERATIONAL;
OWRITE4(sc, OHCI_CONTROL, ctl);
usb_delay_ms(&sc->sc_bus, USB_RESUME_RECOVERY);
sc->sc_control = sc->sc_intre = 0;
mutex_spin_enter(&sc->sc_intr_lock);
sc->sc_bus.ub_usepolling--;
mutex_spin_exit(&sc->sc_intr_lock);
return true;
}
bool
ohci_suspend(device_t dv, const pmf_qual_t *qual)
{
ohci_softc_t *sc = device_private(dv);
uint32_t ctl;
mutex_spin_enter(&sc->sc_intr_lock);
sc->sc_bus.ub_usepolling++;
mutex_spin_exit(&sc->sc_intr_lock);
ctl = OREAD4(sc, OHCI_CONTROL) & ~OHCI_HCFS_MASK;
if (sc->sc_control == 0) {
/*
* Preserve register values, in case that BIOS
* does not recover them.
*/
sc->sc_control = ctl;
sc->sc_intre = OREAD4(sc,
OHCI_INTERRUPT_ENABLE);
}
ctl |= OHCI_HCFS_SUSPEND;
OWRITE4(sc, OHCI_CONTROL, ctl);
usb_delay_ms(&sc->sc_bus, USB_RESUME_WAIT);
mutex_spin_enter(&sc->sc_intr_lock);
sc->sc_bus.ub_usepolling--;
mutex_spin_exit(&sc->sc_intr_lock);
return true;
}
#ifdef OHCI_DEBUG
void
ohci_dumpregs(ohci_softc_t *sc)
{
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTF("rev=0x%08x control=0x%08x command=0x%08x",
OREAD4(sc, OHCI_REVISION),
OREAD4(sc, OHCI_CONTROL),
OREAD4(sc, OHCI_COMMAND_STATUS), 0);
DPRINTF(" intrstat=0x%08x intre=0x%08x intrd=0x%08x",
OREAD4(sc, OHCI_INTERRUPT_STATUS),
OREAD4(sc, OHCI_INTERRUPT_ENABLE),
OREAD4(sc, OHCI_INTERRUPT_DISABLE), 0);
DPRINTF(" hcca=0x%08x percur=0x%08x ctrlhd=0x%08x",
OREAD4(sc, OHCI_HCCA),
OREAD4(sc, OHCI_PERIOD_CURRENT_ED),
OREAD4(sc, OHCI_CONTROL_HEAD_ED), 0);
DPRINTF(" ctrlcur=0x%08x bulkhd=0x%08x bulkcur=0x%08x",
OREAD4(sc, OHCI_CONTROL_CURRENT_ED),
OREAD4(sc, OHCI_BULK_HEAD_ED),
OREAD4(sc, OHCI_BULK_CURRENT_ED) ,0);
DPRINTF(" done=0x%08x fmival=0x%08x fmrem=0x%08x",
OREAD4(sc, OHCI_DONE_HEAD),
OREAD4(sc, OHCI_FM_INTERVAL),
OREAD4(sc, OHCI_FM_REMAINING), 0);
DPRINTF(" fmnum=0x%08x perst=0x%08x lsthrs=0x%08x",
OREAD4(sc, OHCI_FM_NUMBER),
OREAD4(sc, OHCI_PERIODIC_START),
OREAD4(sc, OHCI_LS_THRESHOLD), 0);
DPRINTF(" desca=0x%08x descb=0x%08x stat=0x%08x",
OREAD4(sc, OHCI_RH_DESCRIPTOR_A),
OREAD4(sc, OHCI_RH_DESCRIPTOR_B),
OREAD4(sc, OHCI_RH_STATUS), 0);
DPRINTF(" port1=0x%08x port2=0x%08x",
OREAD4(sc, OHCI_RH_PORT_STATUS(1)),
OREAD4(sc, OHCI_RH_PORT_STATUS(2)), 0, 0);
DPRINTF(" HCCA: frame_number=0x%04x done_head=0x%08x",
O32TOH(sc->sc_hcca->hcca_frame_number),
O32TOH(sc->sc_hcca->hcca_done_head), 0, 0);
}
#endif
Static int ohci_intr1(ohci_softc_t *);
int
ohci_intr(void *p)
{
ohci_softc_t *sc = p;
int ret = 0;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
if (sc == NULL)
return 0;
mutex_spin_enter(&sc->sc_intr_lock);
if (sc->sc_dying || !device_has_power(sc->sc_dev))
goto done;
/* If we get an interrupt while polling, then just ignore it. */
if (sc->sc_bus.ub_usepolling) {
DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0);
/* for level triggered intrs, should do something to ack */
OWRITE4(sc, OHCI_INTERRUPT_STATUS,
OREAD4(sc, OHCI_INTERRUPT_STATUS));
goto done;
}
ret = ohci_intr1(sc);
done:
mutex_spin_exit(&sc->sc_intr_lock);
return ret;
}
Static int
ohci_intr1(ohci_softc_t *sc)
{
uint32_t intrs, eintrs;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
/* In case the interrupt occurs before initialization has completed. */
if (sc == NULL || sc->sc_hcca == NULL) {
#ifdef DIAGNOSTIC
printf("ohci_intr: sc->sc_hcca == NULL\n");
#endif
return 0;
}
KASSERT(mutex_owned(&sc->sc_intr_lock));
intrs = OREAD4(sc, OHCI_INTERRUPT_STATUS);
if (!intrs)
return 0;
/* Acknowledge */
OWRITE4(sc, OHCI_INTERRUPT_STATUS, intrs & ~(OHCI_MIE|OHCI_WDH));
eintrs = intrs & sc->sc_eintrs;
DPRINTFN(7, "sc=%p", sc, 0, 0, 0);
DPRINTFN(7, "intrs=%#x(%#x) eintrs=%#x(%#x)",
intrs, OREAD4(sc, OHCI_INTERRUPT_STATUS), eintrs,
sc->sc_eintrs);
if (!eintrs) {
return 0;
}
if (eintrs & OHCI_SO) {
sc->sc_overrun_cnt++;
if (usbd_ratecheck(&sc->sc_overrun_ntc)) {
printf("%s: %u scheduling overruns\n",
device_xname(sc->sc_dev), sc->sc_overrun_cnt);
sc->sc_overrun_cnt = 0;
}
/* XXX do what */
eintrs &= ~OHCI_SO;
}
if (eintrs & OHCI_WDH) {
/*
* We block the interrupt below, and reenable it later from
* ohci_softintr().
*/
usb_schedsoftintr(&sc->sc_bus);
}
if (eintrs & OHCI_RD) {
DPRINTFN(5, "resume detect", sc, 0, 0, 0);
printf("%s: resume detect\n", device_xname(sc->sc_dev));
/* XXX process resume detect */
}
if (eintrs & OHCI_UE) {
DPRINTFN(5, "unrecoverable error", sc, 0, 0, 0);
printf("%s: unrecoverable error, controller halted\n",
device_xname(sc->sc_dev));
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET);
/* XXX what else */
}
if (eintrs & OHCI_RHSC) {
/*
* We block the interrupt below, and reenable it later from
* a timeout.
*/
softint_schedule(sc->sc_rhsc_si);
}
if (eintrs != 0) {
/* Block unprocessed interrupts. */
OWRITE4(sc, OHCI_INTERRUPT_DISABLE, eintrs);
sc->sc_eintrs &= ~eintrs;
DPRINTF("sc %p blocking intrs 0x%x", sc, eintrs, 0, 0);
}
return 1;
}
void
ohci_rhsc_enable(void *v_sc)
{
ohci_softc_t *sc = v_sc;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTF("sc %p", sc, 0, 0, 0);
mutex_spin_enter(&sc->sc_intr_lock);
sc->sc_eintrs |= OHCI_RHSC;
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, OHCI_RHSC);
mutex_spin_exit(&sc->sc_intr_lock);
}
#ifdef OHCI_DEBUG
const char *ohci_cc_strs[] = {
"NO_ERROR",
"CRC",
"BIT_STUFFING",
"DATA_TOGGLE_MISMATCH",
"STALL",
"DEVICE_NOT_RESPONDING",
"PID_CHECK_FAILURE",
"UNEXPECTED_PID",
"DATA_OVERRUN",
"DATA_UNDERRUN",
"BUFFER_OVERRUN",
"BUFFER_UNDERRUN",
"reserved",
"reserved",
"NOT_ACCESSED",
"NOT_ACCESSED",
};
#endif
void
ohci_softintr(void *v)
{
struct usbd_bus *bus = v;
ohci_softc_t *sc = OHCI_BUS2SC(bus);
ohci_soft_itd_t *sitd, *sidone, *sitdnext;
ohci_soft_td_t *std, *sdone, *stdnext;
struct usbd_xfer *xfer;
struct ohci_pipe *opipe;
int len, cc;
int i, j, actlen, iframes, uedir;
ohci_physaddr_t done;
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
OHCIHIST_FUNC(); OHCIHIST_CALLED();
usb_syncmem(&sc->sc_hccadma, offsetof(struct ohci_hcca, hcca_done_head),
sizeof(sc->sc_hcca->hcca_done_head),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
done = O32TOH(sc->sc_hcca->hcca_done_head) & ~OHCI_DONE_INTRS;
sc->sc_hcca->hcca_done_head = 0;
usb_syncmem(&sc->sc_hccadma, offsetof(struct ohci_hcca, hcca_done_head),
sizeof(sc->sc_hcca->hcca_done_head),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
OWRITE4(sc, OHCI_INTERRUPT_STATUS, OHCI_WDH);
sc->sc_eintrs |= OHCI_WDH;
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, OHCI_WDH);
/* Reverse the done list. */
for (sdone = NULL, sidone = NULL; done != 0; ) {
std = ohci_hash_find_td(sc, done);
if (std != NULL) {
usb_syncmem(&std->dma, std->offs, sizeof(std->td),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
std->dnext = sdone;
done = O32TOH(std->td.td_nexttd);
sdone = std;
DPRINTFN(10, "add TD %p", std, 0, 0, 0);
continue;
}
sitd = ohci_hash_find_itd(sc, done);
if (sitd != NULL) {
usb_syncmem(&sitd->dma, sitd->offs, sizeof(sitd->itd),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sitd->dnext = sidone;
done = O32TOH(sitd->itd.itd_nextitd);
sidone = sitd;
DPRINTFN(5, "add ITD %p", sitd, 0, 0, 0);
continue;
}
DPRINTFN(10, "addr %p not found", done, 0, 0, 0);
device_printf(sc->sc_dev, "WARNING: addr 0x%08lx not found\n",
(u_long)done);
break;
}
DPRINTFN(10, "sdone=%p sidone=%p", sdone, sidone, 0, 0);
DPRINTFN(10, "--- TD dump start ---", 0, 0, 0, 0);
#ifdef OHCI_DEBUG
if (ohcidebug >= 10) {
for (std = sdone; std; std = std->dnext)
ohci_dump_td(sc, std);
}
#endif
DPRINTFN(10, "--- TD dump end ---", 0, 0, 0, 0);
for (std = sdone; std; std = stdnext) {
xfer = std->xfer;
stdnext = std->dnext;
DPRINTFN(10, "std=%p xfer=%p hcpriv=%p", std, xfer,
xfer ? xfer->ux_hcpriv : 0, 0);
if (xfer == NULL) {
/*
* xfer == NULL: There seems to be no xfer associated
* with this TD. It is tailp that happened to end up on
* the done queue.
* Shouldn't happen, but some chips are broken(?).
*/
continue;
}
if (xfer->ux_status == USBD_CANCELLED ||
xfer->ux_status == USBD_TIMEOUT) {
DPRINTF("cancel/timeout %p", xfer, 0, 0, 0);
/* Handled by abort routine. */
continue;
}
callout_stop(&xfer->ux_callout);
len = std->len;
if (std->td.td_cbp != 0)
len -= O32TOH(std->td.td_be) -
O32TOH(std->td.td_cbp) + 1;
DPRINTFN(10, "len=%d, flags=0x%x", len, std->flags, 0, 0);
if (std->flags & OHCI_ADD_LEN)
xfer->ux_actlen += len;
cc = OHCI_TD_GET_CC(O32TOH(std->td.td_flags));
if (cc == OHCI_CC_NO_ERROR) {
ohci_hash_rem_td(sc, std);
if (std->flags & OHCI_CALL_DONE) {
xfer->ux_status = USBD_NORMAL_COMPLETION;
usb_transfer_complete(xfer);
}
} else {
/*
* Endpoint is halted. First unlink all the TDs
* belonging to the failed transfer, and then restart
* the endpoint.
*/
ohci_soft_td_t *p, *n;
opipe = OHCI_PIPE2OPIPE(xfer->ux_pipe);
DPRINTFN(10, "error cc=%d", cc, 0, 0, 0);
/* remove xfer's TDs from the hash */
for (p = std; p->xfer == xfer; p = n) {
n = p->nexttd;
ohci_hash_rem_td(sc, p);
}
ohci_soft_ed_t *sed = opipe->sed;
/* clear halt and TD chain */
sed->ed.ed_headp = HTOO32(p->physaddr);
usb_syncmem(&sed->dma,
sed->offs + offsetof(ohci_ed_t, ed_headp),
sizeof(sed->ed.ed_headp),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_CLF);
if (cc == OHCI_CC_DATA_UNDERRUN)
xfer->ux_status = USBD_NORMAL_COMPLETION;
else if (cc == OHCI_CC_STALL)
xfer->ux_status = USBD_STALLED;
else
xfer->ux_status = USBD_IOERROR;
usb_transfer_complete(xfer);
}
}
DPRINTFN(10, "--- ITD dump start ---", 0, 0, 0, 0);
#ifdef OHCI_DEBUG
if (ohcidebug >= 10) {
for (sitd = sidone; sitd; sitd = sitd->dnext)
ohci_dump_itd(sc, sitd);
}
#endif
DPRINTFN(10, "--- ITD dump end ---", 0, 0, 0, 0);
for (sitd = sidone; sitd != NULL; sitd = sitdnext) {
xfer = sitd->xfer;
sitdnext = sitd->dnext;
DPRINTFN(1, "sitd=%p xfer=%p hcpriv=%p", sitd, xfer,
xfer ? xfer->ux_hcpriv : 0, 0);
if (xfer == NULL)
continue;
if (xfer->ux_status == USBD_CANCELLED ||
xfer->ux_status == USBD_TIMEOUT) {
DPRINTF("cancel/timeout %p", xfer, 0, 0, 0);
/* Handled by abort routine. */
continue;
}
KASSERT(!sitd->isdone);
#ifdef DIAGNOSTIC
sitd->isdone = true;
#endif
if (sitd->flags & OHCI_CALL_DONE) {
ohci_soft_itd_t *next;
opipe = OHCI_PIPE2OPIPE(xfer->ux_pipe);
opipe->isoc.inuse -= xfer->ux_nframes;
uedir = UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->
bEndpointAddress);
xfer->ux_status = USBD_NORMAL_COMPLETION;
actlen = 0;
for (i = 0, sitd = xfer->ux_hcpriv;;
sitd = next) {
next = sitd->nextitd;
if (OHCI_ITD_GET_CC(O32TOH(sitd->
itd.itd_flags)) != OHCI_CC_NO_ERROR)
xfer->ux_status = USBD_IOERROR;
/* For input, update frlengths with actual */
/* XXX anything necessary for output? */
if (uedir == UE_DIR_IN &&
xfer->ux_status == USBD_NORMAL_COMPLETION) {
iframes = OHCI_ITD_GET_FC(O32TOH(
sitd->itd.itd_flags));
for (j = 0; j < iframes; i++, j++) {
len = O16TOH(sitd->
itd.itd_offset[j]);
if ((OHCI_ITD_PSW_GET_CC(len) &
OHCI_CC_NOT_ACCESSED_MASK)
== OHCI_CC_NOT_ACCESSED)
len = 0;
else
len = OHCI_ITD_PSW_LENGTH(len);
xfer->ux_frlengths[i] = len;
actlen += len;
}
}
if (sitd->flags & OHCI_CALL_DONE)
break;
ohci_hash_rem_itd(sc, sitd);
}
ohci_hash_rem_itd(sc, sitd);
if (uedir == UE_DIR_IN &&
xfer->ux_status == USBD_NORMAL_COMPLETION)
xfer->ux_actlen = actlen;
xfer->ux_hcpriv = NULL;
usb_transfer_complete(xfer);
}
}
if (sc->sc_softwake) {
sc->sc_softwake = 0;
cv_broadcast(&sc->sc_softwake_cv);
}
DPRINTFN(10, "done", 0, 0, 0, 0);
}
void
ohci_device_ctrl_done(struct usbd_xfer *xfer)
{
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(xfer->ux_pipe);
ohci_softc_t *sc __diagused = OHCI_XFER2SC(xfer);
int len = UGETW(xfer->ux_request.wLength);
int isread = (xfer->ux_request.bmRequestType & UT_READ);
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(10, "xfer=%p", xfer, 0, 0, 0);
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
KASSERT(xfer->ux_rqflags & URQ_REQUEST);
if (len)
usb_syncmem(&xfer->ux_dmabuf, 0, len,
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
usb_syncmem(&opipe->ctrl.reqdma, 0,
sizeof(usb_device_request_t), BUS_DMASYNC_POSTWRITE);
}
void
ohci_device_intr_done(struct usbd_xfer *xfer)
{
ohci_softc_t *sc __diagused = OHCI_XFER2SC(xfer);
int isread =
(UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) == UE_DIR_IN);
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(10, "xfer=%p, actlen=%d", xfer, xfer->ux_actlen, 0, 0);
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
}
void
ohci_device_bulk_done(struct usbd_xfer *xfer)
{
ohci_softc_t *sc __diagused = OHCI_XFER2SC(xfer);
int isread =
(UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) == UE_DIR_IN);
KASSERT(mutex_owned(&sc->sc_lock));
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(10, "xfer=%p, actlen=%d", xfer, xfer->ux_actlen, 0, 0);
usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
}
Static void
ohci_rhsc_softint(void *arg)
{
ohci_softc_t *sc = arg;
mutex_enter(&sc->sc_lock);
ohci_rhsc(sc, sc->sc_intrxfer);
/* Do not allow RHSC interrupts > 1 per second */
callout_reset(&sc->sc_tmo_rhsc, hz, ohci_rhsc_enable, sc);
mutex_exit(&sc->sc_lock);
}
void
ohci_rhsc(ohci_softc_t *sc, struct usbd_xfer *xfer)
{
u_char *p;
int i, m;
int hstatus __unused;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
hstatus = OREAD4(sc, OHCI_RH_STATUS);
DPRINTF("sc=%p xfer=%p hstatus=0x%08x", sc, xfer, hstatus, 0);
if (xfer == NULL) {
/* Just ignore the change. */
return;
}
p = xfer->ux_buf;
m = min(sc->sc_noport, xfer->ux_length * 8 - 1);
memset(p, 0, xfer->ux_length);
for (i = 1; i <= m; i++) {
/* Pick out CHANGE bits from the status reg. */
if (OREAD4(sc, OHCI_RH_PORT_STATUS(i)) >> 16)
p[i/8] |= 1 << (i%8);
}
DPRINTF("change=0x%02x", *p, 0, 0, 0);
xfer->ux_actlen = xfer->ux_length;
xfer->ux_status = USBD_NORMAL_COMPLETION;
usb_transfer_complete(xfer);
}
void
ohci_root_intr_done(struct usbd_xfer *xfer)
{
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(sc->sc_intrxfer == xfer);
sc->sc_intrxfer = NULL;
}
void
ohci_poll(struct usbd_bus *bus)
{
ohci_softc_t *sc = OHCI_BUS2SC(bus);
OHCIHIST_FUNC(); OHCIHIST_CALLED();
#ifdef OHCI_DEBUG
static int last;
int new;
new = OREAD4(sc, OHCI_INTERRUPT_STATUS);
if (new != last) {
DPRINTFN(10, "intrs=0x%04x", new, 0, 0, 0);
last = new;
}
#endif
sc->sc_eintrs |= OHCI_WDH;
if (OREAD4(sc, OHCI_INTERRUPT_STATUS) & sc->sc_eintrs) {
mutex_spin_enter(&sc->sc_intr_lock);
ohci_intr1(sc);
mutex_spin_exit(&sc->sc_intr_lock);
}
}
/*
* Add an ED to the schedule. Called with USB lock held.
*/
Static void
ohci_add_ed(ohci_softc_t *sc, ohci_soft_ed_t *sed, ohci_soft_ed_t *head)
{
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(8, "sed=%p head=%p", sed, head, 0, 0);
KASSERT(mutex_owned(&sc->sc_lock));
usb_syncmem(&head->dma, head->offs + offsetof(ohci_ed_t, ed_nexted),
sizeof(head->ed.ed_nexted),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->next = head->next;
sed->ed.ed_nexted = head->ed.ed_nexted;
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_nexted),
sizeof(sed->ed.ed_nexted),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
head->next = sed;
head->ed.ed_nexted = HTOO32(sed->physaddr);
usb_syncmem(&head->dma, head->offs + offsetof(ohci_ed_t, ed_nexted),
sizeof(head->ed.ed_nexted),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
/*
* Remove an ED from the schedule. Called with USB lock held.
*/
Static void
ohci_rem_ed(ohci_softc_t *sc, ohci_soft_ed_t *sed, ohci_soft_ed_t *head)
{
ohci_soft_ed_t *p;
KASSERT(mutex_owned(&sc->sc_lock));
/* XXX */
for (p = head; p != NULL && p->next != sed; p = p->next)
;
KASSERT(p != NULL);
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_nexted),
sizeof(sed->ed.ed_nexted),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
p->next = sed->next;
p->ed.ed_nexted = sed->ed.ed_nexted;
usb_syncmem(&p->dma, p->offs + offsetof(ohci_ed_t, ed_nexted),
sizeof(p->ed.ed_nexted),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
/*
* When a transfer is completed the TD is added to the done queue by
* the host controller. This queue is the processed by software.
* Unfortunately the queue contains the physical address of the TD
* and we have no simple way to translate this back to a kernel address.
* To make the translation possible (and fast) we use a hash table of
* TDs currently in the schedule. The physical address is used as the
* hash value.
*/
#define HASH(a) (((a) >> 4) % OHCI_HASH_SIZE)
/* Called with USB lock held. */
void
ohci_hash_add_td(ohci_softc_t *sc, ohci_soft_td_t *std)
{
int h = HASH(std->physaddr);
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
LIST_INSERT_HEAD(&sc->sc_hash_tds[h], std, hnext);
}
/* Called with USB lock held. */
void
ohci_hash_rem_td(ohci_softc_t *sc, ohci_soft_td_t *std)
{
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
LIST_REMOVE(std, hnext);
}
ohci_soft_td_t *
ohci_hash_find_td(ohci_softc_t *sc, ohci_physaddr_t a)
{
int h = HASH(a);
ohci_soft_td_t *std;
for (std = LIST_FIRST(&sc->sc_hash_tds[h]);
std != NULL;
std = LIST_NEXT(std, hnext))
if (std->physaddr == a)
return std;
return NULL;
}
/* Called with USB lock held. */
void
ohci_hash_add_itd(ohci_softc_t *sc, ohci_soft_itd_t *sitd)
{
int h = HASH(sitd->physaddr);
OHCIHIST_FUNC(); OHCIHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
DPRINTFN(10, "sitd=%p physaddr=0x%08lx", sitd, (u_long)sitd->physaddr,
0, 0);
LIST_INSERT_HEAD(&sc->sc_hash_itds[h], sitd, hnext);
}
/* Called with USB lock held. */
void
ohci_hash_rem_itd(ohci_softc_t *sc, ohci_soft_itd_t *sitd)
{
OHCIHIST_FUNC(); OHCIHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
DPRINTFN(10, "sitd=%p physaddr=0x%08lx", sitd, (u_long)sitd->physaddr,
0, 0);
LIST_REMOVE(sitd, hnext);
}
ohci_soft_itd_t *
ohci_hash_find_itd(ohci_softc_t *sc, ohci_physaddr_t a)
{
int h = HASH(a);
ohci_soft_itd_t *sitd;
for (sitd = LIST_FIRST(&sc->sc_hash_itds[h]);
sitd != NULL;
sitd = LIST_NEXT(sitd, hnext))
if (sitd->physaddr == a)
return sitd;
return NULL;
}
void
ohci_timeout(void *addr)
{
struct usbd_xfer *xfer = addr;
struct ohci_xfer *oxfer = OHCI_XFER2OXFER(xfer);
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTF("oxfer=%p", oxfer, 0, 0, 0);
if (sc->sc_dying) {
mutex_enter(&sc->sc_lock);
ohci_abort_xfer(xfer, USBD_TIMEOUT);
mutex_exit(&sc->sc_lock);
return;
}
/* Execute the abort in a process context. */
usb_init_task(&oxfer->abort_task, ohci_timeout_task, addr,
USB_TASKQ_MPSAFE);
usb_add_task(xfer->ux_pipe->up_dev, &oxfer->abort_task,
USB_TASKQ_HC);
}
void
ohci_timeout_task(void *addr)
{
struct usbd_xfer *xfer = addr;
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTF("xfer=%p", xfer, 0, 0, 0);
mutex_enter(&sc->sc_lock);
ohci_abort_xfer(xfer, USBD_TIMEOUT);
mutex_exit(&sc->sc_lock);
}
#ifdef OHCI_DEBUG
void
ohci_dump_tds(ohci_softc_t *sc, ohci_soft_td_t *std)
{
for (; std; std = std->nexttd) {
ohci_dump_td(sc, std);
KASSERTMSG(std->nexttd == NULL || std != std->nexttd,
"std %p next %p", std, std->nexttd);
}
}
void
ohci_dump_td(ohci_softc_t *sc, ohci_soft_td_t *std)
{
OHCIHIST_FUNC(); OHCIHIST_CALLED();
usb_syncmem(&std->dma, std->offs, sizeof(std->td),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
uint32_t flags = O32TOH(std->td.td_flags);
DPRINTF("TD(%p) at 0x%08lx:", std, (u_long)std->physaddr, 0, 0);
DPRINTF(" round=%d DP=%x DI=%x T=%x",
!!(flags & OHCI_TD_R),
__SHIFTOUT(flags, OHCI_TD_DP_MASK),
OHCI_TD_GET_DI(flags),
__SHIFTOUT(flags, OHCI_TD_TOGGLE_MASK));
DPRINTF(" EC=%d CC=%d", OHCI_TD_GET_EC(flags), OHCI_TD_GET_CC(flags),
0, 0);
DPRINTF(" td_cbp=0x%08lx td_nexttd=0x%08lx td_be=0x%08lx",
(u_long)O32TOH(std->td.td_cbp),
(u_long)O32TOH(std->td.td_nexttd),
(u_long)O32TOH(std->td.td_be), 0);
}
void
ohci_dump_itd(ohci_softc_t *sc, ohci_soft_itd_t *sitd)
{
OHCIHIST_FUNC(); OHCIHIST_CALLED();
usb_syncmem(&sitd->dma, sitd->offs, sizeof(sitd->itd),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
uint32_t flags = O32TOH(sitd->itd.itd_flags);
DPRINTF("ITD(%p) at 0x%08lx", sitd, (u_long)sitd->physaddr, 0, 0);
DPRINTF(" sf=%d di=%d fc=%d cc=%d",
OHCI_ITD_GET_SF(flags), OHCI_ITD_GET_DI(flags),
OHCI_ITD_GET_FC(flags), OHCI_ITD_GET_CC(flags));
DPRINTF(" bp0=0x%08x next=0x%08x be=0x%08x",
O32TOH(sitd->itd.itd_bp0),
O32TOH(sitd->itd.itd_nextitd),
O32TOH(sitd->itd.itd_be), 0);
CTASSERT(OHCI_ITD_NOFFSET == 8);
DPRINTF(" offs[0] = 0x%04x offs[1] = 0x%04x "
"offs[2] = 0x%04x offs[3] = 0x%04x",
O16TOH(sitd->itd.itd_offset[0]),
O16TOH(sitd->itd.itd_offset[1]),
O16TOH(sitd->itd.itd_offset[2]),
O16TOH(sitd->itd.itd_offset[3]));
DPRINTF(" offs[4] = 0x%04x offs[5] = 0x%04x "
"offs[6] = 0x%04x offs[7] = 0x%04x",
O16TOH(sitd->itd.itd_offset[4]),
O16TOH(sitd->itd.itd_offset[5]),
O16TOH(sitd->itd.itd_offset[6]),
O16TOH(sitd->itd.itd_offset[7]));
}
void
ohci_dump_itds(ohci_softc_t *sc, ohci_soft_itd_t *sitd)
{
for (; sitd; sitd = sitd->nextitd)
ohci_dump_itd(sc, sitd);
}
void
ohci_dump_ed(ohci_softc_t *sc, ohci_soft_ed_t *sed)
{
OHCIHIST_FUNC(); OHCIHIST_CALLED();
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
uint32_t flags = O32TOH(sed->ed.ed_flags);
DPRINTF("ED(%p) at 0x%08lx:", sed, sed->physaddr, 0, 0);
DPRINTF(" addr=%d endpt=%d maxp=%d",
OHCI_ED_GET_FA(flags),
OHCI_ED_GET_EN(flags),
OHCI_ED_GET_MAXP(flags),
0);
DPRINTF(" dir=%d speed=%d skip=%d iso=%d",
__SHIFTOUT(flags, OHCI_ED_DIR_MASK),
!!(flags & OHCI_ED_SPEED),
!!(flags & OHCI_ED_SKIP),
!!(flags & OHCI_ED_FORMAT_ISO));
DPRINTF(" tailp=0x%08lx", (u_long)O32TOH(sed->ed.ed_tailp),
0, 0, 0);
DPRINTF(" headp=0x%08lx nexted=0x%08lx halted=%d carry=%d",
O32TOH(sed->ed.ed_headp), O32TOH(sed->ed.ed_nexted),
!!(O32TOH(sed->ed.ed_headp) & OHCI_HALTED),
!!(O32TOH(sed->ed.ed_headp) & OHCI_TOGGLECARRY));
}
#endif
usbd_status
ohci_open(struct usbd_pipe *pipe)
{
struct usbd_device *dev = pipe->up_dev;
struct usbd_bus *bus = dev->ud_bus;
ohci_softc_t *sc = OHCI_PIPE2SC(pipe);
usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(pipe);
uint8_t addr = dev->ud_addr;
uint8_t xfertype = ed->bmAttributes & UE_XFERTYPE;
ohci_soft_ed_t *sed;
ohci_soft_td_t *std;
ohci_soft_itd_t *sitd;
ohci_physaddr_t tdphys;
uint32_t fmt;
usbd_status err = USBD_NOMEM;
int ival;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(1, "pipe=%p, addr=%d, endpt=%d (%d)", pipe, addr,
ed->bEndpointAddress, bus->ub_rhaddr);
if (sc->sc_dying) {
return USBD_IOERROR;
}
std = NULL;
sed = NULL;
if (addr == bus->ub_rhaddr) {
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
pipe->up_methods = &roothub_ctrl_methods;
break;
case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
pipe->up_methods = &ohci_root_intr_methods;
break;
default:
err = USBD_INVAL;
goto bad;
}
} else {
sed = ohci_alloc_sed(sc);
if (sed == NULL)
goto bad;
opipe->sed = sed;
if (xfertype == UE_ISOCHRONOUS) {
sitd = ohci_alloc_sitd(sc);
if (sitd == NULL)
goto bad;
opipe->tail.itd = sitd;
tdphys = sitd->physaddr;
fmt = OHCI_ED_FORMAT_ISO;
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN)
fmt |= OHCI_ED_DIR_IN;
else
fmt |= OHCI_ED_DIR_OUT;
} else {
std = ohci_alloc_std(sc);
if (std == NULL)
goto bad;
opipe->tail.td = std;
tdphys = std->physaddr;
fmt = OHCI_ED_FORMAT_GEN | OHCI_ED_DIR_TD;
}
sed->ed.ed_flags = HTOO32(
OHCI_ED_SET_FA(addr) |
OHCI_ED_SET_EN(UE_GET_ADDR(ed->bEndpointAddress)) |
(dev->ud_speed == USB_SPEED_LOW ? OHCI_ED_SPEED : 0) |
fmt |
OHCI_ED_SET_MAXP(UGETW(ed->wMaxPacketSize)));
sed->ed.ed_headp = HTOO32(tdphys |
(pipe->up_endpoint->ue_toggle ? OHCI_TOGGLECARRY : 0));
sed->ed.ed_tailp = HTOO32(tdphys);
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
switch (xfertype) {
case UE_CONTROL:
pipe->up_methods = &ohci_device_ctrl_methods;
err = usb_allocmem(&sc->sc_bus,
sizeof(usb_device_request_t),
0, &opipe->ctrl.reqdma);
if (err)
goto bad;
mutex_enter(&sc->sc_lock);
ohci_add_ed(sc, sed, sc->sc_ctrl_head);
mutex_exit(&sc->sc_lock);
break;
case UE_INTERRUPT:
pipe->up_methods = &ohci_device_intr_methods;
ival = pipe->up_interval;
if (ival == USBD_DEFAULT_INTERVAL)
ival = ed->bInterval;
err = ohci_device_setintr(sc, opipe, ival);
if (err)
goto bad;
break;
case UE_ISOCHRONOUS:
pipe->up_serialise = false;
pipe->up_methods = &ohci_device_isoc_methods;
return ohci_setup_isoc(pipe);
case UE_BULK:
pipe->up_methods = &ohci_device_bulk_methods;
mutex_enter(&sc->sc_lock);
ohci_add_ed(sc, sed, sc->sc_bulk_head);
mutex_exit(&sc->sc_lock);
break;
}
}
return USBD_NORMAL_COMPLETION;
bad:
if (std != NULL) {
ohci_free_std(sc, std);
}
if (sed != NULL)
ohci_free_sed(sc, sed);
return err;
}
/*
* Close a reqular pipe.
* Assumes that there are no pending transactions.
*/
void
ohci_close_pipe(struct usbd_pipe *pipe, ohci_soft_ed_t *head)
{
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(pipe);
ohci_softc_t *sc = OHCI_PIPE2SC(pipe);
ohci_soft_ed_t *sed = opipe->sed;
KASSERT(mutex_owned(&sc->sc_lock));
#ifdef DIAGNOSTIC
sed->ed.ed_flags |= HTOO32(OHCI_ED_SKIP);
if ((O32TOH(sed->ed.ed_tailp) & OHCI_HEADMASK) !=
(O32TOH(sed->ed.ed_headp) & OHCI_HEADMASK)) {
ohci_soft_td_t *std;
std = ohci_hash_find_td(sc, O32TOH(sed->ed.ed_headp));
printf("ohci_close_pipe: pipe not empty sed=%p hd=0x%x "
"tl=0x%x pipe=%p, std=%p\n", sed,
(int)O32TOH(sed->ed.ed_headp),
(int)O32TOH(sed->ed.ed_tailp),
pipe, std);
#ifdef OHCI_DEBUG
usbd_dump_pipe(&opipe->pipe);
ohci_dump_ed(sc, sed);
if (std)
ohci_dump_td(sc, std);
#endif
usb_delay_ms(&sc->sc_bus, 2);
if ((O32TOH(sed->ed.ed_tailp) & OHCI_HEADMASK) !=
(O32TOH(sed->ed.ed_headp) & OHCI_HEADMASK))
printf("ohci_close_pipe: pipe still not empty\n");
}
#endif
ohci_rem_ed(sc, sed, head);
/* Make sure the host controller is not touching this ED */
usb_delay_ms(&sc->sc_bus, 1);
pipe->up_endpoint->ue_toggle =
(O32TOH(sed->ed.ed_headp) & OHCI_TOGGLECARRY) ? 1 : 0;
ohci_free_sed_locked(sc, opipe->sed);
}
/*
* Abort a device request.
* If this routine is called at splusb() it guarantees that the request
* will be removed from the hardware scheduling and that the callback
* for it will be called with USBD_CANCELLED status.
* It's impossible to guarantee that the requested transfer will not
* have happened since the hardware runs concurrently.
* If the transaction has already happened we rely on the ordinary
* interrupt processing to process it.
* XXX This is most probably wrong.
* XXXMRG this doesn't make sense anymore.
*/
void
ohci_abort_xfer(struct usbd_xfer *xfer, usbd_status status)
{
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(xfer->ux_pipe);
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
ohci_soft_ed_t *sed = opipe->sed;
ohci_soft_td_t *p, *n;
ohci_physaddr_t headp;
int hit;
int wake;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTF("xfer=%p pipe=%p sed=%p", xfer, opipe,sed, 0);
KASSERT(mutex_owned(&sc->sc_lock));
ASSERT_SLEEPABLE();
if (sc->sc_dying) {
/* If we're dying, just do the software part. */
xfer->ux_status = status; /* make software ignore it */
callout_halt(&xfer->ux_callout, &sc->sc_lock);
usb_transfer_complete(xfer);
return;
}
/*
* If an abort is already in progress then just wait for it to
* complete and return.
*/
if (xfer->ux_hcflags & UXFER_ABORTING) {
DPRINTFN(2, "already aborting", 0, 0, 0, 0);
#ifdef DIAGNOSTIC
if (status == USBD_TIMEOUT)
printf("%s: TIMEOUT while aborting\n", __func__);
#endif
/* Override the status which might be USBD_TIMEOUT. */
xfer->ux_status = status;
DPRINTFN(2, "waiting for abort to finish", 0, 0, 0, 0);
xfer->ux_hcflags |= UXFER_ABORTWAIT;
while (xfer->ux_hcflags & UXFER_ABORTING)
cv_wait(&xfer->ux_hccv, &sc->sc_lock);
goto done;
}
xfer->ux_hcflags |= UXFER_ABORTING;
/*
* Step 1: Make interrupt routine and hardware ignore xfer.
*/
xfer->ux_status = status; /* make software ignore it */
callout_stop(&xfer->ux_callout);
DPRINTFN(1, "stop ed=%p", sed, 0, 0, 0);
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_flags |= HTOO32(OHCI_ED_SKIP); /* force hardware skip */
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/*
* Step 2: Wait until we know hardware has finished any possible
* use of the xfer. Also make sure the soft interrupt routine
* has run.
*/
/* Hardware finishes in 1ms */
usb_delay_ms_locked(opipe->pipe.up_dev->ud_bus, 20, &sc->sc_lock);
sc->sc_softwake = 1;
usb_schedsoftintr(&sc->sc_bus);
cv_wait(&sc->sc_softwake_cv, &sc->sc_lock);
/*
* Step 3: Remove any vestiges of the xfer from the hardware.
* The complication here is that the hardware may have executed
* beyond the xfer we're trying to abort. So as we're scanning
* the TDs of this xfer we check if the hardware points to
* any of them.
*/
p = xfer->ux_hcpriv;
KASSERT(p);
#ifdef OHCI_DEBUG
DPRINTF("--- dump start ---", 0, 0, 0, 0);
if (ohcidebug >= 2) {
DPRINTF("sed:", 0, 0, 0, 0);
ohci_dump_ed(sc, sed);
ohci_dump_tds(sc, p);
}
DPRINTF("--- dump end ---", 0, 0, 0, 0);
#endif
headp = O32TOH(sed->ed.ed_headp) & OHCI_HEADMASK;
hit = 0;
for (; p->xfer == xfer; p = n) {
hit |= headp == p->physaddr;
n = p->nexttd;
ohci_hash_rem_td(sc, p);
}
/* Zap headp register if hardware pointed inside the xfer. */
if (hit) {
DPRINTFN(1, "set hd=0x%08x, tl=0x%08x", (int)p->physaddr,
(int)O32TOH(sed->ed.ed_tailp), 0, 0);
sed->ed.ed_headp = HTOO32(p->physaddr); /* unlink TDs */
usb_syncmem(&sed->dma,
sed->offs + offsetof(ohci_ed_t, ed_headp),
sizeof(sed->ed.ed_headp),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
} else {
DPRINTFN(1, "no hit", 0, 0, 0, 0);
}
/*
* Step 4: Turn on hardware again.
*/
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_flags &= HTOO32(~OHCI_ED_SKIP); /* remove hardware skip */
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/*
* Step 5: Execute callback.
*/
wake = xfer->ux_hcflags & UXFER_ABORTWAIT;
xfer->ux_hcflags &= ~(UXFER_ABORTING | UXFER_ABORTWAIT);
usb_transfer_complete(xfer);
if (wake)
cv_broadcast(&xfer->ux_hccv);
done:
KASSERT(mutex_owned(&sc->sc_lock));
}
/*
* Data structures and routines to emulate the root hub.
*/
Static int
ohci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
void *buf, int buflen)
{
ohci_softc_t *sc = OHCI_BUS2SC(bus);
usb_port_status_t ps;
uint16_t len, value, index;
int l, totlen = 0;
int port, i;
uint32_t v;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
if (sc->sc_dying)
return -1;
DPRINTFN(4, "type=0x%02x request=%02x", req->bmRequestType,
req->bRequest, 0, 0);
len = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
#define C(x,y) ((x) | ((y) << 8))
switch (C(req->bRequest, req->bmRequestType)) {
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
DPRINTFN(8, "wValue=0x%04x", value, 0, 0, 0);
if (len == 0)
break;
switch (value) {
case C(0, UDESC_DEVICE): {
usb_device_descriptor_t devd;
totlen = min(buflen, sizeof(devd));
memcpy(&devd, buf, totlen);
USETW(devd.idVendor, sc->sc_id_vendor);
memcpy(buf, &devd, totlen);
break;
}
case C(1, UDESC_STRING):
#define sd ((usb_string_descriptor_t *)buf)
/* Vendor */
totlen = usb_makestrdesc(sd, len, sc->sc_vendor);
break;
case C(2, UDESC_STRING):
/* Product */
totlen = usb_makestrdesc(sd, len, "OHCI root hub");
break;
#undef sd
default:
/* default from usbroothub */
return buflen;
}
break;
/* Hub requests */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
DPRINTFN(8, "UR_CLEAR_PORT_FEATURE port=%d feature=%d",
index, value, 0, 0);
if (index < 1 || index > sc->sc_noport) {
return -1;
}
port = OHCI_RH_PORT_STATUS(index);
switch(value) {
case UHF_PORT_ENABLE:
OWRITE4(sc, port, UPS_CURRENT_CONNECT_STATUS);
break;
case UHF_PORT_SUSPEND:
OWRITE4(sc, port, UPS_OVERCURRENT_INDICATOR);
break;
case UHF_PORT_POWER:
/* Yes, writing to the LOW_SPEED bit clears power. */
OWRITE4(sc, port, UPS_LOW_SPEED);
break;
case UHF_C_PORT_CONNECTION:
OWRITE4(sc, port, UPS_C_CONNECT_STATUS << 16);
break;
case UHF_C_PORT_ENABLE:
OWRITE4(sc, port, UPS_C_PORT_ENABLED << 16);
break;
case UHF_C_PORT_SUSPEND:
OWRITE4(sc, port, UPS_C_SUSPEND << 16);
break;
case UHF_C_PORT_OVER_CURRENT:
OWRITE4(sc, port, UPS_C_OVERCURRENT_INDICATOR << 16);
break;
case UHF_C_PORT_RESET:
OWRITE4(sc, port, UPS_C_PORT_RESET << 16);
break;
default:
return -1;
}
switch(value) {
case UHF_C_PORT_CONNECTION:
case UHF_C_PORT_ENABLE:
case UHF_C_PORT_SUSPEND:
case UHF_C_PORT_OVER_CURRENT:
case UHF_C_PORT_RESET:
/* Enable RHSC interrupt if condition is cleared. */
if ((OREAD4(sc, port) >> 16) == 0)
ohci_rhsc_enable(sc);
break;
default:
break;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
if (len == 0)
break;
if ((value & 0xff) != 0) {
return -1;
}
usb_hub_descriptor_t hubd;
totlen = min(buflen, sizeof(hubd));
memcpy(&hubd, buf, totlen);
v = OREAD4(sc, OHCI_RH_DESCRIPTOR_A);
hubd.bNbrPorts = sc->sc_noport;
USETW(hubd.wHubCharacteristics,
(v & OHCI_NPS ? UHD_PWR_NO_SWITCH :
v & OHCI_PSM ? UHD_PWR_GANGED : UHD_PWR_INDIVIDUAL)
/* XXX overcurrent */
);
hubd.bPwrOn2PwrGood = OHCI_GET_POTPGT(v);
v = OREAD4(sc, OHCI_RH_DESCRIPTOR_B);
for (i = 0, l = sc->sc_noport; l > 0; i++, l -= 8, v >>= 8)
hubd.DeviceRemovable[i++] = (uint8_t)v;
hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i;
totlen = min(totlen, hubd.bDescLength);
memcpy(buf, &hubd, totlen);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
if (len != 4) {
return -1;
}
memset(buf, 0, len); /* ? XXX */
totlen = len;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
DPRINTFN(8, "get port status i=%d", index, 0, 0, 0);
if (index < 1 || index > sc->sc_noport) {
return -1;
}
if (len != 4) {
return -1;
}
v = OREAD4(sc, OHCI_RH_PORT_STATUS(index));
DPRINTFN(8, "port status=0x%04x", v, 0, 0, 0);
USETW(ps.wPortStatus, v);
USETW(ps.wPortChange, v >> 16);
totlen = min(len, sizeof(ps));
memcpy(buf, &ps, totlen);
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
return -1;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
if (index < 1 || index > sc->sc_noport) {
return -1;
}
port = OHCI_RH_PORT_STATUS(index);
switch(value) {
case UHF_PORT_ENABLE:
OWRITE4(sc, port, UPS_PORT_ENABLED);
break;
case UHF_PORT_SUSPEND:
OWRITE4(sc, port, UPS_SUSPEND);
break;
case UHF_PORT_RESET:
DPRINTFN(5, "reset port %d", index, 0, 0, 0);
OWRITE4(sc, port, UPS_RESET);
for (i = 0; i < 5; i++) {
usb_delay_ms(&sc->sc_bus,
USB_PORT_ROOT_RESET_DELAY);
if (sc->sc_dying) {
return -1;
}
if ((OREAD4(sc, port) & UPS_RESET) == 0)
break;
}
DPRINTFN(8, "port %d reset, status = 0x%04x", index,
OREAD4(sc, port), 0, 0);
break;
case UHF_PORT_POWER:
DPRINTFN(2, "set port power %d", index, 0, 0, 0);
OWRITE4(sc, port, UPS_PORT_POWER);
break;
default:
return -1;
}
break;
default:
/* default from usbroothub */
return buflen;
}
return totlen;
}
Static usbd_status
ohci_root_intr_transfer(struct usbd_xfer *xfer)
{
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
usbd_status err;
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/* Pipe isn't running, start first */
return ohci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
Static usbd_status
ohci_root_intr_start(struct usbd_xfer *xfer)
{
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
if (sc->sc_dying)
return USBD_IOERROR;
mutex_enter(&sc->sc_lock);
KASSERT(sc->sc_intrxfer == NULL);
sc->sc_intrxfer = xfer;
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
/* Abort a root interrupt request. */
Static void
ohci_root_intr_abort(struct usbd_xfer *xfer)
{
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
sc->sc_intrxfer = NULL;
xfer->ux_status = USBD_CANCELLED;
usb_transfer_complete(xfer);
}
/* Close the root pipe. */
Static void
ohci_root_intr_close(struct usbd_pipe *pipe)
{
ohci_softc_t *sc = OHCI_PIPE2SC(pipe);
KASSERT(mutex_owned(&sc->sc_lock));
OHCIHIST_FUNC(); OHCIHIST_CALLED();
sc->sc_intrxfer = NULL;
}
/************************/
int
ohci_device_ctrl_init(struct usbd_xfer *xfer)
{
struct ohci_xfer *ox = OHCI_XFER2OXFER(xfer);
usb_device_request_t *req = &xfer->ux_request;
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
ohci_soft_td_t *stat, *setup;
int isread = req->bmRequestType & UT_READ;
int len = xfer->ux_bufsize;
int err = ENOMEM;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
setup = ohci_alloc_std(sc);
if (setup == NULL) {
goto bad1;
}
stat = ohci_alloc_std(sc);
if (stat == NULL) {
goto bad2;
}
ox->ox_setup = setup;
ox->ox_stat = stat;
ox->ox_nstd = 0;
/* Set up data transaction */
if (len != 0) {
err = ohci_alloc_std_chain(sc, xfer, len, isread);
if (err) {
goto bad3;
}
}
return 0;
bad3:
ohci_free_std(sc, stat);
bad2:
ohci_free_std(sc, setup);
bad1:
return err;
}
void
ohci_device_ctrl_fini(struct usbd_xfer *xfer)
{
struct ohci_xfer *ox = OHCI_XFER2OXFER(xfer);
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(xfer->ux_pipe);
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(8, "xfer %p nstd %d", xfer, ox->ox_nstd, 0, 0);
mutex_enter(&sc->sc_lock);
if (ox->ox_setup != opipe->tail.td) {
ohci_free_std_locked(sc, ox->ox_setup);
}
for (size_t i = 0; i < ox->ox_nstd; i++) {
ohci_soft_td_t *std = ox->ox_stds[i];
if (std == NULL)
break;
ohci_free_std_locked(sc, std);
}
ohci_free_std_locked(sc, ox->ox_stat);
mutex_exit(&sc->sc_lock);
if (ox->ox_nstd) {
const size_t sz = sizeof(ohci_soft_td_t *) * ox->ox_nstd;
kmem_free(ox->ox_stds, sz);
}
}
Static usbd_status
ohci_device_ctrl_transfer(struct usbd_xfer *xfer)
{
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
usbd_status err;
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/* Pipe isn't running, start first */
return ohci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
Static usbd_status
ohci_device_ctrl_start(struct usbd_xfer *xfer)
{
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
struct ohci_xfer *ox = OHCI_XFER2OXFER(xfer);
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(xfer->ux_pipe);
usb_device_request_t *req = &xfer->ux_request;
struct usbd_device *dev __diagused = opipe->pipe.up_dev;
ohci_soft_td_t *setup, *stat, *next, *tail;
ohci_soft_ed_t *sed;
int isread;
int len;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
if (sc->sc_dying)
return USBD_IOERROR;
KASSERT(xfer->ux_rqflags & URQ_REQUEST);
isread = req->bmRequestType & UT_READ;
len = UGETW(req->wLength);
DPRINTF("xfer=%p len=%d, addr=%d, endpt=%d", xfer, len, dev->ud_addr,
opipe->pipe.up_endpoint->ue_edesc->bEndpointAddress);
DPRINTF("type=0x%02x, request=0x%02x, wValue=0x%04x, wIndex=0x%04x",
req->bmRequestType, req->bRequest, UGETW(req->wValue),
UGETW(req->wIndex));
/* Need to take lock here for pipe->tail.td */
mutex_enter(&sc->sc_lock);
/*
* Use the pipe "tail" TD as our first and loan our first TD to the
* next transfer
*/
setup = opipe->tail.td;
opipe->tail.td = ox->ox_setup;
ox->ox_setup = setup;
stat = ox->ox_stat;
/* point at sentinel */
tail = opipe->tail.td;
sed = opipe->sed;
KASSERTMSG(OHCI_ED_GET_FA(O32TOH(sed->ed.ed_flags)) == dev->ud_addr,
"address ED %d pipe %d\n",
OHCI_ED_GET_FA(O32TOH(sed->ed.ed_flags)), dev->ud_addr);
KASSERTMSG(OHCI_ED_GET_MAXP(O32TOH(sed->ed.ed_flags)) ==
UGETW(opipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize),
"MPL ED %d pipe %d\n",
OHCI_ED_GET_MAXP(O32TOH(sed->ed.ed_flags)),
UGETW(opipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize));
/* next will point to data if len != 0 */
next = stat;
/* Set up data transaction */
if (len != 0) {
ohci_soft_td_t *std;
ohci_soft_td_t *end;
next = ox->ox_stds[0];
ohci_reset_std_chain(sc, xfer, len, isread, next, &end);
end->td.td_nexttd = HTOO32(stat->physaddr);
end->nexttd = stat;
usb_syncmem(&end->dma,
end->offs + offsetof(ohci_td_t, td_nexttd),
sizeof(end->td.td_nexttd),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
usb_syncmem(&xfer->ux_dmabuf, 0, len,
isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
std = ox->ox_stds[0];
/* Start toggle at 1 and then use the carried toggle. */
std->td.td_flags &= HTOO32(~OHCI_TD_TOGGLE_MASK);
std->td.td_flags |= HTOO32(OHCI_TD_TOGGLE_1);
usb_syncmem(&std->dma,
std->offs + offsetof(ohci_td_t, td_flags),
sizeof(std->td.td_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
DPRINTFN(8, "setup %p data %p stat %p tail %p", setup,
(len != 0 ? ox->ox_stds[0] : NULL), stat, tail);
KASSERT(opipe->tail.td == tail);
memcpy(KERNADDR(&opipe->ctrl.reqdma, 0), req, sizeof(*req));
usb_syncmem(&opipe->ctrl.reqdma, 0, sizeof(*req), BUS_DMASYNC_PREWRITE);
setup->td.td_flags = HTOO32(OHCI_TD_SETUP | OHCI_TD_NOCC |
OHCI_TD_TOGGLE_0 | OHCI_TD_NOINTR);
setup->td.td_cbp = HTOO32(DMAADDR(&opipe->ctrl.reqdma, 0));
setup->td.td_nexttd = HTOO32(next->physaddr);
setup->td.td_be = HTOO32(O32TOH(setup->td.td_cbp) + sizeof(*req) - 1);
setup->nexttd = next;
setup->len = 0;
setup->xfer = xfer;
setup->flags = 0;
ohci_hash_add_td(sc, setup);
xfer->ux_hcpriv = setup;
usb_syncmem(&setup->dma, setup->offs, sizeof(setup->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
stat->td.td_flags = HTOO32(
(isread ? OHCI_TD_OUT : OHCI_TD_IN) |
OHCI_TD_NOCC | OHCI_TD_TOGGLE_1 | OHCI_TD_SET_DI(1));
stat->td.td_cbp = 0;
stat->td.td_nexttd = HTOO32(tail->physaddr);
stat->td.td_be = 0;
stat->nexttd = tail;
stat->flags = OHCI_CALL_DONE;
stat->len = 0;
stat->xfer = xfer;
ohci_hash_add_td(sc, stat);
usb_syncmem(&stat->dma, stat->offs, sizeof(stat->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
memset(&tail->td, 0, sizeof(tail->td));
tail->nexttd = NULL;
tail->xfer = NULL;
usb_syncmem(&tail->dma, tail->offs, sizeof(tail->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
#ifdef OHCI_DEBUG
USBHIST_LOGN(ohcidebug, 5, "--- dump start ---", 0, 0, 0, 0);
if (ohcidebug >= 5) {
ohci_dump_ed(sc, sed);
ohci_dump_tds(sc, setup);
}
USBHIST_LOGN(ohcidebug, 5, "--- dump end ---", 0, 0, 0, 0);
#endif
/* Insert ED in schedule */
sed->ed.ed_tailp = HTOO32(tail->physaddr);
usb_syncmem(&sed->dma,
sed->offs + offsetof(ohci_ed_t, ed_tailp),
sizeof(sed->ed.ed_tailp),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_CLF);
if (xfer->ux_timeout && !sc->sc_bus.ub_usepolling) {
callout_reset(&xfer->ux_callout, mstohz(xfer->ux_timeout),
ohci_timeout, xfer);
}
DPRINTF("done", 0, 0, 0, 0);
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
/* Abort a device control request. */
Static void
ohci_device_ctrl_abort(struct usbd_xfer *xfer)
{
ohci_softc_t *sc __diagused = OHCI_XFER2SC(xfer);
KASSERT(mutex_owned(&sc->sc_lock));
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTF("xfer=%p", xfer, 0, 0, 0);
ohci_abort_xfer(xfer, USBD_CANCELLED);
}
/* Close a device control pipe. */
Static void
ohci_device_ctrl_close(struct usbd_pipe *pipe)
{
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(pipe);
ohci_softc_t *sc = OHCI_PIPE2SC(pipe);
KASSERT(mutex_owned(&sc->sc_lock));
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTF("pipe=%p", pipe, 0, 0, 0);
ohci_close_pipe(pipe, sc->sc_ctrl_head);
ohci_free_std_locked(sc, opipe->tail.td);
}
/************************/
Static void
ohci_device_clear_toggle(struct usbd_pipe *pipe)
{
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(pipe);
ohci_softc_t *sc = OHCI_PIPE2SC(pipe);
opipe->sed->ed.ed_headp &= HTOO32(~OHCI_TOGGLECARRY);
}
Static void
ohci_noop(struct usbd_pipe *pipe)
{
}
Static int
ohci_device_bulk_init(struct usbd_xfer *xfer)
{
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
int len = xfer->ux_bufsize;
int endpt = xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress;;
int isread = UE_GET_DIR(endpt) == UE_DIR_IN;
int err;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
DPRINTFN(4, "xfer=%p len=%d isread=%d flags=%d", xfer, len, isread,
xfer->ux_flags);
DPRINTFN(4, "endpt=%d", endpt, 0, 0, 0);
/* Allocate a chain of new TDs (including a new tail). */
err = ohci_alloc_std_chain(sc, xfer, len, isread);
if (err)
return err;
return 0;
}
Static void
ohci_device_bulk_fini(struct usbd_xfer *xfer)
{
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
struct ohci_xfer *ox = OHCI_XFER2OXFER(xfer);
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(xfer->ux_pipe);
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(8, "xfer %p nstd %d", xfer, ox->ox_nstd, 0, 0);
mutex_enter(&sc->sc_lock);
for (size_t i = 0; i < ox->ox_nstd; i++) {
ohci_soft_td_t *std = ox->ox_stds[i];
if (std == NULL)
break;
if (std != opipe->tail.td)
ohci_free_std_locked(sc, std);
}
mutex_exit(&sc->sc_lock);
if (ox->ox_nstd) {
const size_t sz = sizeof(ohci_soft_td_t *) * ox->ox_nstd;
kmem_free(ox->ox_stds, sz);
}
}
Static usbd_status
ohci_device_bulk_transfer(struct usbd_xfer *xfer)
{
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
usbd_status err;
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/* Pipe isn't running, start first */
return ohci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
Static usbd_status
ohci_device_bulk_start(struct usbd_xfer *xfer)
{
struct ohci_xfer *ox = OHCI_XFER2OXFER(xfer);
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(xfer->ux_pipe);
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
ohci_soft_td_t *last;
ohci_soft_td_t *data, *tail, *tdp;
ohci_soft_ed_t *sed;
int len, isread, endpt;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
if (sc->sc_dying)
return USBD_IOERROR;
KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
len = xfer->ux_length;
endpt = xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress;
isread = UE_GET_DIR(endpt) == UE_DIR_IN;
sed = opipe->sed;
DPRINTFN(4, "xfer=%p len=%d isread=%d flags=%d", xfer, len, isread,
xfer->ux_flags);
DPRINTFN(4, "endpt=%d", endpt, 0, 0, 0);
mutex_enter(&sc->sc_lock);
/*
* Use the pipe "tail" TD as our first and loan our first TD to the
* next transfer
*/
data = opipe->tail.td;
opipe->tail.td = ox->ox_stds[0];
ox->ox_stds[0] = data;
ohci_reset_std_chain(sc, xfer, len, isread, data, &last);
/* point at sentinel */
tail = opipe->tail.td;
memset(&tail->td, 0, sizeof(tail->td));
tail->nexttd = NULL;
tail->xfer = NULL;
usb_syncmem(&tail->dma, tail->offs, sizeof(tail->td),
BUS_DMASYNC_PREWRITE);
xfer->ux_hcpriv = data;
DPRINTFN(8, "xfer %p data %p tail %p", xfer, ox->ox_stds[0], tail, 0);
KASSERT(opipe->tail.td == tail);
/* We want interrupt at the end of the transfer. */
last->td.td_flags &= HTOO32(~OHCI_TD_INTR_MASK);
last->td.td_flags |= HTOO32(OHCI_TD_SET_DI(1));
last->td.td_nexttd = HTOO32(tail->physaddr);
last->nexttd = tail;
last->flags |= OHCI_CALL_DONE;
usb_syncmem(&last->dma, last->offs, sizeof(last->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
DPRINTFN(4, "ed_flags=0x%08x td_flags=0x%08x "
"td_cbp=0x%08x td_be=0x%08x",
(int)O32TOH(sed->ed.ed_flags),
(int)O32TOH(data->td.td_flags),
(int)O32TOH(data->td.td_cbp),
(int)O32TOH(data->td.td_be));
#ifdef OHCI_DEBUG
DPRINTFN(5, "--- dump start ---", 0, 0, 0, 0);
if (ohcidebug >= 5) {
ohci_dump_ed(sc, sed);
ohci_dump_tds(sc, data);
}
DPRINTFN(5, "--- dump end ---", 0, 0, 0, 0);
#endif
/* Insert ED in schedule */
for (tdp = data; tdp != tail; tdp = tdp->nexttd) {
KASSERT(tdp->xfer == xfer);
}
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_tailp = HTOO32(tail->physaddr);
sed->ed.ed_flags &= HTOO32(~OHCI_ED_SKIP);
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_BLF);
if (xfer->ux_timeout && !sc->sc_bus.ub_usepolling) {
callout_reset(&xfer->ux_callout, mstohz(xfer->ux_timeout),
ohci_timeout, xfer);
}
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
Static void
ohci_device_bulk_abort(struct usbd_xfer *xfer)
{
ohci_softc_t *sc __diagused = OHCI_XFER2SC(xfer);
OHCIHIST_FUNC(); OHCIHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
DPRINTF("xfer=%p", xfer, 0, 0, 0);
ohci_abort_xfer(xfer, USBD_CANCELLED);
}
/*
* Close a device bulk pipe.
*/
Static void
ohci_device_bulk_close(struct usbd_pipe *pipe)
{
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(pipe);
ohci_softc_t *sc = OHCI_PIPE2SC(pipe);
KASSERT(mutex_owned(&sc->sc_lock));
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTF("pipe=%p", pipe, 0, 0, 0);
ohci_close_pipe(pipe, sc->sc_bulk_head);
ohci_free_std_locked(sc, opipe->tail.td);
}
/************************/
Static int
ohci_device_intr_init(struct usbd_xfer *xfer)
{
struct ohci_xfer *ox = OHCI_XFER2OXFER(xfer);
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
int len = xfer->ux_bufsize;
int endpt = xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress;;
int isread = UE_GET_DIR(endpt) == UE_DIR_IN;
int err;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
KASSERT(len != 0);
DPRINTFN(4, "xfer=%p len=%d isread=%d flags=%d", xfer, len, isread,
xfer->ux_flags);
DPRINTFN(4, "endpt=%d", endpt, 0, 0, 0);
ox->ox_nstd = 0;
err = ohci_alloc_std_chain(sc, xfer, len, isread);
if (err) {
return err;
}
return 0;
}
Static void
ohci_device_intr_fini(struct usbd_xfer *xfer)
{
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
struct ohci_xfer *ox = OHCI_XFER2OXFER(xfer);
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(xfer->ux_pipe);
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(8, "xfer %p nstd %d", xfer, ox->ox_nstd, 0, 0);
mutex_enter(&sc->sc_lock);
for (size_t i = 0; i < ox->ox_nstd; i++) {
ohci_soft_td_t *std = ox->ox_stds[i];
if (std != NULL)
break;
if (std != opipe->tail.td)
ohci_free_std_locked(sc, std);
}
mutex_exit(&sc->sc_lock);
if (ox->ox_nstd) {
const size_t sz = sizeof(ohci_soft_td_t *) * ox->ox_nstd;
kmem_free(ox->ox_stds, sz);
}
}
Static usbd_status
ohci_device_intr_transfer(struct usbd_xfer *xfer)
{
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
usbd_status err;
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/* Pipe isn't running, start first */
return ohci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
Static usbd_status
ohci_device_intr_start(struct usbd_xfer *xfer)
{
struct ohci_xfer *ox = OHCI_XFER2OXFER(xfer);
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(xfer->ux_pipe);
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
ohci_soft_ed_t *sed = opipe->sed;
ohci_soft_td_t *data, *last, *tail;
int len, isread, endpt;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
if (sc->sc_dying)
return USBD_IOERROR;
DPRINTFN(3, "xfer=%p len=%d flags=%d priv=%p", xfer, xfer->ux_length,
xfer->ux_flags, xfer->ux_priv);
KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
len = xfer->ux_length;
endpt = xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress;
isread = UE_GET_DIR(endpt) == UE_DIR_IN;
mutex_enter(&sc->sc_lock);
/*
* Use the pipe "tail" TD as our first and loan our first TD to the
* next transfer.
*/
data = opipe->tail.td;
opipe->tail.td = ox->ox_stds[0];
ox->ox_stds[0] = data;
ohci_reset_std_chain(sc, xfer, len, isread, data, &last);
/* point at sentinel */
tail = opipe->tail.td;
memset(&tail->td, 0, sizeof(tail->td));
tail->nexttd = NULL;
tail->xfer = NULL;
usb_syncmem(&tail->dma, tail->offs, sizeof(tail->td),
BUS_DMASYNC_PREWRITE);
xfer->ux_hcpriv = data;
DPRINTFN(8, "data %p tail %p", ox->ox_stds[0], tail, 0, 0);
KASSERT(opipe->tail.td == tail);
/* We want interrupt at the end of the transfer. */
last->td.td_flags &= HTOO32(~OHCI_TD_INTR_MASK);
last->td.td_flags |= HTOO32(OHCI_TD_SET_DI(1));
last->td.td_nexttd = HTOO32(tail->physaddr);
last->nexttd = tail;
last->flags |= OHCI_CALL_DONE;
usb_syncmem(&last->dma, last->offs, sizeof(last->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
#ifdef OHCI_DEBUG
DPRINTFN(5, "--- dump start ---", 0, 0, 0, 0);
if (ohcidebug >= 5) {
ohci_dump_ed(sc, sed);
ohci_dump_tds(sc, data);
}
DPRINTFN(5, "--- dump end ---", 0, 0, 0, 0);
#endif
/* Insert ED in schedule */
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_tailp = HTOO32(tail->physaddr);
sed->ed.ed_flags &= HTOO32(~OHCI_ED_SKIP);
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
/* Abort a device interrupt request. */
Static void
ohci_device_intr_abort(struct usbd_xfer *xfer)
{
ohci_softc_t *sc __diagused = OHCI_XFER2SC(xfer);
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
ohci_abort_xfer(xfer, USBD_CANCELLED);
}
/* Close a device interrupt pipe. */
Static void
ohci_device_intr_close(struct usbd_pipe *pipe)
{
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(pipe);
ohci_softc_t *sc = OHCI_PIPE2SC(pipe);
int nslots = opipe->intr.nslots;
int pos = opipe->intr.pos;
int j;
ohci_soft_ed_t *p, *sed = opipe->sed;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
DPRINTFN(1, "pipe=%p nslots=%d pos=%d", pipe, nslots, pos, 0);
usb_syncmem(&sed->dma, sed->offs,
sizeof(sed->ed), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_flags |= HTOO32(OHCI_ED_SKIP);
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
if ((O32TOH(sed->ed.ed_tailp) & OHCI_HEADMASK) !=
(O32TOH(sed->ed.ed_headp) & OHCI_HEADMASK))
usb_delay_ms_locked(&sc->sc_bus, 2, &sc->sc_lock);
for (p = sc->sc_eds[pos]; p && p->next != sed; p = p->next)
continue;
KASSERT(p);
p->next = sed->next;
p->ed.ed_nexted = sed->ed.ed_nexted;
usb_syncmem(&p->dma, p->offs + offsetof(ohci_ed_t, ed_nexted),
sizeof(p->ed.ed_nexted),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
for (j = 0; j < nslots; j++)
--sc->sc_bws[(pos * nslots + j) % OHCI_NO_INTRS];
ohci_free_std_locked(sc, opipe->tail.td);
ohci_free_sed_locked(sc, opipe->sed);
}
Static usbd_status
ohci_device_setintr(ohci_softc_t *sc, struct ohci_pipe *opipe, int ival)
{
int i, j, best;
u_int npoll, slow, shigh, nslots;
u_int bestbw, bw;
ohci_soft_ed_t *hsed, *sed = opipe->sed;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(2, "pipe=%p", opipe, 0, 0, 0);
if (ival == 0) {
printf("ohci_setintr: 0 interval\n");
return USBD_INVAL;
}
npoll = OHCI_NO_INTRS;
while (npoll > ival)
npoll /= 2;
DPRINTFN(2, "ival=%d npoll=%d", ival, npoll, 0, 0);
/*
* We now know which level in the tree the ED must go into.
* Figure out which slot has most bandwidth left over.
* Slots to examine:
* npoll
* 1 0
* 2 1 2
* 4 3 4 5 6
* 8 7 8 9 10 11 12 13 14
* N (N-1) .. (N-1+N-1)
*/
slow = npoll-1;
shigh = slow + npoll;
nslots = OHCI_NO_INTRS / npoll;
for (best = i = slow, bestbw = ~0; i < shigh; i++) {
bw = 0;
for (j = 0; j < nslots; j++)
bw += sc->sc_bws[(i * nslots + j) % OHCI_NO_INTRS];
if (bw < bestbw) {
best = i;
bestbw = bw;
}
}
DPRINTFN(2, "best=%d(%d..%d) bestbw=%d", best, slow, shigh, bestbw);
mutex_enter(&sc->sc_lock);
hsed = sc->sc_eds[best];
sed->next = hsed->next;
usb_syncmem(&hsed->dma, hsed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(hsed->ed.ed_flags),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_nexted = hsed->ed.ed_nexted;
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
hsed->next = sed;
hsed->ed.ed_nexted = HTOO32(sed->physaddr);
usb_syncmem(&hsed->dma, hsed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(hsed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
mutex_exit(&sc->sc_lock);
for (j = 0; j < nslots; j++)
++sc->sc_bws[(best * nslots + j) % OHCI_NO_INTRS];
opipe->intr.nslots = nslots;
opipe->intr.pos = best;
DPRINTFN(5, "returns %p", opipe, 0, 0, 0);
return USBD_NORMAL_COMPLETION;
}
/***********************/
Static int
ohci_device_isoc_init(struct usbd_xfer *xfer)
{
struct ohci_xfer *ox = OHCI_XFER2OXFER(xfer);
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
ohci_soft_itd_t *sitd;
size_t i;
int err;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(1, "xfer %p len %d flags %d", xfer, xfer->ux_length,
xfer->ux_flags, 0);
const size_t nfsitd =
(xfer->ux_nframes + OHCI_ITD_NOFFSET - 1) / OHCI_ITD_NOFFSET;
const size_t nbsitd = xfer->ux_bufsize / OHCI_PAGE_SIZE;
const size_t nsitd = MAX(nfsitd, nbsitd) + 1;
ox->ox_sitds = kmem_zalloc(sizeof(ohci_soft_itd_t *) * nsitd,
KM_SLEEP);
ox->ox_nsitd = nsitd;
for (i = 0; i < nsitd; i++) {
/* Allocate next ITD */
sitd = ohci_alloc_sitd(sc);
if (sitd == NULL) {
err = ENOMEM;
goto fail;
}
ox->ox_sitds[i] = sitd;
sitd->xfer = xfer;
sitd->flags = 0;
}
return 0;
fail:
for (; i > 0;) {
ohci_free_sitd(sc, ox->ox_sitds[--i]);
}
return err;
}
Static void
ohci_device_isoc_fini(struct usbd_xfer *xfer)
{
struct ohci_xfer *ox = OHCI_XFER2OXFER(xfer);
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(xfer->ux_pipe);
OHCIHIST_FUNC(); OHCIHIST_CALLED();
mutex_enter(&sc->sc_lock);
for (size_t i = 0; i < ox->ox_nsitd; i++) {
if (ox->ox_sitds[i] != opipe->tail.itd) {
ohci_free_sitd_locked(sc, ox->ox_sitds[i]);
}
}
mutex_exit(&sc->sc_lock);
if (ox->ox_nsitd) {
const size_t sz = sizeof(ohci_soft_itd_t *) * ox->ox_nsitd;
kmem_free(ox->ox_sitds, sz);
}
}
usbd_status
ohci_device_isoc_transfer(struct usbd_xfer *xfer)
{
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
usbd_status __diagused err;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(5, "xfer=%p", xfer, 0, 0, 0);
/* Put it on our queue, */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
KASSERT(err == USBD_NORMAL_COMPLETION);
/* insert into schedule, */
ohci_device_isoc_enter(xfer);
/* and start if the pipe wasn't running */
return USBD_IN_PROGRESS;
}
void
ohci_device_isoc_enter(struct usbd_xfer *xfer)
{
struct ohci_xfer *ox = OHCI_XFER2OXFER(xfer);
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(xfer->ux_pipe);
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
ohci_soft_ed_t *sed = opipe->sed;
ohci_soft_itd_t *sitd, *nsitd, *tail;
ohci_physaddr_t buf, offs, noffs, bp0;
int i, ncur, nframes;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(5, "xfer=%p", xfer, 0, 0, 0);
mutex_enter(&sc->sc_lock);
if (sc->sc_dying) {
mutex_exit(&sc->sc_lock);
return;
}
struct isoc *isoc = &opipe->isoc;
DPRINTFN(1, "used=%d next=%d xfer=%p nframes=%d",
isoc->inuse, isoc->next, xfer, xfer->ux_nframes);
if (isoc->next == -1) {
/* Not in use yet, schedule it a few frames ahead. */
isoc->next = O32TOH(sc->sc_hcca->hcca_frame_number) + 5;
DPRINTFN(2,"start next=%d", isoc->next, 0, 0, 0);
}
sitd = opipe->tail.itd;
opipe->tail.itd = ox->ox_sitds[0];
ox->ox_sitds[0] = sitd;
buf = DMAADDR(&xfer->ux_dmabuf, 0);
bp0 = OHCI_PAGE(buf);
offs = OHCI_PAGE_OFFSET(buf);
nframes = xfer->ux_nframes;
xfer->ux_hcpriv = sitd;
size_t j = 1;
for (i = ncur = 0; i < nframes; i++, ncur++) {
noffs = offs + xfer->ux_frlengths[i];
if (ncur == OHCI_ITD_NOFFSET || /* all offsets used */
OHCI_PAGE(buf + noffs) > bp0 + OHCI_PAGE_SIZE) { /* too many page crossings */
/* Allocate next ITD */
nsitd = ox->ox_sitds[j++];
KASSERT(nsitd != NULL);
KASSERT(j < ox->ox_nsitd);
/* Fill current ITD */
sitd->itd.itd_flags = HTOO32(
OHCI_ITD_NOCC |
OHCI_ITD_SET_SF(isoc->next) |
OHCI_ITD_SET_DI(6) | /* delay intr a little */
OHCI_ITD_SET_FC(ncur));
sitd->itd.itd_bp0 = HTOO32(bp0);
sitd->itd.itd_nextitd = HTOO32(nsitd->physaddr);
sitd->itd.itd_be = HTOO32(bp0 + offs - 1);
sitd->nextitd = nsitd;
sitd->xfer = xfer;
sitd->flags = 0;
#ifdef DIAGNOSTIC
sitd->isdone = false;
#endif
ohci_hash_add_itd(sc, sitd);
usb_syncmem(&sitd->dma, sitd->offs, sizeof(sitd->itd),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
sitd = nsitd;
isoc->next = isoc->next + ncur;
bp0 = OHCI_PAGE(buf + offs);
ncur = 0;
}
sitd->itd.itd_offset[ncur] = HTOO16(OHCI_ITD_MK_OFFS(offs));
offs = noffs;
}
KASSERT(j <= ox->ox_nsitd);
/* point at sentinel */
tail = opipe->tail.itd;
memset(&tail->itd, 0, sizeof(tail->itd));
tail->nextitd = NULL;
tail->xfer = NULL;
usb_syncmem(&tail->dma, tail->offs, sizeof(tail->itd),
BUS_DMASYNC_PREWRITE);
/* Fixup last used ITD */
sitd->itd.itd_flags = HTOO32(
OHCI_ITD_NOCC |
OHCI_ITD_SET_SF(isoc->next) |
OHCI_ITD_SET_DI(0) |
OHCI_ITD_SET_FC(ncur));
sitd->itd.itd_bp0 = HTOO32(bp0);
sitd->itd.itd_nextitd = HTOO32(tail->physaddr);
sitd->itd.itd_be = HTOO32(bp0 + offs - 1);
sitd->nextitd = tail;
sitd->xfer = xfer;
sitd->flags = OHCI_CALL_DONE;
#ifdef DIAGNOSTIC
sitd->isdone = false;
#endif
ohci_hash_add_itd(sc, sitd);
usb_syncmem(&sitd->dma, sitd->offs, sizeof(sitd->itd),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
isoc->next = isoc->next + ncur;
isoc->inuse += nframes;
/* XXX pretend we did it all */
xfer->ux_actlen = offs;
xfer->ux_status = USBD_IN_PROGRESS;
#ifdef OHCI_DEBUG
if (ohcidebug >= 5) {
DPRINTF("frame=%d", O32TOH(sc->sc_hcca->hcca_frame_number),
0, 0, 0);
ohci_dump_itds(sc, xfer->ux_hcpriv);
ohci_dump_ed(sc, sed);
}
#endif
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_tailp = HTOO32(tail->physaddr);
sed->ed.ed_flags &= HTOO32(~OHCI_ED_SKIP);
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
mutex_exit(&sc->sc_lock);
}
void
ohci_device_isoc_abort(struct usbd_xfer *xfer)
{
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(xfer->ux_pipe);
ohci_softc_t *sc = OHCI_XFER2SC(xfer);
ohci_soft_ed_t *sed;
ohci_soft_itd_t *sitd;
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(1, "xfer=%p", xfer, 0, 0, 0);
KASSERT(mutex_owned(&sc->sc_lock));
/* Transfer is already done. */
if (xfer->ux_status != USBD_NOT_STARTED &&
xfer->ux_status != USBD_IN_PROGRESS) {
printf("ohci_device_isoc_abort: early return\n");
goto done;
}
/* Give xfer the requested abort code. */
xfer->ux_status = USBD_CANCELLED;
sed = opipe->sed;
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
sed->ed.ed_flags |= HTOO32(OHCI_ED_SKIP); /* force hardware skip */
usb_syncmem(&sed->dma, sed->offs + offsetof(ohci_ed_t, ed_flags),
sizeof(sed->ed.ed_flags),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
sitd = xfer->ux_hcpriv;
KASSERT(sitd);
usb_delay_ms_locked(&sc->sc_bus, OHCI_ITD_NOFFSET, &sc->sc_lock);
for (; sitd->xfer == xfer; sitd = sitd->nextitd) {
ohci_hash_rem_itd(sc, sitd);
#ifdef DIAGNOSTIC
DPRINTFN(1, "abort sets done sitd=%p", sitd, 0, 0, 0);
sitd->isdone = true;
#endif
}
/* Run callback. */
usb_transfer_complete(xfer);
sed->ed.ed_headp = HTOO32(sitd->physaddr); /* unlink TDs */
sed->ed.ed_flags &= HTOO32(~OHCI_ED_SKIP); /* remove hardware skip */
usb_syncmem(&sed->dma, sed->offs, sizeof(sed->ed),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
done:
KASSERT(mutex_owned(&sc->sc_lock));
}
void
ohci_device_isoc_done(struct usbd_xfer *xfer)
{
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTFN(1, "xfer=%p", xfer, 0, 0, 0);
}
usbd_status
ohci_setup_isoc(struct usbd_pipe *pipe)
{
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(pipe);
ohci_softc_t *sc = OHCI_PIPE2SC(pipe);
struct isoc *isoc = &opipe->isoc;
isoc->next = -1;
isoc->inuse = 0;
mutex_enter(&sc->sc_lock);
ohci_add_ed(sc, opipe->sed, sc->sc_isoc_head);
mutex_exit(&sc->sc_lock);
return USBD_NORMAL_COMPLETION;
}
void
ohci_device_isoc_close(struct usbd_pipe *pipe)
{
struct ohci_pipe *opipe = OHCI_PIPE2OPIPE(pipe);
ohci_softc_t *sc = OHCI_PIPE2SC(pipe);
KASSERT(mutex_owned(&sc->sc_lock));
OHCIHIST_FUNC(); OHCIHIST_CALLED();
DPRINTF("pipe=%p", pipe, 0, 0, 0);
ohci_close_pipe(pipe, sc->sc_isoc_head);
#ifdef DIAGNOSTIC
opipe->tail.itd->isdone = true;
#endif
ohci_free_sitd_locked(sc, opipe->tail.itd);
}