NetBSD/sys/dev/pci/if_pcn.c
2001-11-29 17:15:44 +00:00

2159 lines
55 KiB
C

/* $NetBSD: if_pcn.c,v 1.7 2001/11/29 17:15:44 thorpej Exp $ */
/*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the AMD PCnet-PCI series of Ethernet
* chips:
*
* * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
* Local Bus
*
* * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
* for PCI Local Bus
*
* * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
* Ethernet Controller for PCI Local Bus
*
* * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
* with OnNow Support
*
* * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
* Ethernet Controller with Integrated PHY
*
* This also supports the virtual PCnet-PCI Ethernet interface found
* in VMware.
*
* TODO:
*
* * Split this into bus-specific and bus-independent portions.
* The core could also be used for the ILACC (Am79900) 32-bit
* Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.7 2001/11/29 17:15:44 thorpej Exp $");
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <uvm/uvm_extern.h> /* for PAGE_SIZE */
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <machine/endian.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/ic/am79900reg.h>
#include <dev/ic/lancereg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_pcnreg.h>
/*
* Transmit descriptor list size. This is arbitrary, but allocate
* enough descriptors for 128 pending transmissions, and 4 segments
* per packet. This MUST work out to a power of 2.
*
* NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
*
* So we play a little trick here. We give each packet up to 8
* DMA segments, but only allocate 4 DMA segments per packet.
* The transmit logic can deal with this, we just are hoping to
* sneak by.
*/
#define PCN_NTXSEGS 8
#define PCN_NTXSEGS_ALLOC 4
#define PCN_TXQUEUELEN 128
#define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1)
#define PCN_NTXDESC (PCN_TXQUEUELEN * PCN_NTXSEGS_ALLOC)
#define PCN_NTXDESC_MASK (PCN_NTXDESC - 1)
#define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK)
#define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK)
/* Tx interrupt every N + 1 packets. */
#define PCN_TXINTR_MASK 7
/*
* Receive descriptor list size. We have one Rx buffer per incoming
* packet, so this logic is a little simpler.
*/
#define PCN_NRXDESC 128
#define PCN_NRXDESC_MASK (PCN_NRXDESC - 1)
#define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK)
/*
* Control structures are DMA'd to the PCnet chip. We allocate them in
* a single clump that maps to a single DMA segment to make several things
* easier.
*/
struct pcn_control_data {
/* The transmit descriptors. */
struct letmd pcd_txdescs[PCN_NTXDESC];
/* The receive descriptors. */
struct lermd pcd_rxdescs[PCN_NRXDESC];
/* The init block. */
struct leinit pcd_initblock;
};
#define PCN_CDOFF(x) offsetof(struct pcn_control_data, x)
#define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)])
#define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)])
#define PCN_CDINITOFF PCN_CDOFF(pcd_initblock)
/*
* Software state for transmit jobs.
*/
struct pcn_txsoft {
struct mbuf *txs_mbuf; /* head of our mbuf chain */
bus_dmamap_t txs_dmamap; /* our DMA map */
int txs_firstdesc; /* first descriptor in packet */
int txs_lastdesc; /* last descriptor in packet */
};
/*
* Software state for receive jobs.
*/
struct pcn_rxsoft {
struct mbuf *rxs_mbuf; /* head of our mbuf chain */
bus_dmamap_t rxs_dmamap; /* our DMA map */
};
/*
* Description of Rx FIFO watermarks for various revisions.
*/
const char *pcn_79c970_rcvfw[] = {
"16 bytes",
"64 bytes",
"128 bytes",
NULL,
};
const char *pcn_79c971_rcvfw[] = {
"16 bytes",
"64 bytes",
"112 bytes",
NULL,
};
/*
* Description of Tx start points for various revisions.
*/
const char *pcn_79c970_xmtsp[] = {
"8 bytes",
"64 bytes",
"128 bytes",
"248 bytes",
};
const char *pcn_79c971_xmtsp[] = {
"20 bytes",
"64 bytes",
"128 bytes",
"248 bytes",
};
const char *pcn_79c971_xmtsp_sram[] = {
"44 bytes",
"64 bytes",
"128 bytes",
"store-and-forward",
};
/*
* Description of Tx FIFO watermarks for various revisions.
*/
const char *pcn_79c970_xmtfw[] = {
"16 bytes",
"64 bytes",
"128 bytes",
NULL,
};
const char *pcn_79c971_xmtfw[] = {
"16 bytes",
"64 bytes",
"108 bytes",
NULL,
};
/*
* Software state per device.
*/
struct pcn_softc {
struct device sc_dev; /* generic device information */
bus_space_tag_t sc_st; /* bus space tag */
bus_space_handle_t sc_sh; /* bus space handle */
bus_dma_tag_t sc_dmat; /* bus DMA tag */
struct ethercom sc_ethercom; /* Ethernet common data */
void *sc_sdhook; /* shutdown hook */
/* Points to our media routines, etc. */
const struct pcn_variant *sc_variant;
void *sc_ih; /* interrupt cookie */
struct mii_data sc_mii; /* MII/media information */
struct callout sc_tick_ch; /* tick callout */
bus_dmamap_t sc_cddmamap; /* control data DMA map */
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
/* Software state for transmit and receive descriptors. */
struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
/* Control data structures */
struct pcn_control_data *sc_control_data;
#define sc_txdescs sc_control_data->pcd_txdescs
#define sc_rxdescs sc_control_data->pcd_rxdescs
#define sc_initblock sc_control_data->pcd_initblock
#ifdef PCN_EVENT_COUNTERS
/* Event counters. */
struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
struct evcnt sc_ev_txintr; /* Tx interrupts */
struct evcnt sc_ev_rxintr; /* Rx interrupts */
struct evcnt sc_ev_babl; /* BABL in pcn_intr() */
struct evcnt sc_ev_miss; /* MISS in pcn_intr() */
struct evcnt sc_ev_merr; /* MERR in pcn_intr() */
struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
struct evcnt sc_ev_txcopy; /* Tx copies required */
#endif /* PCN_EVENT_COUNTERS */
const char **sc_rcvfw_desc; /* Rx FIFO watermark info */
int sc_rcvfw;
const char **sc_xmtsp_desc; /* Tx start point info */
int sc_xmtsp;
const char **sc_xmtfw_desc; /* Tx FIFO watermark info */
int sc_xmtfw;
int sc_flags; /* misc. flags; see below */
int sc_swstyle; /* the software style in use */
int sc_txfree; /* number of free Tx descriptors */
int sc_txnext; /* next ready Tx descriptor */
int sc_txsfree; /* number of free Tx jobs */
int sc_txsnext; /* next free Tx job */
int sc_txsdirty; /* dirty Tx jobs */
int sc_rxptr; /* next ready Rx descriptor/job */
uint32_t sc_csr5; /* prototype CSR5 register */
uint32_t sc_mode; /* prototype MODE register */
int sc_phyaddr; /* PHY address */
};
/* sc_flags */
#define PCN_F_HAS_MII 0x0001 /* has MII */
#ifdef PCN_EVENT_COUNTERS
#define PCN_EVCNT_INCR(ev) (ev)->ev_count++
#else
#define PCN_EVCNT_INCR(ev) /* nothing */
#endif
#define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x)))
#define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x)))
#define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF)
#define PCN_CDTXSYNC(sc, x, n, ops) \
do { \
int __x, __n; \
\
__x = (x); \
__n = (n); \
\
/* If it will wrap around, sync to the end of the ring. */ \
if ((__x + __n) > PCN_NTXDESC) { \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
PCN_CDTXOFF(__x), sizeof(struct letmd) * \
(PCN_NTXDESC - __x), (ops)); \
__n -= (PCN_NTXDESC - __x); \
__x = 0; \
} \
\
/* Now sync whatever is left. */ \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \
} while (/*CONSTCOND*/0)
#define PCN_CDRXSYNC(sc, x, ops) \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
#define PCN_CDINITSYNC(sc, ops) \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
PCN_CDINITOFF, sizeof(struct leinit), (ops))
#define PCN_INIT_RXDESC(sc, x) \
do { \
struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \
struct mbuf *__m = __rxs->rxs_mbuf; \
\
/* \
* Note: We scoot the packet forward 2 bytes in the buffer \
* so that the payload after the Ethernet header is aligned \
* to a 4-byte boundary. \
*/ \
__m->m_data = __m->m_ext.ext_buf + 2; \
\
if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \
__rmd->rmd2 = \
htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
__rmd->rmd0 = 0; \
} else { \
__rmd->rmd2 = 0; \
__rmd->rmd0 = \
htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
} \
__rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \
(LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \
PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
} while(/*CONSTCOND*/0)
void pcn_start(struct ifnet *);
void pcn_watchdog(struct ifnet *);
int pcn_ioctl(struct ifnet *, u_long, caddr_t);
int pcn_init(struct ifnet *);
void pcn_stop(struct ifnet *, int);
void pcn_shutdown(void *);
void pcn_reset(struct pcn_softc *);
void pcn_rxdrain(struct pcn_softc *);
int pcn_add_rxbuf(struct pcn_softc *, int);
void pcn_tick(void *);
void pcn_spnd(struct pcn_softc *);
void pcn_set_filter(struct pcn_softc *);
int pcn_intr(void *);
void pcn_txintr(struct pcn_softc *);
int pcn_rxintr(struct pcn_softc *);
int pcn_mii_readreg(struct device *, int, int);
void pcn_mii_writereg(struct device *, int, int, int);
void pcn_mii_statchg(struct device *);
void pcn_79c970_mediainit(struct pcn_softc *);
int pcn_79c970_mediachange(struct ifnet *);
void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
void pcn_79c971_mediainit(struct pcn_softc *);
int pcn_79c971_mediachange(struct ifnet *);
void pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
/*
* Description of a PCnet-PCI variant. Used to select media access
* method, mostly, and to print a nice description of the chip.
*/
const struct pcn_variant {
const char *pcv_desc;
void (*pcv_mediainit)(struct pcn_softc *);
uint16_t pcv_chipid;
} pcn_variants[] = {
{ "Am79c970 PCnet-PCI",
pcn_79c970_mediainit,
PARTID_Am79c970 },
{ "Am79c970A PCnet-PCI II",
pcn_79c970_mediainit,
PARTID_Am79c970A },
{ "Am79c971 PCnet-FAST",
pcn_79c971_mediainit,
PARTID_Am79c971 },
{ "Am79c972 PCnet-FAST+",
pcn_79c971_mediainit,
PARTID_Am79c972 },
{ "Am79c973 PCnet-FAST III",
pcn_79c971_mediainit,
PARTID_Am79c973 },
{ "Am79c975 PCnet-FAST III",
pcn_79c971_mediainit,
PARTID_Am79c975 },
{ "Unknown PCnet-PCI variant",
pcn_79c971_mediainit,
0 },
};
int pcn_copy_small = 0;
int pcn_match(struct device *, struct cfdata *, void *);
void pcn_attach(struct device *, struct device *, void *);
struct cfattach pcn_ca = {
sizeof(struct pcn_softc), pcn_match, pcn_attach,
};
/*
* Routines to read and write the PCnet-PCI CSR/BCR space.
*/
static __inline uint32_t
pcn_csr_read(struct pcn_softc *sc, int reg)
{
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
}
static __inline void
pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
{
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
}
static __inline uint32_t
pcn_bcr_read(struct pcn_softc *sc, int reg)
{
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
}
static __inline void
pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
{
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
}
static const struct pcn_variant *
pcn_lookup_variant(uint16_t chipid)
{
const struct pcn_variant *pcv;
for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
if (chipid == pcv->pcv_chipid)
return (pcv);
}
/*
* This covers unknown chips, which we simply treat like
* a generic PCnet-FAST.
*/
return (pcv);
}
int
pcn_match(struct device *parent, struct cfdata *cf, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
return (0);
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_AMD_PCNET_PCI:
/* Beat if_le_pci.c */
return (10);
}
return (0);
}
void
pcn_attach(struct device *parent, struct device *self, void *aux)
{
struct pcn_softc *sc = (struct pcn_softc *) self;
struct pci_attach_args *pa = aux;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
bus_space_tag_t iot;
bus_space_handle_t ioh;
bus_dma_segment_t seg;
int ioh_valid;
int i, rseg, error;
pcireg_t pmode;
uint32_t chipid, reg;
uint8_t enaddr[ETHER_ADDR_LEN];
int pmreg;
callout_init(&sc->sc_tick_ch);
printf(": AMD PCnet-PCI Ethernet\n");
/*
* Map the device.
*/
ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
&iot, &ioh, NULL, NULL) == 0);
if (ioh_valid) {
sc->sc_st = iot;
sc->sc_sh = ioh;
} else {
printf("%s: unable to map device registers\n",
sc->sc_dev.dv_xname);
return;
}
sc->sc_dmat = pa->pa_dmat;
/* Make sure bus mastering is enabled. */
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
PCI_COMMAND_MASTER_ENABLE);
/* Get it out of power save mode, if needed. */
if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
if (pmode == 3) {
/*
* The card has lost all configuration data in
* this state, so punt.
*/
printf("%s: unable to wake from power state D3\n",
sc->sc_dev.dv_xname);
return;
}
if (pmode != 0) {
printf("%s: waking up from power date D%d\n",
sc->sc_dev.dv_xname, pmode);
pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
}
}
/*
* Reset the chip to a known state. This also puts the
* chip into 32-bit mode.
*/
pcn_reset(sc);
/*
* Read the Ethernet address from the EEPROM.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
PCN32_APROM + i);
/*
* Now that the device is mapped, attempt to figure out what
* kind of chip we have. Note that IDL has all 32 bits of
* the chip ID when we're in 32-bit mode.
*/
chipid = pcn_csr_read(sc, LE_CSR88);
sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
printf("%s: %s rev %d, Ethernet address %s\n",
sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
ether_sprintf(enaddr));
/*
* Map and establish our interrupt.
*/
if (pci_intr_map(pa, &ih)) {
printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
if (sc->sc_ih == NULL) {
printf("%s: unable to establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
0)) != 0) {
printf("%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct pcn_control_data), 1,
sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
printf("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
0)) != 0) {
printf("%s: unable to load control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_3;
}
/* Create the transmit buffer DMA maps. */
for (i = 0; i < PCN_TXQUEUELEN; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
PCN_NTXSEGS, MCLBYTES, 0, 0,
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
printf("%s: unable to create tx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_4;
}
}
/* Create the receive buffer DMA maps. */
for (i = 0; i < PCN_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
printf("%s: unable to create rx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_5;
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/* Initialize our media structures. */
(*sc->sc_variant->pcv_mediainit)(sc);
/*
* Initialize FIFO watermark info.
*/
switch (sc->sc_variant->pcv_chipid) {
case PARTID_Am79c970:
case PARTID_Am79c970A:
sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
break;
default:
sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
/*
* Read BCR25 to determine how much SRAM is
* on the board. If > 0, then we the chip
* uses different Start Point thresholds.
*
* Note BCR25 and BCR26 are loaded from the
* EEPROM on RST, and unaffected by S_RESET,
* so we don't really have to worry about
* them except for this.
*/
reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
if (reg != 0)
sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
else
sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
break;
}
/*
* Set up defaults -- see the tables above for what these
* values mean.
*
* XXX How should we tune RCVFW and XMTFW?
*/
sc->sc_rcvfw = 1; /* minimum for full-duplex */
sc->sc_xmtsp = 1;
sc->sc_xmtfw = 0;
ifp = &sc->sc_ethercom.ec_if;
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = pcn_ioctl;
ifp->if_start = pcn_start;
ifp->if_watchdog = pcn_watchdog;
ifp->if_init = pcn_init;
ifp->if_stop = pcn_stop;
IFQ_SET_READY(&ifp->if_snd);
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, enaddr);
#ifdef PCN_EVENT_COUNTERS
/* Attach event counters. */
evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txsstall");
evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txdstall");
evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "txintr");
evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "rxintr");
evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "babl");
evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "miss");
evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "merr");
evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txseg1");
evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txseg2");
evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txseg3");
evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txseg4");
evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txseg5");
evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txsegmore");
evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txcopy");
#endif /* PCN_EVENT_COUNTERS */
/* Make sure the interface is shutdown during reboot. */
sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc);
if (sc->sc_sdhook == NULL)
printf("%s: WARNING: unable to establish shutdown hook\n",
sc->sc_dev.dv_xname);
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_5:
for (i = 0; i < PCN_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rxsoft[i].rxs_dmamap);
}
fail_4:
for (i = 0; i < PCN_TXQUEUELEN; i++) {
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txsoft[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
sizeof(struct pcn_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
fail_0:
return;
}
/*
* pcn_shutdown:
*
* Make sure the interface is stopped at reboot time.
*/
void
pcn_shutdown(void *arg)
{
struct pcn_softc *sc = arg;
pcn_stop(&sc->sc_ethercom.ec_if, 1);
}
/*
* pcn_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
void
pcn_start(struct ifnet *ifp)
{
struct pcn_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
struct pcn_txsoft *txs;
bus_dmamap_t dmamap;
int error, nexttx, lasttx, ofree, seg;
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous number of free descriptors and
* the first descriptor we'll use.
*/
ofree = sc->sc_txfree;
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
for (;;) {
/* Grab a packet off the queue. */
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
m = NULL;
/* Get a work queue entry. */
if (sc->sc_txsfree == 0) {
PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
break;
}
txs = &sc->sc_txsoft[sc->sc_txsnext];
dmamap = txs->txs_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the alloted number of segments, or we
* were short on resources. In this case, we'll copy
* and try again.
*/
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: unable to allocate Tx mbuf\n",
sc->sc_dev.dv_xname);
break;
}
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Tx "
"cluster\n", sc->sc_dev.dv_xname);
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error) {
printf("%s: unable to load Tx buffer, "
"error = %d\n", sc->sc_dev.dv_xname, error);
break;
}
}
/*
* Ensure we have enough descriptors free to describe
* the packet. Note, we always reserve one descriptor
* at the end of the ring as a termination point, to
* prevent wrap-around.
*/
if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
/*
* Not enough free descriptors to transmit this
* packet. We haven't committed anything yet,
* so just unload the DMA map, put the packet
* back on the queue, and punt. Notify the upper
* layer that there are not more slots left.
*
* XXX We could allocate an mbuf and copy, but
* XXX is it worth it?
*/
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->sc_dmat, dmamap);
if (m != NULL)
m_freem(m);
PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m != NULL) {
m_freem(m0);
m0 = m;
}
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
#ifdef PCN_EVENT_COUNTERS
switch (dmamap->dm_nsegs) {
case 1:
PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
break;
case 2:
PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
break;
case 3:
PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
break;
case 4:
PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
break;
case 5:
PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
break;
default:
PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
break;
}
#endif /* PCN_EVENT_COUNTERS */
/*
* Initialize the transmit descriptors.
*/
if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
for (nexttx = sc->sc_txnext, seg = 0;
seg < dmamap->dm_nsegs;
seg++, nexttx = PCN_NEXTTX(nexttx)) {
/*
* If this is the first descriptor we're
* enqueueing, don't set the OWN bit just
* yet. That could cause a race condition.
* We'll do it below.
*/
sc->sc_txdescs[nexttx].tmd0 = 0;
sc->sc_txdescs[nexttx].tmd2 =
htole32(dmamap->dm_segs[seg].ds_addr);
sc->sc_txdescs[nexttx].tmd1 =
htole32(LE_T1_ONES |
(nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
(LE_BCNT(dmamap->dm_segs[seg].ds_len) &
LE_T1_BCNT_MASK));
lasttx = nexttx;
}
} else {
for (nexttx = sc->sc_txnext, seg = 0;
seg < dmamap->dm_nsegs;
seg++, nexttx = PCN_NEXTTX(nexttx)) {
/*
* If this is the first descriptor we're
* enqueueing, don't set the OWN bit just
* yet. That could cause a race condition.
* We'll do it below.
*/
sc->sc_txdescs[nexttx].tmd0 =
htole32(dmamap->dm_segs[seg].ds_addr);
sc->sc_txdescs[nexttx].tmd2 = 0;
sc->sc_txdescs[nexttx].tmd1 =
htole32(LE_T1_ONES |
(nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
(LE_BCNT(dmamap->dm_segs[seg].ds_len) &
LE_T1_BCNT_MASK));
lasttx = nexttx;
}
}
/* Interrupt on the packet, if appropriate. */
if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
/* Set `start of packet' and `end of packet' appropriately. */
sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
sc->sc_txdescs[sc->sc_txnext].tmd1 |=
htole32(LE_T1_OWN|LE_T1_STP);
/* Sync the descriptors we're using. */
PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Kick the transmitter. */
pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
/*
* Store a pointer to the packet so we can free it later,
* and remember what txdirty will be once the packet is
* done.
*/
txs->txs_mbuf = m0;
txs->txs_firstdesc = sc->sc_txnext;
txs->txs_lastdesc = lasttx;
/* Advance the tx pointer. */
sc->sc_txfree -= dmamap->dm_nsegs;
sc->sc_txnext = nexttx;
sc->sc_txsfree--;
sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
#if NBPFILTER > 0
/* Pass the packet to any BPF listeners. */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif /* NBPFILTER > 0 */
}
if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txfree != ofree) {
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/*
* pcn_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
void
pcn_watchdog(struct ifnet *ifp)
{
struct pcn_softc *sc = ifp->if_softc;
/*
* Since we're not interrupting every packet, sweep
* up before we report an error.
*/
pcn_txintr(sc);
if (sc->sc_txfree != PCN_NTXDESC) {
printf("%s: device timeout (txfree %d txsfree %d)\n",
sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
ifp->if_oerrors++;
/* Reset the interface. */
(void) pcn_init(ifp);
}
/* Try to get more packets going. */
pcn_start(ifp);
}
/*
* pcn_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
int
pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct pcn_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error;
s = splnet();
switch (cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
error = pcn_init(ifp);
}
break;
}
/* Try to get more packets going. */
pcn_start(ifp);
splx(s);
return (error);
}
/*
* pcn_intr:
*
* Interrupt service routine.
*/
int
pcn_intr(void *arg)
{
struct pcn_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t csr0;
int wantinit, handled = 0;
for (wantinit = 0; wantinit == 0;) {
csr0 = pcn_csr_read(sc, LE_CSR0);
if ((csr0 & LE_C0_INTR) == 0)
break;
/* ACK the bits and re-enable interrupts. */
pcn_csr_write(sc, LE_CSR0, csr0 &
(LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
LE_C0_TINT|LE_C0_IDON));
handled = 1;
if (csr0 & LE_C0_RINT) {
PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
wantinit = pcn_rxintr(sc);
}
if (csr0 & LE_C0_TINT) {
PCN_EVCNT_INCR(&sc->sc_ev_txintr);
pcn_txintr(sc);
}
if (csr0 & LE_C0_ERR) {
if (csr0 & LE_C0_BABL) {
PCN_EVCNT_INCR(&sc->sc_ev_babl);
ifp->if_oerrors++;
}
if (csr0 & LE_C0_MISS) {
PCN_EVCNT_INCR(&sc->sc_ev_miss);
ifp->if_ierrors++;
}
if (csr0 & LE_C0_MERR) {
PCN_EVCNT_INCR(&sc->sc_ev_merr);
printf("%s: memory error\n",
sc->sc_dev.dv_xname);
wantinit = 1;
break;
}
}
if ((csr0 & LE_C0_RXON) == 0) {
printf("%s: receiver disabled\n",
sc->sc_dev.dv_xname);
ifp->if_ierrors++;
wantinit = 1;
}
if ((csr0 & LE_C0_TXON) == 0) {
printf("%s: transmitter disabled\n",
sc->sc_dev.dv_xname);
ifp->if_oerrors++;
wantinit = 1;
}
}
if (handled) {
if (wantinit)
pcn_init(ifp);
/* Try to get more packets going. */
pcn_start(ifp);
}
return (handled);
}
/*
* pcn_spnd:
*
* Suspend the chip.
*/
void
pcn_spnd(struct pcn_softc *sc)
{
int i;
pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
for (i = 0; i < 10000; i++) {
if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
return;
delay(5);
}
printf("%s: WARNING: chip failed to enter suspended state\n",
sc->sc_dev.dv_xname);
}
/*
* pcn_txintr:
*
* Helper; handle transmit interrupts.
*/
void
pcn_txintr(struct pcn_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct pcn_txsoft *txs;
uint32_t tmd1, tmd2, tmd;
int i, j;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
txs = &sc->sc_txsoft[i];
PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
if (tmd1 & LE_T1_OWN)
break;
/*
* Slightly annoying -- we have to loop through the
* descriptors we've used looking for ERR, since it
* can appear on any descriptor in the chain.
*/
for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
tmd = le32toh(sc->sc_txdescs[j].tmd1);
if (tmd & LE_T1_ERR) {
ifp->if_oerrors++;
if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
else
tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
if (tmd2 & LE_T2_UFLO) {
if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
sc->sc_xmtsp++;
printf("%s: transmit "
"underrun; new threshold: "
"%s\n",
sc->sc_dev.dv_xname,
sc->sc_xmtsp_desc[
sc->sc_xmtsp]);
pcn_spnd(sc);
pcn_csr_write(sc, LE_CSR80,
LE_C80_RCVFW(sc->sc_rcvfw) |
LE_C80_XMTSP(sc->sc_xmtsp) |
LE_C80_XMTFW(sc->sc_xmtfw));
pcn_csr_write(sc, LE_CSR5,
sc->sc_csr5);
} else {
printf("%s: transmit "
"underrun\n",
sc->sc_dev.dv_xname);
}
} else if (tmd2 & LE_T2_BUFF) {
printf("%s: transmit buffer error\n",
sc->sc_dev.dv_xname);
}
if (tmd2 & LE_T2_LCOL)
ifp->if_collisions++;
if (tmd2 & LE_T2_RTRY)
ifp->if_collisions += 16;
goto next_packet;
}
if (j == txs->txs_lastdesc)
break;
}
if (tmd1 & LE_T1_ONE)
ifp->if_collisions++;
else if (tmd & LE_T1_MORE) {
/* Real number is unknown. */
ifp->if_collisions += 2;
}
ifp->if_opackets++;
next_packet:
sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
/* Update the dirty transmit buffer pointer. */
sc->sc_txsdirty = i;
/*
* If there are no more pending transmissions, cancel the watchdog
* timer.
*/
if (sc->sc_txsfree == PCN_TXQUEUELEN)
ifp->if_timer = 0;
}
/*
* pcn_rxintr:
*
* Helper; handle receive interrupts.
*/
int
pcn_rxintr(struct pcn_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct pcn_rxsoft *rxs;
struct mbuf *m;
uint32_t rmd1;
int i, len;
for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
rxs = &sc->sc_rxsoft[i];
PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
if (rmd1 & LE_R1_OWN)
break;
/*
* Check for errors and make sure the packet fit into
* a single buffer. We have structured this block of
* code the way it is in order to compress it into
* one test in the common case (no error).
*/
if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
(LE_R1_STP|LE_R1_ENP))) {
/* Make sure the packet is in a single buffer. */
if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
(LE_R1_STP|LE_R1_ENP)) {
printf("%s: packet spilled into next buffer\n",
sc->sc_dev.dv_xname);
return (1); /* pcn_intr() will re-init */
}
/*
* If the packet had an error, simple recycle the
* buffer.
*/
if (rmd1 & LE_R1_ERR) {
ifp->if_ierrors++;
/*
* If we got an overflow error, chances
* are there will be a CRC error. In
* this case, just print the overflow
* error, and skip the others.
*/
if (rmd1 & LE_R1_OFLO)
printf("%s: overflow error\n",
sc->sc_dev.dv_xname);
else {
#define PRINTIT(x, s) \
if (rmd1 & (x)) \
printf("%s: %s\n", \
sc->sc_dev.dv_xname, s);
PRINTIT(LE_R1_FRAM, "framing error");
PRINTIT(LE_R1_CRC, "CRC error");
PRINTIT(LE_R1_BUFF, "buffer error");
}
#undef PRINTIT
PCN_INIT_RXDESC(sc, i);
continue;
}
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* No errors; receive the packet.
*/
if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
else
len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
/*
* The LANCE family includes the CRC with every packet;
* trim it off here.
*/
len -= ETHER_CRC_LEN;
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when we receive lots
* of small packets.
*
* Otherwise, we add a new buffer to the receive
* chain. If this fails, we drop the packet and
* recycle the old buffer.
*/
if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
goto dropit;
m->m_data += 2;
memcpy(mtod(m, caddr_t),
mtod(rxs->rxs_mbuf, caddr_t), len);
PCN_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
} else {
m = rxs->rxs_mbuf;
if (pcn_add_rxbuf(sc, i) != 0) {
dropit:
ifp->if_ierrors++;
PCN_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat,
rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
continue;
}
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
#if NBPFILTER > 0
/* Pass this up to any BPF listeners. */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif /* NBPFILTER > 0 */
/* Pass it on. */
(*ifp->if_input)(ifp, m);
ifp->if_ipackets++;
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
return (0);
}
/*
* pcn_tick:
*
* One second timer, used to tick the MII.
*/
void
pcn_tick(void *arg)
{
struct pcn_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
}
/*
* pcn_reset:
*
* Perform a soft reset on the PCnet-PCI.
*/
void
pcn_reset(struct pcn_softc *sc)
{
/*
* The PCnet-PCI chip is reset by reading from the
* RESET register. Note that while the NE2100 LANCE
* boards require a write after the read, the PCnet-PCI
* chips do not require this.
*
* Since we don't know if we're in 16-bit or 32-bit
* mode right now, issue both (it's safe) in the
* hopes that one will succeed.
*/
(void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
(void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
/* Wait 1ms for it to finish. */
delay(1000);
/*
* Select 32-bit I/O mode by issuing a 32-bit write to the
* RDP. Since the RAP is 0 after a reset, writing a 0
* to RDP is safe (since it simply clears CSR0).
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
}
/*
* pcn_init: [ifnet interface function]
*
* Initialize the interface. Must be called at splnet().
*/
int
pcn_init(struct ifnet *ifp)
{
struct pcn_softc *sc = ifp->if_softc;
struct pcn_rxsoft *rxs;
uint8_t *enaddr = LLADDR(ifp->if_sadl);
int i, error = 0;
uint32_t reg;
/* Cancel any pending I/O. */
pcn_stop(ifp, 0);
/* Reset the chip to a known state. */
pcn_reset(sc);
/*
* On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
* else.
*
* XXX It'd be really nice to use SSTYLE 2 on all the chips,
* because the structure layout is compatible with ILACC,
* but the burst mode is only available in SSTYLE 3, and
* burst mode should provide some performance enhancement.
*/
if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
else
sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
/* Initialize the transmit descriptor ring. */
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_txfree = PCN_NTXDESC;
sc->sc_txnext = 0;
/* Initialize the transmit job descriptors. */
for (i = 0; i < PCN_TXQUEUELEN; i++)
sc->sc_txsoft[i].txs_mbuf = NULL;
sc->sc_txsfree = PCN_TXQUEUELEN;
sc->sc_txsnext = 0;
sc->sc_txsdirty = 0;
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < PCN_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL) {
if ((error = pcn_add_rxbuf(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
pcn_rxdrain(sc);
goto out;
}
} else
PCN_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
/* Initialize MODE for the initialization block. */
sc->sc_mode = 0;
if (ifp->if_flags & IFF_PROMISC)
sc->sc_mode |= LE_C15_PROM;
if ((ifp->if_flags & IFF_BROADCAST) == 0)
sc->sc_mode |= LE_C15_DRCVBC;
/*
* If we have MII, simply select MII in the MODE register,
* and clear ASEL. Otherwise, let ASEL stand (for now),
* and leave PORTSEL alone (it is ignored with ASEL is set).
*/
if (sc->sc_flags & PCN_F_HAS_MII) {
pcn_bcr_write(sc, LE_BCR2,
pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
/*
* Disable MII auto-negotiation. We handle that in
* our own MII layer.
*/
pcn_bcr_write(sc, LE_BCR32,
pcn_csr_read(sc, LE_BCR32) & ~LE_B32_DANAS);
}
/*
* Set the Tx and Rx descriptor ring addresses in the init
* block, the TLEN and RLEN other fields of the init block
* MODE register.
*/
sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
sc->sc_initblock.init_mode = htole32(sc->sc_mode |
((ffs(PCN_NTXDESC) - 1) << 28) |
((ffs(PCN_NRXDESC) - 1) << 20));
/* Set the station address in the init block. */
sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
(enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
(enaddr[5] << 8));
/* Set the multicast filter in the init block. */
pcn_set_filter(sc);
/* Initialize CSR3. */
pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
/* Initialize CSR4. */
pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
/* Initialize CSR5. */
sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
/*
* If we have an Am79c971 or greater, initialize CSR7.
*
* XXX Might be nice to use the MII auto-poll interrupt someday.
*/
switch (sc->sc_variant->pcv_chipid) {
case PARTID_Am79c970:
case PARTID_Am79c970A:
/* Not available on these chips. */
break;
default:
pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
break;
}
/*
* On the Am79c970A and greater, initialize BCR18 to
* enable burst mode.
*
* Also enable the "no underflow" option on the Am79c971 and
* higher, which prevents the chip from generating transmit
* underflows, yet sill provides decent performance. Note if
* chip is not connected to external SRAM, then we still have
* to handle underflow errors (the NOUFLO bit is ignored in
* that case).
*/
reg = pcn_bcr_read(sc, LE_BCR18);
switch (sc->sc_variant->pcv_chipid) {
case PARTID_Am79c970:
break;
case PARTID_Am79c970A:
reg |= LE_B18_BREADE|LE_B18_BWRITE;
break;
default:
reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
break;
}
pcn_bcr_write(sc, LE_BCR18, reg);
/*
* Initialize CSR80 (FIFO thresholds for Tx and Rx).
*/
pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
/*
* Send the init block to the chip, and wait for it
* to be processed.
*/
PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
delay(100);
for (i = 0; i < 10000; i++) {
if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
break;
delay(10);
}
PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
if (i == 10000) {
printf("%s: timeout processing init block\n",
sc->sc_dev.dv_xname);
error = EIO;
goto out;
}
/* Set the media. */
(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
/* Enable interrupts and external activity (and ACK IDON). */
pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
if (sc->sc_flags & PCN_F_HAS_MII) {
/* Start the one second MII clock. */
callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
}
/* ...all done! */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
out:
if (error)
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
return (error);
}
/*
* pcn_rxdrain:
*
* Drain the receive queue.
*/
void
pcn_rxdrain(struct pcn_softc *sc)
{
struct pcn_rxsoft *rxs;
int i;
for (i = 0; i < PCN_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
}
/*
* pcn_stop: [ifnet interface function]
*
* Stop transmission on the interface.
*/
void
pcn_stop(struct ifnet *ifp, int disable)
{
struct pcn_softc *sc = ifp->if_softc;
struct pcn_txsoft *txs;
int i;
if (sc->sc_flags & PCN_F_HAS_MII) {
/* Stop the one second clock. */
callout_stop(&sc->sc_tick_ch);
/* Down the MII. */
mii_down(&sc->sc_mii);
}
/* Stop the chip. */
pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
/* Release any queued transmit buffers. */
for (i = 0; i < PCN_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
}
if (disable)
pcn_rxdrain(sc);
/* Mark the interface as down and cancel the watchdog timer. */
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
/*
* pcn_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
int
pcn_add_rxbuf(struct pcn_softc *sc, int idx)
{
struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (rxs->rxs_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
rxs->rxs_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, idx, error);
panic("pcn_add_rxbuf");
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
PCN_INIT_RXDESC(sc, idx);
return (0);
}
/*
* pcn_set_filter:
*
* Set up the receive filter.
*/
void
pcn_set_filter(struct pcn_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t crc;
/*
* Set up the multicast address filter by passing all multicast
* addresses through a CRC generator, and then using the high
* order 6 bits as an index into the 64-bit logical address
* filter. The high order bits select the word, while the rest
* of the bits select the bit within the word.
*/
if (ifp->if_flags & IFF_PROMISC)
goto allmulti;
sc->sc_initblock.init_ladrf[0] =
sc->sc_initblock.init_ladrf[1] =
sc->sc_initblock.init_ladrf[2] =
sc->sc_initblock.init_ladrf[3] = 0;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Set the corresponding bit in the filter. */
sc->sc_initblock.init_ladrf[crc >> 4] |=
htole16(1 << (crc & 0xf));
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
return;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
sc->sc_initblock.init_ladrf[0] =
sc->sc_initblock.init_ladrf[1] =
sc->sc_initblock.init_ladrf[2] =
sc->sc_initblock.init_ladrf[3] = 0xffff;
}
/*
* pcn_79c970_mediainit:
*
* Initialize media for the Am79c970.
*/
void
pcn_79c970_mediainit(struct pcn_softc *sc)
{
const char *sep = "";
ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c970_mediachange,
pcn_79c970_mediastatus);
#define ADD(s, m, d) \
do { \
printf("%s%s", sep, s); \
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \
sep = ", "; \
} while (/*CONSTCOND*/0)
printf("%s: ", sc->sc_dev.dv_xname);
ADD("10base5", IFM_10_5, PORTSEL_AUI);
if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
ADD("10baseT", IFM_10_T, PORTSEL_10T);
if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
ADD("auto", IFM_AUTO, 0);
if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
printf("\n");
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
}
/*
* pcn_79c970_mediastatus: [ifmedia interface function]
*
* Get the current interface media status (Am79c970 version).
*/
void
pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct pcn_softc *sc = ifp->if_softc;
/*
* The currently selected media is always the active media.
* Note: We have no way to determine what media the AUTO
* process picked.
*/
ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
}
/*
* pcn_79c970_mediachange: [ifmedia interface function]
*
* Set hardware to newly-selected media (Am79c970 version).
*/
int
pcn_79c970_mediachange(struct ifnet *ifp)
{
struct pcn_softc *sc = ifp->if_softc;
uint32_t reg;
if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
/*
* CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL.
*/
reg = pcn_bcr_read(sc, LE_BCR2);
reg |= LE_B2_ASEL;
pcn_bcr_write(sc, LE_BCR2, reg);
} else {
/*
* Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
*/
reg = pcn_bcr_read(sc, LE_BCR2);
reg &= ~LE_B2_ASEL;
pcn_bcr_write(sc, LE_BCR2, reg);
reg = pcn_csr_read(sc, LE_CSR15);
reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
pcn_csr_write(sc, LE_CSR15, reg);
}
if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
reg = LE_B9_FDEN;
if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
reg |= LE_B9_AUIFD;
pcn_bcr_write(sc, LE_BCR9, reg);
} else
pcn_bcr_write(sc, LE_BCR0, 0);
return (0);
}
/*
* pcn_79c971_mediainit:
*
* Initialize media for the Am79c971.
*/
void
pcn_79c971_mediainit(struct pcn_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
/* We have MII. */
sc->sc_flags |= PCN_F_HAS_MII;
/*
* The built-in 10BASE-T interface is mapped to the MII
* on the PCNet-FAST. Unfortunately, there's no EEPROM
* word that tells us which PHY to use. Since the 10BASE-T
* interface is always at PHY 31, we make a note of the
* first PHY that responds, and disallow any PHYs after
* it. This is all handled in the MII read routine.
*/
sc->sc_phyaddr = -1;
/* Initialize our media structures and probe the MII. */
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = pcn_mii_readreg;
sc->sc_mii.mii_writereg = pcn_mii_writereg;
sc->sc_mii.mii_statchg = pcn_mii_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
pcn_79c971_mediastatus);
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
}
/*
* pcn_79c971_mediastatus: [ifmedia interface function]
*
* Get the current interface media status (Am79c971 version).
*/
void
pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct pcn_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
}
/*
* pcn_79c971_mediachange: [ifmedia interface function]
*
* Set hardware to newly-selected media (Am79c971 version).
*/
int
pcn_79c971_mediachange(struct ifnet *ifp)
{
struct pcn_softc *sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
mii_mediachg(&sc->sc_mii);
return (0);
}
/*
* pcn_mii_readreg: [mii interface function]
*
* Read a PHY register on the MII.
*/
int
pcn_mii_readreg(struct device *self, int phy, int reg)
{
struct pcn_softc *sc = (void *) self;
uint32_t rv;
if (sc->sc_phyaddr != -1 && phy != sc->sc_phyaddr)
return (0);
pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
if (rv == 0xffff)
return (0);
if (sc->sc_phyaddr == -1)
sc->sc_phyaddr = phy;
return (rv);
}
/*
* pcn_mii_writereg: [mii interface function]
*
* Write a PHY register on the MII.
*/
void
pcn_mii_writereg(struct device *self, int phy, int reg, int val)
{
struct pcn_softc *sc = (void *) self;
pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
pcn_bcr_write(sc, LE_BCR34, val);
}
/*
* pcn_mii_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
void
pcn_mii_statchg(struct device *self)
{
struct pcn_softc *sc = (void *) self;
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
else
pcn_bcr_write(sc, LE_BCR0, 0);
}