NetBSD/sys/dev/pci/hifn7751.c

3072 lines
81 KiB
C

/* $NetBSD: hifn7751.c,v 1.44 2010/02/01 22:34:29 hubertf Exp $ */
/* $FreeBSD: hifn7751.c,v 1.5.2.7 2003/10/08 23:52:00 sam Exp $ */
/* $OpenBSD: hifn7751.c,v 1.140 2003/08/01 17:55:54 deraadt Exp $ */
/*
* Invertex AEON / Hifn 7751 driver
* Copyright (c) 1999 Invertex Inc. All rights reserved.
* Copyright (c) 1999 Theo de Raadt
* Copyright (c) 2000-2001 Network Security Technologies, Inc.
* http://www.netsec.net
* Copyright (c) 2003 Hifn Inc.
*
* This driver is based on a previous driver by Invertex, for which they
* requested: Please send any comments, feedback, bug-fixes, or feature
* requests to software@invertex.com.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Effort sponsored in part by the Defense Advanced Research Projects
* Agency (DARPA) and Air Force Research Laboratory, Air Force
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
*
*/
/*
* Driver for various Hifn pre-HIPP encryption processors.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: hifn7751.c,v 1.44 2010/02/01 22:34:29 hubertf Exp $");
#include "rnd.h"
#if NRND == 0
#error hifn7751 requires rnd pseudo-devices
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/device.h>
#include <uvm/uvm_extern.h>
#ifdef __OpenBSD__
#include <crypto/crypto.h>
#include <dev/rndvar.h>
#else
#include <opencrypto/cryptodev.h>
#include <sys/rnd.h>
#endif
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/hifn7751reg.h>
#include <dev/pci/hifn7751var.h>
#undef HIFN_DEBUG
#ifdef __NetBSD__
#define M_DUP_PKTHDR M_COPY_PKTHDR /* XXX */
#endif
#ifdef HIFN_DEBUG
extern int hifn_debug; /* patchable */
int hifn_debug = 1;
#endif
#ifdef __OpenBSD__
#define HAVE_CRYPTO_LZS /* OpenBSD OCF supports CRYPTO_COMP_LZS */
#endif
/*
* Prototypes and count for the pci_device structure
*/
#ifdef __OpenBSD__
static int hifn_probe((struct device *, void *, void *);
#else
static int hifn_probe(device_t, cfdata_t, void *);
#endif
static void hifn_attach(device_t, device_t, void *);
CFATTACH_DECL(hifn, sizeof(struct hifn_softc),
hifn_probe, hifn_attach, NULL, NULL);
#ifdef __OpenBSD__
struct cfdriver hifn_cd = {
0, "hifn", DV_DULL
};
#endif
static void hifn_reset_board(struct hifn_softc *, int);
static void hifn_reset_puc(struct hifn_softc *);
static void hifn_puc_wait(struct hifn_softc *);
static const char *hifn_enable_crypto(struct hifn_softc *, pcireg_t);
static void hifn_set_retry(struct hifn_softc *);
static void hifn_init_dma(struct hifn_softc *);
static void hifn_init_pci_registers(struct hifn_softc *);
static int hifn_sramsize(struct hifn_softc *);
static int hifn_dramsize(struct hifn_softc *);
static int hifn_ramtype(struct hifn_softc *);
static void hifn_sessions(struct hifn_softc *);
static int hifn_intr(void *);
static u_int hifn_write_command(struct hifn_command *, u_int8_t *);
static u_int32_t hifn_next_signature(u_int32_t a, u_int cnt);
static int hifn_newsession(void*, u_int32_t *, struct cryptoini *);
static int hifn_freesession(void*, u_int64_t);
static int hifn_process(void*, struct cryptop *, int);
static void hifn_callback(struct hifn_softc *, struct hifn_command *,
u_int8_t *);
static int hifn_crypto(struct hifn_softc *, struct hifn_command *,
struct cryptop*, int);
static int hifn_readramaddr(struct hifn_softc *, int, u_int8_t *);
static int hifn_writeramaddr(struct hifn_softc *, int, u_int8_t *);
static int hifn_dmamap_aligned(bus_dmamap_t);
static int hifn_dmamap_load_src(struct hifn_softc *,
struct hifn_command *);
static int hifn_dmamap_load_dst(struct hifn_softc *,
struct hifn_command *);
static int hifn_init_pubrng(struct hifn_softc *);
static void hifn_rng(void *);
static void hifn_tick(void *);
static void hifn_abort(struct hifn_softc *);
static void hifn_alloc_slot(struct hifn_softc *, int *, int *, int *,
int *);
static void hifn_write_4(struct hifn_softc *, int, bus_size_t, u_int32_t);
static u_int32_t hifn_read_4(struct hifn_softc *, int, bus_size_t);
#ifdef HAVE_CRYPTO_LZS
static int hifn_compression(struct hifn_softc *, struct cryptop *,
struct hifn_command *);
static struct mbuf *hifn_mkmbuf_chain(int, struct mbuf *);
static int hifn_compress_enter(struct hifn_softc *, struct hifn_command *);
static void hifn_callback_comp(struct hifn_softc *, struct hifn_command *,
u_int8_t *);
#endif /* HAVE_CRYPTO_LZS */
struct hifn_stats hifnstats;
static const struct hifn_product {
pci_vendor_id_t hifn_vendor;
pci_product_id_t hifn_product;
int hifn_flags;
const char *hifn_name;
} hifn_products[] = {
{ PCI_VENDOR_INVERTEX, PCI_PRODUCT_INVERTEX_AEON,
0,
"Invertex AEON",
},
{ PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7751,
0,
"Hifn 7751",
},
{ PCI_VENDOR_NETSEC, PCI_PRODUCT_NETSEC_7751,
0,
"Hifn 7751 (NetSec)"
},
{ PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7811,
HIFN_IS_7811 | HIFN_HAS_RNG | HIFN_HAS_LEDS | HIFN_NO_BURSTWRITE,
"Hifn 7811",
},
{ PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7951,
HIFN_HAS_RNG | HIFN_HAS_PUBLIC,
"Hifn 7951",
},
{ PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7955,
HIFN_HAS_RNG | HIFN_HAS_PUBLIC | HIFN_IS_7956 | HIFN_HAS_AES,
"Hifn 7955",
},
{ PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7956,
HIFN_HAS_RNG | HIFN_HAS_PUBLIC | HIFN_IS_7956 | HIFN_HAS_AES,
"Hifn 7956",
},
{ 0, 0,
0,
NULL
}
};
static const struct hifn_product *
hifn_lookup(const struct pci_attach_args *pa)
{
const struct hifn_product *hp;
for (hp = hifn_products; hp->hifn_name != NULL; hp++) {
if (PCI_VENDOR(pa->pa_id) == hp->hifn_vendor &&
PCI_PRODUCT(pa->pa_id) == hp->hifn_product)
return (hp);
}
return (NULL);
}
static int
hifn_probe(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
if (hifn_lookup(pa) != NULL)
return 1;
return 0;
}
static void
hifn_attach(device_t parent, device_t self, void *aux)
{
struct hifn_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
const struct hifn_product *hp;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
const char *hifncap;
char rbase;
bus_size_t iosize0, iosize1;
u_int32_t cmd;
u_int16_t ena;
bus_dma_segment_t seg;
bus_dmamap_t dmamap;
int rseg;
void *kva;
hp = hifn_lookup(pa);
if (hp == NULL) {
printf("\n");
panic("hifn_attach: impossible");
}
aprint_naive(": Crypto processor\n");
aprint_normal(": %s, rev. %d\n", hp->hifn_name,
PCI_REVISION(pa->pa_class));
sc->sc_pci_pc = pa->pa_pc;
sc->sc_pci_tag = pa->pa_tag;
sc->sc_flags = hp->hifn_flags;
cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
cmd |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
if (pci_mapreg_map(pa, HIFN_BAR0, PCI_MAPREG_TYPE_MEM, 0,
&sc->sc_st0, &sc->sc_sh0, NULL, &iosize0)) {
aprint_error_dev(&sc->sc_dv, "can't map mem space %d\n", 0);
return;
}
if (pci_mapreg_map(pa, HIFN_BAR1, PCI_MAPREG_TYPE_MEM, 0,
&sc->sc_st1, &sc->sc_sh1, NULL, &iosize1)) {
aprint_error_dev(&sc->sc_dv, "can't find mem space %d\n", 1);
goto fail_io0;
}
hifn_set_retry(sc);
if (sc->sc_flags & HIFN_NO_BURSTWRITE) {
sc->sc_waw_lastgroup = -1;
sc->sc_waw_lastreg = 1;
}
sc->sc_dmat = pa->pa_dmat;
if (bus_dmamem_alloc(sc->sc_dmat, sizeof(*sc->sc_dma), PAGE_SIZE, 0,
&seg, 1, &rseg, BUS_DMA_NOWAIT)) {
aprint_error_dev(&sc->sc_dv, "can't alloc DMA buffer\n");
goto fail_io1;
}
if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, sizeof(*sc->sc_dma), &kva,
BUS_DMA_NOWAIT)) {
aprint_error_dev(&sc->sc_dv, "can't map DMA buffers (%lu bytes)\n",
(u_long)sizeof(*sc->sc_dma));
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
goto fail_io1;
}
if (bus_dmamap_create(sc->sc_dmat, sizeof(*sc->sc_dma), 1,
sizeof(*sc->sc_dma), 0, BUS_DMA_NOWAIT, &dmamap)) {
aprint_error_dev(&sc->sc_dv, "can't create DMA map\n");
bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(*sc->sc_dma));
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
goto fail_io1;
}
if (bus_dmamap_load(sc->sc_dmat, dmamap, kva, sizeof(*sc->sc_dma),
NULL, BUS_DMA_NOWAIT)) {
aprint_error_dev(&sc->sc_dv, "can't load DMA map\n");
bus_dmamap_destroy(sc->sc_dmat, dmamap);
bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(*sc->sc_dma));
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
goto fail_io1;
}
sc->sc_dmamap = dmamap;
sc->sc_dma = (struct hifn_dma *)kva;
memset(sc->sc_dma, 0, sizeof(*sc->sc_dma));
hifn_reset_board(sc, 0);
if ((hifncap = hifn_enable_crypto(sc, pa->pa_id)) == NULL) {
aprint_error_dev(&sc->sc_dv, "crypto enabling failed\n");
goto fail_mem;
}
hifn_reset_puc(sc);
hifn_init_dma(sc);
hifn_init_pci_registers(sc);
/* XXX can't dynamically determine ram type for 795x; force dram */
if (sc->sc_flags & HIFN_IS_7956)
sc->sc_drammodel = 1;
else if (hifn_ramtype(sc))
goto fail_mem;
if (sc->sc_drammodel == 0)
hifn_sramsize(sc);
else
hifn_dramsize(sc);
/*
* Workaround for NetSec 7751 rev A: half ram size because two
* of the address lines were left floating
*/
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETSEC &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETSEC_7751 &&
PCI_REVISION(pa->pa_class) == 0x61)
sc->sc_ramsize >>= 1;
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(&sc->sc_dv, "couldn't map interrupt\n");
goto fail_mem;
}
intrstr = pci_intr_string(pc, ih);
#ifdef __OpenBSD__
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, hifn_intr, sc,
self->dv_xname);
#else
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, hifn_intr, sc);
#endif
if (sc->sc_ih == NULL) {
aprint_error_dev(&sc->sc_dv, "couldn't establish interrupt\n");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
goto fail_mem;
}
hifn_sessions(sc);
rseg = sc->sc_ramsize / 1024;
rbase = 'K';
if (sc->sc_ramsize >= (1024 * 1024)) {
rbase = 'M';
rseg /= 1024;
}
aprint_normal_dev(&sc->sc_dv, "%s, %d%cB %cRAM, interrupting at %s\n",
hifncap, rseg, rbase,
sc->sc_drammodel ? 'D' : 'S', intrstr);
sc->sc_cid = crypto_get_driverid(0);
if (sc->sc_cid < 0) {
aprint_error_dev(&sc->sc_dv, "couldn't get crypto driver id\n");
goto fail_intr;
}
WRITE_REG_0(sc, HIFN_0_PUCNFG,
READ_REG_0(sc, HIFN_0_PUCNFG) | HIFN_PUCNFG_CHIPID);
ena = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
switch (ena) {
case HIFN_PUSTAT_ENA_2:
crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
hifn_newsession, hifn_freesession, hifn_process, sc);
crypto_register(sc->sc_cid, CRYPTO_ARC4, 0, 0,
hifn_newsession, hifn_freesession, hifn_process, sc);
if (sc->sc_flags & HIFN_HAS_AES)
crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
hifn_newsession, hifn_freesession,
hifn_process, sc);
/*FALLTHROUGH*/
case HIFN_PUSTAT_ENA_1:
crypto_register(sc->sc_cid, CRYPTO_MD5, 0, 0,
hifn_newsession, hifn_freesession, hifn_process, sc);
crypto_register(sc->sc_cid, CRYPTO_SHA1, 0, 0,
hifn_newsession, hifn_freesession, hifn_process, sc);
crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
hifn_newsession, hifn_freesession, hifn_process, sc);
crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
hifn_newsession, hifn_freesession, hifn_process, sc);
crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
hifn_newsession, hifn_freesession, hifn_process, sc);
break;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 0,
sc->sc_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (sc->sc_flags & (HIFN_HAS_PUBLIC | HIFN_HAS_RNG))
hifn_init_pubrng(sc);
#ifdef __OpenBSD__
timeout_set(&sc->sc_tickto, hifn_tick, sc);
timeout_add(&sc->sc_tickto, hz);
#else
callout_init(&sc->sc_tickto, 0);
callout_reset(&sc->sc_tickto, hz, hifn_tick, sc);
#endif
return;
fail_intr:
pci_intr_disestablish(pc, sc->sc_ih);
fail_mem:
bus_dmamap_unload(sc->sc_dmat, dmamap);
bus_dmamap_destroy(sc->sc_dmat, dmamap);
bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(*sc->sc_dma));
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
/* Turn off DMA polling */
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
fail_io1:
bus_space_unmap(sc->sc_st1, sc->sc_sh1, iosize1);
fail_io0:
bus_space_unmap(sc->sc_st0, sc->sc_sh0, iosize0);
}
static int
hifn_init_pubrng(struct hifn_softc *sc)
{
u_int32_t r;
int i;
if ((sc->sc_flags & HIFN_IS_7811) == 0) {
/* Reset 7951 public key/rng engine */
WRITE_REG_1(sc, HIFN_1_PUB_RESET,
READ_REG_1(sc, HIFN_1_PUB_RESET) | HIFN_PUBRST_RESET);
for (i = 0; i < 100; i++) {
DELAY(1000);
if ((READ_REG_1(sc, HIFN_1_PUB_RESET) &
HIFN_PUBRST_RESET) == 0)
break;
}
if (i == 100) {
printf("%s: public key init failed\n",
device_xname(&sc->sc_dv));
return (1);
}
}
/* Enable the rng, if available */
if (sc->sc_flags & HIFN_HAS_RNG) {
if (sc->sc_flags & HIFN_IS_7811) {
r = READ_REG_1(sc, HIFN_1_7811_RNGENA);
if (r & HIFN_7811_RNGENA_ENA) {
r &= ~HIFN_7811_RNGENA_ENA;
WRITE_REG_1(sc, HIFN_1_7811_RNGENA, r);
}
WRITE_REG_1(sc, HIFN_1_7811_RNGCFG,
HIFN_7811_RNGCFG_DEFL);
r |= HIFN_7811_RNGENA_ENA;
WRITE_REG_1(sc, HIFN_1_7811_RNGENA, r);
} else
WRITE_REG_1(sc, HIFN_1_RNG_CONFIG,
READ_REG_1(sc, HIFN_1_RNG_CONFIG) |
HIFN_RNGCFG_ENA);
/*
* The Hifn RNG documentation states that at their
* recommended "conservative" RNG config values,
* the RNG must warm up for 0.4s before providing
* data that meet their worst-case estimate of 0.06
* bits of random data per output register bit.
*/
DELAY(4000);
#ifdef __NetBSD__
/*
* XXX Careful! The use of RND_FLAG_NO_ESTIMATE
* XXX here is unobvious: we later feed raw bits
* XXX into the "entropy pool" with rnd_add_data,
* XXX explicitly supplying an entropy estimate.
* XXX In this context, NO_ESTIMATE serves only
* XXX to prevent rnd_add_data from trying to
* XXX use the *time at which we added the data*
* XXX as entropy, which is not a good idea since
* XXX we add data periodically from a callout.
*/
rnd_attach_source(&sc->sc_rnd_source, device_xname(&sc->sc_dv),
RND_TYPE_RNG, RND_FLAG_NO_ESTIMATE);
#endif
sc->sc_rngfirst = 1;
if (hz >= 100)
sc->sc_rnghz = hz / 100;
else
sc->sc_rnghz = 1;
#ifdef __OpenBSD__
timeout_set(&sc->sc_rngto, hifn_rng, sc);
#else /* !__OpenBSD__ */
callout_init(&sc->sc_rngto, 0);
#endif /* !__OpenBSD__ */
}
/* Enable public key engine, if available */
if (sc->sc_flags & HIFN_HAS_PUBLIC) {
WRITE_REG_1(sc, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
sc->sc_dmaier |= HIFN_DMAIER_PUBDONE;
WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
}
/* Call directly into the RNG once to prime the pool. */
hifn_rng(sc); /* Sets callout/timeout at end */
return (0);
}
static void
hifn_rng(void *vsc)
{
struct hifn_softc *sc = vsc;
#ifdef __NetBSD__
u_int32_t num[HIFN_RNG_BITSPER * RND_ENTROPY_THRESHOLD];
#else
u_int32_t num[2];
#endif
u_int32_t sts;
int i;
if (sc->sc_flags & HIFN_IS_7811) {
for (i = 0; i < 5; i++) { /* XXX why 5? */
sts = READ_REG_1(sc, HIFN_1_7811_RNGSTS);
if (sts & HIFN_7811_RNGSTS_UFL) {
printf("%s: RNG underflow: disabling\n",
device_xname(&sc->sc_dv));
return;
}
if ((sts & HIFN_7811_RNGSTS_RDY) == 0)
break;
/*
* There are at least two words in the RNG FIFO
* at this point.
*/
num[0] = READ_REG_1(sc, HIFN_1_7811_RNGDAT);
num[1] = READ_REG_1(sc, HIFN_1_7811_RNGDAT);
if (sc->sc_rngfirst)
sc->sc_rngfirst = 0;
#ifdef __NetBSD__
rnd_add_data(&sc->sc_rnd_source, num,
2 * sizeof(num[0]),
(2 * sizeof(num[0]) * NBBY) /
HIFN_RNG_BITSPER);
#else
/*
* XXX This is a really bad idea.
* XXX Hifn estimate as little as 0.06
* XXX actual bits of entropy per output
* XXX register bit. How can we tell the
* XXX kernel RNG subsystem we're handing
* XXX it 64 "true" random bits, for any
* XXX sane value of "true"?
* XXX
* XXX The right thing to do here, if we
* XXX cannot supply an estimate ourselves,
* XXX would be to hash the bits locally.
*/
add_true_randomness(num[0]);
add_true_randomness(num[1]);
#endif
}
} else {
#ifdef __NetBSD__
/* First time through, try to help fill the pool. */
int nwords = sc->sc_rngfirst ?
sizeof(num) / sizeof(num[0]) : 4;
#else
int nwords = 2;
#endif
/*
* We must be *extremely* careful here. The Hifn
* 795x differ from the published 6500 RNG design
* in more ways than the obvious lack of the output
* FIFO and LFSR control registers. In fact, there
* is only one LFSR, instead of the 6500's two, and
* it's 32 bits, not 31.
*
* Further, a block diagram obtained from Hifn shows
* a very curious latching of this register: the LFSR
* rotates at a frequency of RNG_Clk / 8, but the
* RNG_Data register is latched at a frequency of
* RNG_Clk, which means that it is possible for
* consecutive reads of the RNG_Data register to read
* identical state from the LFSR. The simplest
* workaround seems to be to read eight samples from
* the register for each one that we use. Since each
* read must require at least one PCI cycle, and
* RNG_Clk is at least PCI_Clk, this is safe.
*/
if (sc->sc_rngfirst) {
sc->sc_rngfirst = 0;
}
for(i = 0 ; i < nwords * 8; i++)
{
volatile u_int32_t regtmp;
regtmp = READ_REG_1(sc, HIFN_1_RNG_DATA);
num[i / 8] = regtmp;
}
#ifdef __NetBSD__
rnd_add_data(&sc->sc_rnd_source, num,
nwords * sizeof(num[0]),
(nwords * sizeof(num[0]) * NBBY) /
HIFN_RNG_BITSPER);
#else
/* XXX a bad idea; see 7811 block above */
add_true_randomness(num[0]);
#endif
}
#ifdef __OpenBSD__
timeout_add(&sc->sc_rngto, sc->sc_rnghz);
#else
callout_reset(&sc->sc_rngto, sc->sc_rnghz, hifn_rng, sc);
#endif
}
static void
hifn_puc_wait(struct hifn_softc *sc)
{
int i;
for (i = 5000; i > 0; i--) {
DELAY(1);
if (!(READ_REG_0(sc, HIFN_0_PUCTRL) & HIFN_PUCTRL_RESET))
break;
}
if (!i)
printf("%s: proc unit did not reset\n", device_xname(&sc->sc_dv));
}
/*
* Reset the processing unit.
*/
static void
hifn_reset_puc(struct hifn_softc *sc)
{
/* Reset processing unit */
WRITE_REG_0(sc, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
hifn_puc_wait(sc);
}
static void
hifn_set_retry(struct hifn_softc *sc)
{
u_int32_t r;
r = pci_conf_read(sc->sc_pci_pc, sc->sc_pci_tag, HIFN_TRDY_TIMEOUT);
r &= 0xffff0000;
pci_conf_write(sc->sc_pci_pc, sc->sc_pci_tag, HIFN_TRDY_TIMEOUT, r);
}
/*
* Resets the board. Values in the regesters are left as is
* from the reset (i.e. initial values are assigned elsewhere).
*/
static void
hifn_reset_board(struct hifn_softc *sc, int full)
{
u_int32_t reg;
/*
* Set polling in the DMA configuration register to zero. 0x7 avoids
* resetting the board and zeros out the other fields.
*/
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
/*
* Now that polling has been disabled, we have to wait 1 ms
* before resetting the board.
*/
DELAY(1000);
/* Reset the DMA unit */
if (full) {
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
DELAY(1000);
} else {
WRITE_REG_1(sc, HIFN_1_DMA_CNFG,
HIFN_DMACNFG_MODE | HIFN_DMACNFG_MSTRESET);
hifn_reset_puc(sc);
}
memset(sc->sc_dma, 0, sizeof(*sc->sc_dma));
/* Bring dma unit out of reset */
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
hifn_puc_wait(sc);
hifn_set_retry(sc);
if (sc->sc_flags & HIFN_IS_7811) {
for (reg = 0; reg < 1000; reg++) {
if (READ_REG_1(sc, HIFN_1_7811_MIPSRST) &
HIFN_MIPSRST_CRAMINIT)
break;
DELAY(1000);
}
if (reg == 1000)
printf(": cram init timeout\n");
}
}
static u_int32_t
hifn_next_signature(u_int32_t a, u_int cnt)
{
int i;
u_int32_t v;
for (i = 0; i < cnt; i++) {
/* get the parity */
v = a & 0x80080125;
v ^= v >> 16;
v ^= v >> 8;
v ^= v >> 4;
v ^= v >> 2;
v ^= v >> 1;
a = (v & 1) ^ (a << 1);
}
return a;
}
static struct pci2id {
u_short pci_vendor;
u_short pci_prod;
char card_id[13];
} const pci2id[] = {
{
PCI_VENDOR_HIFN,
PCI_PRODUCT_HIFN_7951,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
PCI_VENDOR_HIFN,
PCI_PRODUCT_HIFN_7955,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
PCI_VENDOR_HIFN,
PCI_PRODUCT_HIFN_7956,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
PCI_VENDOR_NETSEC,
PCI_PRODUCT_NETSEC_7751,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
PCI_VENDOR_INVERTEX,
PCI_PRODUCT_INVERTEX_AEON,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
PCI_VENDOR_HIFN,
PCI_PRODUCT_HIFN_7811,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
/*
* Other vendors share this PCI ID as well, such as
* http://www.powercrypt.com, and obviously they also
* use the same key.
*/
PCI_VENDOR_HIFN,
PCI_PRODUCT_HIFN_7751,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
},
};
/*
* Checks to see if crypto is already enabled. If crypto isn't enable,
* "hifn_enable_crypto" is called to enable it. The check is important,
* as enabling crypto twice will lock the board.
*/
static const char *
hifn_enable_crypto(struct hifn_softc *sc, pcireg_t pciid)
{
u_int32_t dmacfg, ramcfg, encl, addr, i;
const char *offtbl = NULL;
for (i = 0; i < sizeof(pci2id)/sizeof(pci2id[0]); i++) {
if (pci2id[i].pci_vendor == PCI_VENDOR(pciid) &&
pci2id[i].pci_prod == PCI_PRODUCT(pciid)) {
offtbl = pci2id[i].card_id;
break;
}
}
if (offtbl == NULL) {
#ifdef HIFN_DEBUG
aprint_debug_dev(&sc->sc_dv, "Unknown card!\n");
#endif
return (NULL);
}
ramcfg = READ_REG_0(sc, HIFN_0_PUCNFG);
dmacfg = READ_REG_1(sc, HIFN_1_DMA_CNFG);
/*
* The RAM config register's encrypt level bit needs to be set before
* every read performed on the encryption level register.
*/
WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg | HIFN_PUCNFG_CHIPID);
encl = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
/*
* Make sure we don't re-unlock. Two unlocks kills chip until the
* next reboot.
*/
if (encl == HIFN_PUSTAT_ENA_1 || encl == HIFN_PUSTAT_ENA_2) {
#ifdef HIFN_DEBUG
aprint_debug_dev(&sc->sc_dv, "Strong Crypto already enabled!\n");
#endif
goto report;
}
if (encl != 0 && encl != HIFN_PUSTAT_ENA_0) {
#ifdef HIFN_DEBUG
aprint_debug_dev(&sc->sc_dv, "Unknown encryption level\n");
#endif
return (NULL);
}
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_UNLOCK |
HIFN_DMACNFG_MSTRESET | HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
DELAY(1000);
addr = READ_REG_1(sc, HIFN_1_UNLOCK_SECRET1);
DELAY(1000);
WRITE_REG_1(sc, HIFN_1_UNLOCK_SECRET2, 0);
DELAY(1000);
for (i = 0; i <= 12; i++) {
addr = hifn_next_signature(addr, offtbl[i] + 0x101);
WRITE_REG_1(sc, HIFN_1_UNLOCK_SECRET2, addr);
DELAY(1000);
}
WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg | HIFN_PUCNFG_CHIPID);
encl = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
#ifdef HIFN_DEBUG
if (encl != HIFN_PUSTAT_ENA_1 && encl != HIFN_PUSTAT_ENA_2)
aprint_debug("Encryption engine is permanently locked until next system reset.");
else
aprint_debug("Encryption engine enabled successfully!");
#endif
report:
WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg);
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, dmacfg);
switch (encl) {
case HIFN_PUSTAT_ENA_0:
return ("LZS-only (no encr/auth)");
case HIFN_PUSTAT_ENA_1:
return ("DES");
case HIFN_PUSTAT_ENA_2:
if (sc->sc_flags & HIFN_HAS_AES)
return ("3DES/AES");
else
return ("3DES");
default:
return ("disabled");
}
/* NOTREACHED */
}
/*
* Give initial values to the registers listed in the "Register Space"
* section of the HIFN Software Development reference manual.
*/
static void
hifn_init_pci_registers(struct hifn_softc *sc)
{
/* write fixed values needed by the Initialization registers */
WRITE_REG_0(sc, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
WRITE_REG_0(sc, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
WRITE_REG_0(sc, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
/* write all 4 ring address registers */
WRITE_REG_1(sc, HIFN_1_DMA_CRAR, sc->sc_dmamap->dm_segs[0].ds_addr +
offsetof(struct hifn_dma, cmdr[0]));
WRITE_REG_1(sc, HIFN_1_DMA_SRAR, sc->sc_dmamap->dm_segs[0].ds_addr +
offsetof(struct hifn_dma, srcr[0]));
WRITE_REG_1(sc, HIFN_1_DMA_DRAR, sc->sc_dmamap->dm_segs[0].ds_addr +
offsetof(struct hifn_dma, dstr[0]));
WRITE_REG_1(sc, HIFN_1_DMA_RRAR, sc->sc_dmamap->dm_segs[0].ds_addr +
offsetof(struct hifn_dma, resr[0]));
DELAY(2000);
/* write status register */
WRITE_REG_1(sc, HIFN_1_DMA_CSR,
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
HIFN_DMACSR_S_WAIT |
HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
HIFN_DMACSR_C_WAIT |
HIFN_DMACSR_ENGINE |
((sc->sc_flags & HIFN_HAS_PUBLIC) ?
HIFN_DMACSR_PUBDONE : 0) |
((sc->sc_flags & HIFN_IS_7811) ?
HIFN_DMACSR_ILLW | HIFN_DMACSR_ILLR : 0));
sc->sc_d_busy = sc->sc_r_busy = sc->sc_s_busy = sc->sc_c_busy = 0;
sc->sc_dmaier |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
HIFN_DMAIER_ENGINE |
((sc->sc_flags & HIFN_IS_7811) ?
HIFN_DMAIER_ILLW | HIFN_DMAIER_ILLR : 0);
sc->sc_dmaier &= ~HIFN_DMAIER_C_WAIT;
WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
CLR_LED(sc, HIFN_MIPSRST_LED0 | HIFN_MIPSRST_LED1 | HIFN_MIPSRST_LED2);
if (sc->sc_flags & HIFN_IS_7956) {
WRITE_REG_0(sc, HIFN_0_PUCNFG, HIFN_PUCNFG_COMPSING |
HIFN_PUCNFG_TCALLPHASES |
HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32);
WRITE_REG_1(sc, HIFN_1_PLL, HIFN_PLL_7956);
} else {
WRITE_REG_0(sc, HIFN_0_PUCNFG, HIFN_PUCNFG_COMPSING |
HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
(sc->sc_drammodel ? HIFN_PUCNFG_DRAM : HIFN_PUCNFG_SRAM));
}
WRITE_REG_0(sc, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
}
/*
* The maximum number of sessions supported by the card
* is dependent on the amount of context ram, which
* encryption algorithms are enabled, and how compression
* is configured. This should be configured before this
* routine is called.
*/
static void
hifn_sessions(struct hifn_softc *sc)
{
u_int32_t pucnfg;
int ctxsize;
pucnfg = READ_REG_0(sc, HIFN_0_PUCNFG);
if (pucnfg & HIFN_PUCNFG_COMPSING) {
if (pucnfg & HIFN_PUCNFG_ENCCNFG)
ctxsize = 128;
else
ctxsize = 512;
/*
* 7955/7956 has internal context memory of 32K
*/
if (sc->sc_flags & HIFN_IS_7956)
sc->sc_maxses = 32768 / ctxsize;
else
sc->sc_maxses = 1 +
((sc->sc_ramsize - 32768) / ctxsize);
}
else
sc->sc_maxses = sc->sc_ramsize / 16384;
if (sc->sc_maxses > 2048)
sc->sc_maxses = 2048;
}
/*
* Determine ram type (sram or dram). Board should be just out of a reset
* state when this is called.
*/
static int
hifn_ramtype(struct hifn_softc *sc)
{
u_int8_t data[8], dataexpect[8];
int i;
for (i = 0; i < sizeof(data); i++)
data[i] = dataexpect[i] = 0x55;
if (hifn_writeramaddr(sc, 0, data))
return (-1);
if (hifn_readramaddr(sc, 0, data))
return (-1);
if (memcmp(data, dataexpect, sizeof(data)) != 0) {
sc->sc_drammodel = 1;
return (0);
}
for (i = 0; i < sizeof(data); i++)
data[i] = dataexpect[i] = 0xaa;
if (hifn_writeramaddr(sc, 0, data))
return (-1);
if (hifn_readramaddr(sc, 0, data))
return (-1);
if (memcmp(data, dataexpect, sizeof(data)) != 0) {
sc->sc_drammodel = 1;
return (0);
}
return (0);
}
#define HIFN_SRAM_MAX (32 << 20)
#define HIFN_SRAM_STEP_SIZE 16384
#define HIFN_SRAM_GRANULARITY (HIFN_SRAM_MAX / HIFN_SRAM_STEP_SIZE)
static int
hifn_sramsize(struct hifn_softc *sc)
{
u_int32_t a;
u_int8_t data[8];
u_int8_t dataexpect[sizeof(data)];
int32_t i;
for (i = 0; i < sizeof(data); i++)
data[i] = dataexpect[i] = i ^ 0x5a;
for (i = HIFN_SRAM_GRANULARITY - 1; i >= 0; i--) {
a = i * HIFN_SRAM_STEP_SIZE;
memcpy(data, &i, sizeof(i));
hifn_writeramaddr(sc, a, data);
}
for (i = 0; i < HIFN_SRAM_GRANULARITY; i++) {
a = i * HIFN_SRAM_STEP_SIZE;
memcpy(dataexpect, &i, sizeof(i));
if (hifn_readramaddr(sc, a, data) < 0)
return (0);
if (memcmp(data, dataexpect, sizeof(data)) != 0)
return (0);
sc->sc_ramsize = a + HIFN_SRAM_STEP_SIZE;
}
return (0);
}
/*
* XXX For dram boards, one should really try all of the
* HIFN_PUCNFG_DSZ_*'s. This just assumes that PUCNFG
* is already set up correctly.
*/
static int
hifn_dramsize(struct hifn_softc *sc)
{
u_int32_t cnfg;
if (sc->sc_flags & HIFN_IS_7956) {
/*
* 7955/7956 have a fixed internal ram of only 32K.
*/
sc->sc_ramsize = 32768;
} else {
cnfg = READ_REG_0(sc, HIFN_0_PUCNFG) &
HIFN_PUCNFG_DRAMMASK;
sc->sc_ramsize = 1 << ((cnfg >> 13) + 18);
}
return (0);
}
static void
hifn_alloc_slot(struct hifn_softc *sc, int *cmdp, int *srcp, int *dstp,
int *resp)
{
struct hifn_dma *dma = sc->sc_dma;
if (dma->cmdi == HIFN_D_CMD_RSIZE) {
dma->cmdi = 0;
dma->cmdr[HIFN_D_CMD_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_CMDR_SYNC(sc, HIFN_D_CMD_RSIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
*cmdp = dma->cmdi++;
dma->cmdk = dma->cmdi;
if (dma->srci == HIFN_D_SRC_RSIZE) {
dma->srci = 0;
dma->srcr[HIFN_D_SRC_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_SRCR_SYNC(sc, HIFN_D_SRC_RSIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
*srcp = dma->srci++;
dma->srck = dma->srci;
if (dma->dsti == HIFN_D_DST_RSIZE) {
dma->dsti = 0;
dma->dstr[HIFN_D_DST_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_DSTR_SYNC(sc, HIFN_D_DST_RSIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
*dstp = dma->dsti++;
dma->dstk = dma->dsti;
if (dma->resi == HIFN_D_RES_RSIZE) {
dma->resi = 0;
dma->resr[HIFN_D_RES_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_RESR_SYNC(sc, HIFN_D_RES_RSIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
*resp = dma->resi++;
dma->resk = dma->resi;
}
static int
hifn_writeramaddr(struct hifn_softc *sc, int addr, u_int8_t *data)
{
struct hifn_dma *dma = sc->sc_dma;
struct hifn_base_command wc;
const u_int32_t masks = HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ;
int r, cmdi, resi, srci, dsti;
wc.masks = htole16(3 << 13);
wc.session_num = htole16(addr >> 14);
wc.total_source_count = htole16(8);
wc.total_dest_count = htole16(addr & 0x3fff);
hifn_alloc_slot(sc, &cmdi, &srci, &dsti, &resi);
WRITE_REG_1(sc, HIFN_1_DMA_CSR,
HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA);
/* build write command */
memset(dma->command_bufs[cmdi], 0, HIFN_MAX_COMMAND);
*(struct hifn_base_command *)dma->command_bufs[cmdi] = wc;
memcpy(&dma->test_src, data, sizeof(dma->test_src));
dma->srcr[srci].p = htole32(sc->sc_dmamap->dm_segs[0].ds_addr
+ offsetof(struct hifn_dma, test_src));
dma->dstr[dsti].p = htole32(sc->sc_dmamap->dm_segs[0].ds_addr
+ offsetof(struct hifn_dma, test_dst));
dma->cmdr[cmdi].l = htole32(16 | masks);
dma->srcr[srci].l = htole32(8 | masks);
dma->dstr[dsti].l = htole32(4 | masks);
dma->resr[resi].l = htole32(4 | masks);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
0, sc->sc_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
for (r = 10000; r >= 0; r--) {
DELAY(10);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
0, sc->sc_dmamap->dm_mapsize,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if ((dma->resr[resi].l & htole32(HIFN_D_VALID)) == 0)
break;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
0, sc->sc_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
if (r == 0) {
printf("%s: writeramaddr -- "
"result[%d](addr %d) still valid\n",
device_xname(&sc->sc_dv), resi, addr);
r = -1;
return (-1);
} else
r = 0;
WRITE_REG_1(sc, HIFN_1_DMA_CSR,
HIFN_DMACSR_C_CTRL_DIS | HIFN_DMACSR_S_CTRL_DIS |
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS);
return (r);
}
static int
hifn_readramaddr(struct hifn_softc *sc, int addr, u_int8_t *data)
{
struct hifn_dma *dma = sc->sc_dma;
struct hifn_base_command rc;
const u_int32_t masks = HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ;
int r, cmdi, srci, dsti, resi;
rc.masks = htole16(2 << 13);
rc.session_num = htole16(addr >> 14);
rc.total_source_count = htole16(addr & 0x3fff);
rc.total_dest_count = htole16(8);
hifn_alloc_slot(sc, &cmdi, &srci, &dsti, &resi);
WRITE_REG_1(sc, HIFN_1_DMA_CSR,
HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA);
memset(dma->command_bufs[cmdi], 0, HIFN_MAX_COMMAND);
*(struct hifn_base_command *)dma->command_bufs[cmdi] = rc;
dma->srcr[srci].p = htole32(sc->sc_dmamap->dm_segs[0].ds_addr +
offsetof(struct hifn_dma, test_src));
dma->test_src = 0;
dma->dstr[dsti].p = htole32(sc->sc_dmamap->dm_segs[0].ds_addr +
offsetof(struct hifn_dma, test_dst));
dma->test_dst = 0;
dma->cmdr[cmdi].l = htole32(8 | masks);
dma->srcr[srci].l = htole32(8 | masks);
dma->dstr[dsti].l = htole32(8 | masks);
dma->resr[resi].l = htole32(HIFN_MAX_RESULT | masks);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
0, sc->sc_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
for (r = 10000; r >= 0; r--) {
DELAY(10);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
0, sc->sc_dmamap->dm_mapsize,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if ((dma->resr[resi].l & htole32(HIFN_D_VALID)) == 0)
break;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
0, sc->sc_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
if (r == 0) {
printf("%s: readramaddr -- "
"result[%d](addr %d) still valid\n",
device_xname(&sc->sc_dv), resi, addr);
r = -1;
} else {
r = 0;
memcpy(data, &dma->test_dst, sizeof(dma->test_dst));
}
WRITE_REG_1(sc, HIFN_1_DMA_CSR,
HIFN_DMACSR_C_CTRL_DIS | HIFN_DMACSR_S_CTRL_DIS |
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS);
return (r);
}
/*
* Initialize the descriptor rings.
*/
static void
hifn_init_dma(struct hifn_softc *sc)
{
struct hifn_dma *dma = sc->sc_dma;
int i;
hifn_set_retry(sc);
/* initialize static pointer values */
for (i = 0; i < HIFN_D_CMD_RSIZE; i++)
dma->cmdr[i].p = htole32(sc->sc_dmamap->dm_segs[0].ds_addr +
offsetof(struct hifn_dma, command_bufs[i][0]));
for (i = 0; i < HIFN_D_RES_RSIZE; i++)
dma->resr[i].p = htole32(sc->sc_dmamap->dm_segs[0].ds_addr +
offsetof(struct hifn_dma, result_bufs[i][0]));
dma->cmdr[HIFN_D_CMD_RSIZE].p =
htole32(sc->sc_dmamap->dm_segs[0].ds_addr +
offsetof(struct hifn_dma, cmdr[0]));
dma->srcr[HIFN_D_SRC_RSIZE].p =
htole32(sc->sc_dmamap->dm_segs[0].ds_addr +
offsetof(struct hifn_dma, srcr[0]));
dma->dstr[HIFN_D_DST_RSIZE].p =
htole32(sc->sc_dmamap->dm_segs[0].ds_addr +
offsetof(struct hifn_dma, dstr[0]));
dma->resr[HIFN_D_RES_RSIZE].p =
htole32(sc->sc_dmamap->dm_segs[0].ds_addr +
offsetof(struct hifn_dma, resr[0]));
dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
}
/*
* Writes out the raw command buffer space. Returns the
* command buffer size.
*/
static u_int
hifn_write_command(struct hifn_command *cmd, u_int8_t *buf)
{
u_int8_t *buf_pos;
struct hifn_base_command *base_cmd;
struct hifn_mac_command *mac_cmd;
struct hifn_crypt_command *cry_cmd;
struct hifn_comp_command *comp_cmd;
int using_mac, using_crypt, using_comp, len, ivlen;
u_int32_t dlen, slen;
buf_pos = buf;
using_mac = cmd->base_masks & HIFN_BASE_CMD_MAC;
using_crypt = cmd->base_masks & HIFN_BASE_CMD_CRYPT;
using_comp = cmd->base_masks & HIFN_BASE_CMD_COMP;
base_cmd = (struct hifn_base_command *)buf_pos;
base_cmd->masks = htole16(cmd->base_masks);
slen = cmd->src_map->dm_mapsize;
if (cmd->sloplen)
dlen = cmd->dst_map->dm_mapsize - cmd->sloplen +
sizeof(u_int32_t);
else
dlen = cmd->dst_map->dm_mapsize;
base_cmd->total_source_count = htole16(slen & HIFN_BASE_CMD_LENMASK_LO);
base_cmd->total_dest_count = htole16(dlen & HIFN_BASE_CMD_LENMASK_LO);
dlen >>= 16;
slen >>= 16;
base_cmd->session_num = htole16(cmd->session_num |
((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
buf_pos += sizeof(struct hifn_base_command);
if (using_comp) {
comp_cmd = (struct hifn_comp_command *)buf_pos;
dlen = cmd->compcrd->crd_len;
comp_cmd->source_count = htole16(dlen & 0xffff);
dlen >>= 16;
comp_cmd->masks = htole16(cmd->comp_masks |
((dlen << HIFN_COMP_CMD_SRCLEN_S) & HIFN_COMP_CMD_SRCLEN_M));
comp_cmd->header_skip = htole16(cmd->compcrd->crd_skip);
comp_cmd->reserved = 0;
buf_pos += sizeof(struct hifn_comp_command);
}
if (using_mac) {
mac_cmd = (struct hifn_mac_command *)buf_pos;
dlen = cmd->maccrd->crd_len;
mac_cmd->source_count = htole16(dlen & 0xffff);
dlen >>= 16;
mac_cmd->masks = htole16(cmd->mac_masks |
((dlen << HIFN_MAC_CMD_SRCLEN_S) & HIFN_MAC_CMD_SRCLEN_M));
mac_cmd->header_skip = htole16(cmd->maccrd->crd_skip);
mac_cmd->reserved = 0;
buf_pos += sizeof(struct hifn_mac_command);
}
if (using_crypt) {
cry_cmd = (struct hifn_crypt_command *)buf_pos;
dlen = cmd->enccrd->crd_len;
cry_cmd->source_count = htole16(dlen & 0xffff);
dlen >>= 16;
cry_cmd->masks = htole16(cmd->cry_masks |
((dlen << HIFN_CRYPT_CMD_SRCLEN_S) & HIFN_CRYPT_CMD_SRCLEN_M));
cry_cmd->header_skip = htole16(cmd->enccrd->crd_skip);
cry_cmd->reserved = 0;
buf_pos += sizeof(struct hifn_crypt_command);
}
if (using_mac && cmd->mac_masks & HIFN_MAC_CMD_NEW_KEY) {
memcpy(buf_pos, cmd->mac, HIFN_MAC_KEY_LENGTH);
buf_pos += HIFN_MAC_KEY_LENGTH;
}
if (using_crypt && cmd->cry_masks & HIFN_CRYPT_CMD_NEW_KEY) {
switch (cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) {
case HIFN_CRYPT_CMD_ALG_3DES:
memcpy(buf_pos, cmd->ck, HIFN_3DES_KEY_LENGTH);
buf_pos += HIFN_3DES_KEY_LENGTH;
break;
case HIFN_CRYPT_CMD_ALG_DES:
memcpy(buf_pos, cmd->ck, HIFN_DES_KEY_LENGTH);
buf_pos += HIFN_DES_KEY_LENGTH;
break;
case HIFN_CRYPT_CMD_ALG_RC4:
len = 256;
do {
int clen;
clen = MIN(cmd->cklen, len);
memcpy(buf_pos, cmd->ck, clen);
len -= clen;
buf_pos += clen;
} while (len > 0);
memset(buf_pos, 0, 4);
buf_pos += 4;
break;
case HIFN_CRYPT_CMD_ALG_AES:
/*
* AES keys are variable 128, 192 and
* 256 bits (16, 24 and 32 bytes).
*/
memcpy(buf_pos, cmd->ck, cmd->cklen);
buf_pos += cmd->cklen;
break;
}
}
if (using_crypt && cmd->cry_masks & HIFN_CRYPT_CMD_NEW_IV) {
switch (cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) {
case HIFN_CRYPT_CMD_ALG_AES:
ivlen = HIFN_AES_IV_LENGTH;
break;
default:
ivlen = HIFN_IV_LENGTH;
break;
}
memcpy(buf_pos, cmd->iv, ivlen);
buf_pos += ivlen;
}
if ((cmd->base_masks & (HIFN_BASE_CMD_MAC | HIFN_BASE_CMD_CRYPT |
HIFN_BASE_CMD_COMP)) == 0) {
memset(buf_pos, 0, 8);
buf_pos += 8;
}
return (buf_pos - buf);
}
static int
hifn_dmamap_aligned(bus_dmamap_t map)
{
int i;
for (i = 0; i < map->dm_nsegs; i++) {
if (map->dm_segs[i].ds_addr & 3)
return (0);
if ((i != (map->dm_nsegs - 1)) &&
(map->dm_segs[i].ds_len & 3))
return (0);
}
return (1);
}
static int
hifn_dmamap_load_dst(struct hifn_softc *sc, struct hifn_command *cmd)
{
struct hifn_dma *dma = sc->sc_dma;
bus_dmamap_t map = cmd->dst_map;
u_int32_t p, l;
int idx, used = 0, i;
idx = dma->dsti;
for (i = 0; i < map->dm_nsegs - 1; i++) {
dma->dstr[idx].p = htole32(map->dm_segs[i].ds_addr);
dma->dstr[idx].l = htole32(HIFN_D_VALID |
HIFN_D_MASKDONEIRQ | map->dm_segs[i].ds_len);
HIFN_DSTR_SYNC(sc, idx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
used++;
if (++idx == HIFN_D_DST_RSIZE) {
dma->dstr[idx].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_DSTR_SYNC(sc, idx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
idx = 0;
}
}
if (cmd->sloplen == 0) {
p = map->dm_segs[i].ds_addr;
l = HIFN_D_VALID | HIFN_D_MASKDONEIRQ | HIFN_D_LAST |
map->dm_segs[i].ds_len;
} else {
p = sc->sc_dmamap->dm_segs[0].ds_addr +
offsetof(struct hifn_dma, slop[cmd->slopidx]);
l = HIFN_D_VALID | HIFN_D_MASKDONEIRQ | HIFN_D_LAST |
sizeof(u_int32_t);
if ((map->dm_segs[i].ds_len - cmd->sloplen) != 0) {
dma->dstr[idx].p = htole32(map->dm_segs[i].ds_addr);
dma->dstr[idx].l = htole32(HIFN_D_VALID |
HIFN_D_MASKDONEIRQ |
(map->dm_segs[i].ds_len - cmd->sloplen));
HIFN_DSTR_SYNC(sc, idx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
used++;
if (++idx == HIFN_D_DST_RSIZE) {
dma->dstr[idx].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_DSTR_SYNC(sc, idx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
idx = 0;
}
}
}
dma->dstr[idx].p = htole32(p);
dma->dstr[idx].l = htole32(l);
HIFN_DSTR_SYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
used++;
if (++idx == HIFN_D_DST_RSIZE) {
dma->dstr[idx].l = htole32(HIFN_D_VALID | HIFN_D_JUMP |
HIFN_D_MASKDONEIRQ);
HIFN_DSTR_SYNC(sc, idx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
idx = 0;
}
dma->dsti = idx;
dma->dstu += used;
return (idx);
}
static int
hifn_dmamap_load_src(struct hifn_softc *sc, struct hifn_command *cmd)
{
struct hifn_dma *dma = sc->sc_dma;
bus_dmamap_t map = cmd->src_map;
int idx, i;
u_int32_t last = 0;
idx = dma->srci;
for (i = 0; i < map->dm_nsegs; i++) {
if (i == map->dm_nsegs - 1)
last = HIFN_D_LAST;
dma->srcr[idx].p = htole32(map->dm_segs[i].ds_addr);
dma->srcr[idx].l = htole32(map->dm_segs[i].ds_len |
HIFN_D_VALID | HIFN_D_MASKDONEIRQ | last);
HIFN_SRCR_SYNC(sc, idx,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
if (++idx == HIFN_D_SRC_RSIZE) {
dma->srcr[idx].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_SRCR_SYNC(sc, HIFN_D_SRC_RSIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
idx = 0;
}
}
dma->srci = idx;
dma->srcu += map->dm_nsegs;
return (idx);
}
static int
hifn_crypto(struct hifn_softc *sc, struct hifn_command *cmd,
struct cryptop *crp, int hint)
{
struct hifn_dma *dma = sc->sc_dma;
u_int32_t cmdlen;
int cmdi, resi, s, err = 0;
if (bus_dmamap_create(sc->sc_dmat, HIFN_MAX_DMALEN, MAX_SCATTER,
HIFN_MAX_SEGLEN, 0, BUS_DMA_NOWAIT, &cmd->src_map))
return (ENOMEM);
if (crp->crp_flags & CRYPTO_F_IMBUF) {
if (bus_dmamap_load_mbuf(sc->sc_dmat, cmd->src_map,
cmd->srcu.src_m, BUS_DMA_NOWAIT)) {
err = ENOMEM;
goto err_srcmap1;
}
} else if (crp->crp_flags & CRYPTO_F_IOV) {
if (bus_dmamap_load_uio(sc->sc_dmat, cmd->src_map,
cmd->srcu.src_io, BUS_DMA_NOWAIT)) {
err = ENOMEM;
goto err_srcmap1;
}
} else {
err = EINVAL;
goto err_srcmap1;
}
if (hifn_dmamap_aligned(cmd->src_map)) {
cmd->sloplen = cmd->src_map->dm_mapsize & 3;
if (crp->crp_flags & CRYPTO_F_IOV)
cmd->dstu.dst_io = cmd->srcu.src_io;
else if (crp->crp_flags & CRYPTO_F_IMBUF)
cmd->dstu.dst_m = cmd->srcu.src_m;
cmd->dst_map = cmd->src_map;
} else {
if (crp->crp_flags & CRYPTO_F_IOV) {
err = EINVAL;
goto err_srcmap;
} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
int totlen, len;
struct mbuf *m, *m0, *mlast;
totlen = cmd->src_map->dm_mapsize;
if (cmd->srcu.src_m->m_flags & M_PKTHDR) {
len = MHLEN;
MGETHDR(m0, M_DONTWAIT, MT_DATA);
} else {
len = MLEN;
MGET(m0, M_DONTWAIT, MT_DATA);
}
if (m0 == NULL) {
err = ENOMEM;
goto err_srcmap;
}
if (len == MHLEN)
M_DUP_PKTHDR(m0, cmd->srcu.src_m);
if (totlen >= MINCLSIZE) {
MCLGET(m0, M_DONTWAIT);
if (m0->m_flags & M_EXT)
len = MCLBYTES;
}
totlen -= len;
m0->m_pkthdr.len = m0->m_len = len;
mlast = m0;
while (totlen > 0) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
err = ENOMEM;
m_freem(m0);
goto err_srcmap;
}
len = MLEN;
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
len = MCLBYTES;
}
m->m_len = len;
if (m0->m_flags & M_PKTHDR)
m0->m_pkthdr.len += len;
totlen -= len;
mlast->m_next = m;
mlast = m;
}
cmd->dstu.dst_m = m0;
}
}
if (cmd->dst_map == NULL) {
if (bus_dmamap_create(sc->sc_dmat,
HIFN_MAX_SEGLEN * MAX_SCATTER, MAX_SCATTER,
HIFN_MAX_SEGLEN, 0, BUS_DMA_NOWAIT, &cmd->dst_map)) {
err = ENOMEM;
goto err_srcmap;
}
if (crp->crp_flags & CRYPTO_F_IMBUF) {
if (bus_dmamap_load_mbuf(sc->sc_dmat, cmd->dst_map,
cmd->dstu.dst_m, BUS_DMA_NOWAIT)) {
err = ENOMEM;
goto err_dstmap1;
}
} else if (crp->crp_flags & CRYPTO_F_IOV) {
if (bus_dmamap_load_uio(sc->sc_dmat, cmd->dst_map,
cmd->dstu.dst_io, BUS_DMA_NOWAIT)) {
err = ENOMEM;
goto err_dstmap1;
}
}
}
#ifdef HIFN_DEBUG
if (hifn_debug)
printf("%s: Entering cmd: stat %8x ien %8x u %d/%d/%d/%d n %d/%d\n",
device_xname(&sc->sc_dv),
READ_REG_1(sc, HIFN_1_DMA_CSR),
READ_REG_1(sc, HIFN_1_DMA_IER),
dma->cmdu, dma->srcu, dma->dstu, dma->resu,
cmd->src_map->dm_nsegs, cmd->dst_map->dm_nsegs);
#endif
if (cmd->src_map == cmd->dst_map)
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
0, cmd->src_map->dm_mapsize,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
else {
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
0, cmd->src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
0, cmd->dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
}
s = splnet();
/*
* need 1 cmd, and 1 res
* need N src, and N dst
*/
if ((dma->cmdu + 1) > HIFN_D_CMD_RSIZE ||
(dma->resu + 1) > HIFN_D_RES_RSIZE) {
splx(s);
err = ENOMEM;
goto err_dstmap;
}
if ((dma->srcu + cmd->src_map->dm_nsegs) > HIFN_D_SRC_RSIZE ||
(dma->dstu + cmd->dst_map->dm_nsegs + 1) > HIFN_D_DST_RSIZE) {
splx(s);
err = ENOMEM;
goto err_dstmap;
}
if (dma->cmdi == HIFN_D_CMD_RSIZE) {
dma->cmdi = 0;
dma->cmdr[HIFN_D_CMD_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_CMDR_SYNC(sc, HIFN_D_CMD_RSIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
cmdi = dma->cmdi++;
cmdlen = hifn_write_command(cmd, dma->command_bufs[cmdi]);
HIFN_CMD_SYNC(sc, cmdi, BUS_DMASYNC_PREWRITE);
/* .p for command/result already set */
dma->cmdr[cmdi].l = htole32(cmdlen | HIFN_D_VALID | HIFN_D_LAST |
HIFN_D_MASKDONEIRQ);
HIFN_CMDR_SYNC(sc, cmdi,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
dma->cmdu++;
if (sc->sc_c_busy == 0) {
WRITE_REG_1(sc, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
sc->sc_c_busy = 1;
SET_LED(sc, HIFN_MIPSRST_LED0);
}
/*
* We don't worry about missing an interrupt (which a "command wait"
* interrupt salvages us from), unless there is more than one command
* in the queue.
*
* XXX We do seem to miss some interrupts. So we always enable
* XXX command wait. From OpenBSD revision 1.149.
*
*/
#if 0
if (dma->cmdu > 1) {
#endif
sc->sc_dmaier |= HIFN_DMAIER_C_WAIT;
WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
#if 0
}
#endif
hifnstats.hst_ipackets++;
hifnstats.hst_ibytes += cmd->src_map->dm_mapsize;
hifn_dmamap_load_src(sc, cmd);
if (sc->sc_s_busy == 0) {
WRITE_REG_1(sc, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
sc->sc_s_busy = 1;
SET_LED(sc, HIFN_MIPSRST_LED1);
}
/*
* Unlike other descriptors, we don't mask done interrupt from
* result descriptor.
*/
#ifdef HIFN_DEBUG
if (hifn_debug)
printf("load res\n");
#endif
if (dma->resi == HIFN_D_RES_RSIZE) {
dma->resi = 0;
dma->resr[HIFN_D_RES_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_RESR_SYNC(sc, HIFN_D_RES_RSIZE,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
resi = dma->resi++;
dma->hifn_commands[resi] = cmd;
HIFN_RES_SYNC(sc, resi, BUS_DMASYNC_PREREAD);
dma->resr[resi].l = htole32(HIFN_MAX_RESULT |
HIFN_D_VALID | HIFN_D_LAST);
HIFN_RESR_SYNC(sc, resi,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
dma->resu++;
if (sc->sc_r_busy == 0) {
WRITE_REG_1(sc, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
sc->sc_r_busy = 1;
SET_LED(sc, HIFN_MIPSRST_LED2);
}
if (cmd->sloplen)
cmd->slopidx = resi;
hifn_dmamap_load_dst(sc, cmd);
if (sc->sc_d_busy == 0) {
WRITE_REG_1(sc, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
sc->sc_d_busy = 1;
}
#ifdef HIFN_DEBUG
if (hifn_debug)
printf("%s: command: stat %8x ier %8x\n",
device_xname(&sc->sc_dv),
READ_REG_1(sc, HIFN_1_DMA_CSR), READ_REG_1(sc, HIFN_1_DMA_IER));
#endif
sc->sc_active = 5;
splx(s);
return (err); /* success */
err_dstmap:
if (cmd->src_map != cmd->dst_map)
bus_dmamap_unload(sc->sc_dmat, cmd->dst_map);
err_dstmap1:
if (cmd->src_map != cmd->dst_map)
bus_dmamap_destroy(sc->sc_dmat, cmd->dst_map);
err_srcmap:
if (crp->crp_flags & CRYPTO_F_IMBUF &&
cmd->srcu.src_m != cmd->dstu.dst_m)
m_freem(cmd->dstu.dst_m);
bus_dmamap_unload(sc->sc_dmat, cmd->src_map);
err_srcmap1:
bus_dmamap_destroy(sc->sc_dmat, cmd->src_map);
return (err);
}
static void
hifn_tick(void *vsc)
{
struct hifn_softc *sc = vsc;
int s;
s = splnet();
if (sc->sc_active == 0) {
struct hifn_dma *dma = sc->sc_dma;
u_int32_t r = 0;
if (dma->cmdu == 0 && sc->sc_c_busy) {
sc->sc_c_busy = 0;
r |= HIFN_DMACSR_C_CTRL_DIS;
CLR_LED(sc, HIFN_MIPSRST_LED0);
}
if (dma->srcu == 0 && sc->sc_s_busy) {
sc->sc_s_busy = 0;
r |= HIFN_DMACSR_S_CTRL_DIS;
CLR_LED(sc, HIFN_MIPSRST_LED1);
}
if (dma->dstu == 0 && sc->sc_d_busy) {
sc->sc_d_busy = 0;
r |= HIFN_DMACSR_D_CTRL_DIS;
}
if (dma->resu == 0 && sc->sc_r_busy) {
sc->sc_r_busy = 0;
r |= HIFN_DMACSR_R_CTRL_DIS;
CLR_LED(sc, HIFN_MIPSRST_LED2);
}
if (r)
WRITE_REG_1(sc, HIFN_1_DMA_CSR, r);
}
else
sc->sc_active--;
splx(s);
#ifdef __OpenBSD__
timeout_add(&sc->sc_tickto, hz);
#else
callout_reset(&sc->sc_tickto, hz, hifn_tick, sc);
#endif
}
static int
hifn_intr(void *arg)
{
struct hifn_softc *sc = arg;
struct hifn_dma *dma = sc->sc_dma;
u_int32_t dmacsr, restart;
int i, u;
dmacsr = READ_REG_1(sc, HIFN_1_DMA_CSR);
#ifdef HIFN_DEBUG
if (hifn_debug)
printf("%s: irq: stat %08x ien %08x u %d/%d/%d/%d\n",
device_xname(&sc->sc_dv),
dmacsr, READ_REG_1(sc, HIFN_1_DMA_IER),
dma->cmdu, dma->srcu, dma->dstu, dma->resu);
#endif
/* Nothing in the DMA unit interrupted */
if ((dmacsr & sc->sc_dmaier) == 0)
return (0);
WRITE_REG_1(sc, HIFN_1_DMA_CSR, dmacsr & sc->sc_dmaier);
if (dmacsr & HIFN_DMACSR_ENGINE)
WRITE_REG_0(sc, HIFN_0_PUISR, READ_REG_0(sc, HIFN_0_PUISR));
if ((sc->sc_flags & HIFN_HAS_PUBLIC) &&
(dmacsr & HIFN_DMACSR_PUBDONE))
WRITE_REG_1(sc, HIFN_1_PUB_STATUS,
READ_REG_1(sc, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
if (restart)
printf("%s: overrun %x\n", device_xname(&sc->sc_dv), dmacsr);
if (sc->sc_flags & HIFN_IS_7811) {
if (dmacsr & HIFN_DMACSR_ILLR)
printf("%s: illegal read\n", device_xname(&sc->sc_dv));
if (dmacsr & HIFN_DMACSR_ILLW)
printf("%s: illegal write\n", device_xname(&sc->sc_dv));
}
restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
if (restart) {
printf("%s: abort, resetting.\n", device_xname(&sc->sc_dv));
hifnstats.hst_abort++;
hifn_abort(sc);
return (1);
}
if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->resu == 0)) {
/*
* If no slots to process and we receive a "waiting on
* command" interrupt, we disable the "waiting on command"
* (by clearing it).
*/
sc->sc_dmaier &= ~HIFN_DMAIER_C_WAIT;
WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
}
/* clear the rings */
i = dma->resk;
while (dma->resu != 0) {
HIFN_RESR_SYNC(sc, i,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (dma->resr[i].l & htole32(HIFN_D_VALID)) {
HIFN_RESR_SYNC(sc, i,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
break;
}
if (i != HIFN_D_RES_RSIZE) {
struct hifn_command *cmd;
HIFN_RES_SYNC(sc, i, BUS_DMASYNC_POSTREAD);
cmd = dma->hifn_commands[i];
KASSERT(cmd != NULL
/*("hifn_intr: null command slot %u", i)*/);
dma->hifn_commands[i] = NULL;
hifn_callback(sc, cmd, dma->result_bufs[i]);
hifnstats.hst_opackets++;
}
if (++i == (HIFN_D_RES_RSIZE + 1))
i = 0;
else
dma->resu--;
}
dma->resk = i;
i = dma->srck; u = dma->srcu;
while (u != 0) {
HIFN_SRCR_SYNC(sc, i,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (dma->srcr[i].l & htole32(HIFN_D_VALID)) {
HIFN_SRCR_SYNC(sc, i,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
break;
}
if (++i == (HIFN_D_SRC_RSIZE + 1))
i = 0;
else
u--;
}
dma->srck = i; dma->srcu = u;
i = dma->cmdk; u = dma->cmdu;
while (u != 0) {
HIFN_CMDR_SYNC(sc, i,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (dma->cmdr[i].l & htole32(HIFN_D_VALID)) {
HIFN_CMDR_SYNC(sc, i,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
break;
}
if (i != HIFN_D_CMD_RSIZE) {
u--;
HIFN_CMD_SYNC(sc, i, BUS_DMASYNC_POSTWRITE);
}
if (++i == (HIFN_D_CMD_RSIZE + 1))
i = 0;
}
dma->cmdk = i; dma->cmdu = u;
return (1);
}
/*
* Allocate a new 'session' and return an encoded session id. 'sidp'
* contains our registration id, and should contain an encoded session
* id on successful allocation.
*/
static int
hifn_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
{
struct cryptoini *c;
struct hifn_softc *sc = arg;
int i, mac = 0, cry = 0, comp = 0;
KASSERT(sc != NULL /*, ("hifn_newsession: null softc")*/);
if (sidp == NULL || cri == NULL || sc == NULL)
return (EINVAL);
for (i = 0; i < sc->sc_maxses; i++)
if (sc->sc_sessions[i].hs_state == HS_STATE_FREE)
break;
if (i == sc->sc_maxses)
return (ENOMEM);
for (c = cri; c != NULL; c = c->cri_next) {
switch (c->cri_alg) {
case CRYPTO_MD5:
case CRYPTO_SHA1:
case CRYPTO_MD5_HMAC_96:
case CRYPTO_SHA1_HMAC_96:
if (mac)
return (EINVAL);
mac = 1;
break;
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
case CRYPTO_AES_CBC:
/* Note that this is an initialization
vector, not a cipher key; any function
giving sufficient Hamming distance
between outputs is fine. Use of RC4
to generate IVs has been FIPS140-2
certified by several labs. */
#ifdef __NetBSD__
arc4randbytes(sc->sc_sessions[i].hs_iv,
c->cri_alg == CRYPTO_AES_CBC ?
HIFN_AES_IV_LENGTH : HIFN_IV_LENGTH);
#else /* FreeBSD and OpenBSD have get_random_bytes */
/* XXX this may read fewer, does it matter? */
get_random_bytes(sc->sc_sessions[i].hs_iv,
c->cri_alg == CRYPTO_AES_CBC ?
HIFN_AES_IV_LENGTH : HIFN_IV_LENGTH);
#endif
/*FALLTHROUGH*/
case CRYPTO_ARC4:
if (cry)
return (EINVAL);
cry = 1;
break;
#ifdef HAVE_CRYPTO_LZS
case CRYPTO_LZS_COMP:
if (comp)
return (EINVAL);
comp = 1;
break;
#endif
default:
return (EINVAL);
}
}
if (mac == 0 && cry == 0 && comp == 0)
return (EINVAL);
/*
* XXX only want to support compression without chaining to
* MAC/crypt engine right now
*/
if ((comp && mac) || (comp && cry))
return (EINVAL);
*sidp = HIFN_SID(device_unit(&sc->sc_dv), i);
sc->sc_sessions[i].hs_state = HS_STATE_USED;
return (0);
}
/*
* Deallocate a session.
* XXX this routine should run a zero'd mac/encrypt key into context ram.
* XXX to blow away any keys already stored there.
*/
static int
hifn_freesession(void *arg, u_int64_t tid)
{
struct hifn_softc *sc = arg;
int session;
u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
KASSERT(sc != NULL /*, ("hifn_freesession: null softc")*/);
if (sc == NULL)
return (EINVAL);
session = HIFN_SESSION(sid);
if (session >= sc->sc_maxses)
return (EINVAL);
memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
return (0);
}
static int
hifn_process(void *arg, struct cryptop *crp, int hint)
{
struct hifn_softc *sc = arg;
struct hifn_command *cmd = NULL;
int session, err, ivlen;
struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
if (crp == NULL || crp->crp_callback == NULL) {
hifnstats.hst_invalid++;
return (EINVAL);
}
session = HIFN_SESSION(crp->crp_sid);
if (sc == NULL || session >= sc->sc_maxses) {
err = EINVAL;
goto errout;
}
cmd = (struct hifn_command *)malloc(sizeof(struct hifn_command),
M_DEVBUF, M_NOWAIT|M_ZERO);
if (cmd == NULL) {
hifnstats.hst_nomem++;
err = ENOMEM;
goto errout;
}
if (crp->crp_flags & CRYPTO_F_IMBUF) {
cmd->srcu.src_m = (struct mbuf *)crp->crp_buf;
cmd->dstu.dst_m = (struct mbuf *)crp->crp_buf;
} else if (crp->crp_flags & CRYPTO_F_IOV) {
cmd->srcu.src_io = (struct uio *)crp->crp_buf;
cmd->dstu.dst_io = (struct uio *)crp->crp_buf;
} else {
err = EINVAL;
goto errout; /* XXX we don't handle contiguous buffers! */
}
crd1 = crp->crp_desc;
if (crd1 == NULL) {
err = EINVAL;
goto errout;
}
crd2 = crd1->crd_next;
if (crd2 == NULL) {
if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
crd1->crd_alg == CRYPTO_SHA1_HMAC_96 ||
crd1->crd_alg == CRYPTO_SHA1 ||
crd1->crd_alg == CRYPTO_MD5) {
maccrd = crd1;
enccrd = NULL;
} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC ||
crd1->crd_alg == CRYPTO_ARC4) {
if ((crd1->crd_flags & CRD_F_ENCRYPT) == 0)
cmd->base_masks |= HIFN_BASE_CMD_DECODE;
maccrd = NULL;
enccrd = crd1;
#ifdef HAVE_CRYPTO_LZS
} else if (crd1->crd_alg == CRYPTO_LZS_COMP) {
return (hifn_compression(sc, crp, cmd));
#endif
} else {
err = EINVAL;
goto errout;
}
} else {
if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
crd1->crd_alg == CRYPTO_SHA1_HMAC_96 ||
crd1->crd_alg == CRYPTO_MD5 ||
crd1->crd_alg == CRYPTO_SHA1) &&
(crd2->crd_alg == CRYPTO_DES_CBC ||
crd2->crd_alg == CRYPTO_3DES_CBC ||
crd2->crd_alg == CRYPTO_AES_CBC ||
crd2->crd_alg == CRYPTO_ARC4) &&
((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
cmd->base_masks = HIFN_BASE_CMD_DECODE;
maccrd = crd1;
enccrd = crd2;
} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_ARC4 ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC) &&
(crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
crd2->crd_alg == CRYPTO_SHA1_HMAC_96 ||
crd2->crd_alg == CRYPTO_MD5 ||
crd2->crd_alg == CRYPTO_SHA1) &&
(crd1->crd_flags & CRD_F_ENCRYPT)) {
enccrd = crd1;
maccrd = crd2;
} else {
/*
* We cannot order the 7751 as requested
*/
err = EINVAL;
goto errout;
}
}
if (enccrd) {
cmd->enccrd = enccrd;
cmd->base_masks |= HIFN_BASE_CMD_CRYPT;
switch (enccrd->crd_alg) {
case CRYPTO_ARC4:
cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_RC4;
if ((enccrd->crd_flags & CRD_F_ENCRYPT)
!= sc->sc_sessions[session].hs_prev_op)
sc->sc_sessions[session].hs_state =
HS_STATE_USED;
break;
case CRYPTO_DES_CBC:
cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_DES |
HIFN_CRYPT_CMD_MODE_CBC |
HIFN_CRYPT_CMD_NEW_IV;
break;
case CRYPTO_3DES_CBC:
cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_3DES |
HIFN_CRYPT_CMD_MODE_CBC |
HIFN_CRYPT_CMD_NEW_IV;
break;
case CRYPTO_AES_CBC:
cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_AES |
HIFN_CRYPT_CMD_MODE_CBC |
HIFN_CRYPT_CMD_NEW_IV;
break;
default:
err = EINVAL;
goto errout;
}
if (enccrd->crd_alg != CRYPTO_ARC4) {
ivlen = ((enccrd->crd_alg == CRYPTO_AES_CBC) ?
HIFN_AES_IV_LENGTH : HIFN_IV_LENGTH);
if (enccrd->crd_flags & CRD_F_ENCRYPT) {
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(cmd->iv, enccrd->crd_iv, ivlen);
else
bcopy(sc->sc_sessions[session].hs_iv,
cmd->iv, ivlen);
if ((enccrd->crd_flags & CRD_F_IV_PRESENT)
== 0) {
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copyback(cmd->srcu.src_m,
enccrd->crd_inject,
ivlen, cmd->iv);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copyback(cmd->srcu.src_io,
enccrd->crd_inject,
ivlen, cmd->iv);
}
} else {
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(cmd->iv, enccrd->crd_iv, ivlen);
else if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copydata(cmd->srcu.src_m,
enccrd->crd_inject, ivlen, cmd->iv);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copydata(cmd->srcu.src_io,
enccrd->crd_inject, ivlen, cmd->iv);
}
}
cmd->ck = enccrd->crd_key;
cmd->cklen = enccrd->crd_klen >> 3;
/*
* Need to specify the size for the AES key in the masks.
*/
if ((cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) ==
HIFN_CRYPT_CMD_ALG_AES) {
switch (cmd->cklen) {
case 16:
cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_128;
break;
case 24:
cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_192;
break;
case 32:
cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_256;
break;
default:
err = EINVAL;
goto errout;
}
}
if (sc->sc_sessions[session].hs_state == HS_STATE_USED)
cmd->cry_masks |= HIFN_CRYPT_CMD_NEW_KEY;
}
if (maccrd) {
cmd->maccrd = maccrd;
cmd->base_masks |= HIFN_BASE_CMD_MAC;
switch (maccrd->crd_alg) {
case CRYPTO_MD5:
cmd->mac_masks |= HIFN_MAC_CMD_ALG_MD5 |
HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HASH |
HIFN_MAC_CMD_POS_IPSEC;
break;
case CRYPTO_MD5_HMAC_96:
cmd->mac_masks |= HIFN_MAC_CMD_ALG_MD5 |
HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HMAC |
HIFN_MAC_CMD_POS_IPSEC | HIFN_MAC_CMD_TRUNC;
break;
case CRYPTO_SHA1:
cmd->mac_masks |= HIFN_MAC_CMD_ALG_SHA1 |
HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HASH |
HIFN_MAC_CMD_POS_IPSEC;
break;
case CRYPTO_SHA1_HMAC_96:
cmd->mac_masks |= HIFN_MAC_CMD_ALG_SHA1 |
HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HMAC |
HIFN_MAC_CMD_POS_IPSEC | HIFN_MAC_CMD_TRUNC;
break;
}
if ((maccrd->crd_alg == CRYPTO_SHA1_HMAC_96 ||
maccrd->crd_alg == CRYPTO_MD5_HMAC_96) &&
sc->sc_sessions[session].hs_state == HS_STATE_USED) {
cmd->mac_masks |= HIFN_MAC_CMD_NEW_KEY;
memcpy(cmd->mac, maccrd->crd_key, maccrd->crd_klen >> 3);
memset(cmd->mac + (maccrd->crd_klen >> 3), 0,
HIFN_MAC_KEY_LENGTH - (maccrd->crd_klen >> 3));
}
}
cmd->crp = crp;
cmd->session_num = session;
cmd->softc = sc;
err = hifn_crypto(sc, cmd, crp, hint);
if (err == 0) {
if (enccrd)
sc->sc_sessions[session].hs_prev_op =
enccrd->crd_flags & CRD_F_ENCRYPT;
if (sc->sc_sessions[session].hs_state == HS_STATE_USED)
sc->sc_sessions[session].hs_state = HS_STATE_KEY;
return 0;
} else if (err == ERESTART) {
/*
* There weren't enough resources to dispatch the request
* to the part. Notify the caller so they'll requeue this
* request and resubmit it again soon.
*/
#ifdef HIFN_DEBUG
if (hifn_debug)
printf(device_xname(&sc->sc_dv), "requeue request\n");
#endif
free(cmd, M_DEVBUF);
sc->sc_needwakeup |= CRYPTO_SYMQ;
return (err);
}
errout:
if (cmd != NULL)
free(cmd, M_DEVBUF);
if (err == EINVAL)
hifnstats.hst_invalid++;
else
hifnstats.hst_nomem++;
crp->crp_etype = err;
crypto_done(crp);
return (0);
}
static void
hifn_abort(struct hifn_softc *sc)
{
struct hifn_dma *dma = sc->sc_dma;
struct hifn_command *cmd;
struct cryptop *crp;
int i, u;
i = dma->resk; u = dma->resu;
while (u != 0) {
cmd = dma->hifn_commands[i];
KASSERT(cmd != NULL /*, ("hifn_abort: null cmd slot %u", i)*/);
dma->hifn_commands[i] = NULL;
crp = cmd->crp;
if ((dma->resr[i].l & htole32(HIFN_D_VALID)) == 0) {
/* Salvage what we can. */
hifnstats.hst_opackets++;
hifn_callback(sc, cmd, dma->result_bufs[i]);
} else {
if (cmd->src_map == cmd->dst_map) {
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
0, cmd->src_map->dm_mapsize,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
} else {
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
0, cmd->src_map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
0, cmd->dst_map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
}
if (cmd->srcu.src_m != cmd->dstu.dst_m) {
m_freem(cmd->srcu.src_m);
crp->crp_buf = (void *)cmd->dstu.dst_m;
}
/* non-shared buffers cannot be restarted */
if (cmd->src_map != cmd->dst_map) {
/*
* XXX should be EAGAIN, delayed until
* after the reset.
*/
crp->crp_etype = ENOMEM;
bus_dmamap_unload(sc->sc_dmat, cmd->dst_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->dst_map);
} else
crp->crp_etype = ENOMEM;
bus_dmamap_unload(sc->sc_dmat, cmd->src_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->src_map);
free(cmd, M_DEVBUF);
if (crp->crp_etype != EAGAIN)
crypto_done(crp);
}
if (++i == HIFN_D_RES_RSIZE)
i = 0;
u--;
}
dma->resk = i; dma->resu = u;
/* Force upload of key next time */
for (i = 0; i < sc->sc_maxses; i++)
if (sc->sc_sessions[i].hs_state == HS_STATE_KEY)
sc->sc_sessions[i].hs_state = HS_STATE_USED;
hifn_reset_board(sc, 1);
hifn_init_dma(sc);
hifn_init_pci_registers(sc);
}
static void
hifn_callback(struct hifn_softc *sc, struct hifn_command *cmd, u_int8_t *resbuf)
{
struct hifn_dma *dma = sc->sc_dma;
struct cryptop *crp = cmd->crp;
struct cryptodesc *crd;
struct mbuf *m;
int totlen, i, u, ivlen;
if (cmd->src_map == cmd->dst_map)
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
0, cmd->src_map->dm_mapsize,
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
else {
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
0, cmd->src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
0, cmd->dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
}
if (crp->crp_flags & CRYPTO_F_IMBUF) {
if (cmd->srcu.src_m != cmd->dstu.dst_m) {
crp->crp_buf = (void *)cmd->dstu.dst_m;
totlen = cmd->src_map->dm_mapsize;
for (m = cmd->dstu.dst_m; m != NULL; m = m->m_next) {
if (totlen < m->m_len) {
m->m_len = totlen;
totlen = 0;
} else
totlen -= m->m_len;
}
cmd->dstu.dst_m->m_pkthdr.len =
cmd->srcu.src_m->m_pkthdr.len;
m_freem(cmd->srcu.src_m);
}
}
if (cmd->sloplen != 0) {
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copyback((struct mbuf *)crp->crp_buf,
cmd->src_map->dm_mapsize - cmd->sloplen,
cmd->sloplen, (void *)&dma->slop[cmd->slopidx]);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copyback((struct uio *)crp->crp_buf,
cmd->src_map->dm_mapsize - cmd->sloplen,
cmd->sloplen, (void *)&dma->slop[cmd->slopidx]);
}
i = dma->dstk; u = dma->dstu;
while (u != 0) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
offsetof(struct hifn_dma, dstr[i]), sizeof(struct hifn_desc),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (dma->dstr[i].l & htole32(HIFN_D_VALID)) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
offsetof(struct hifn_dma, dstr[i]),
sizeof(struct hifn_desc),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
break;
}
if (++i == (HIFN_D_DST_RSIZE + 1))
i = 0;
else
u--;
}
dma->dstk = i; dma->dstu = u;
hifnstats.hst_obytes += cmd->dst_map->dm_mapsize;
if ((cmd->base_masks & (HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE)) ==
HIFN_BASE_CMD_CRYPT) {
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
if (crd->crd_alg != CRYPTO_DES_CBC &&
crd->crd_alg != CRYPTO_3DES_CBC &&
crd->crd_alg != CRYPTO_AES_CBC)
continue;
ivlen = ((crd->crd_alg == CRYPTO_AES_CBC) ?
HIFN_AES_IV_LENGTH : HIFN_IV_LENGTH);
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copydata((struct mbuf *)crp->crp_buf,
crd->crd_skip + crd->crd_len - ivlen,
ivlen,
cmd->softc->sc_sessions[cmd->session_num].hs_iv);
else if (crp->crp_flags & CRYPTO_F_IOV) {
cuio_copydata((struct uio *)crp->crp_buf,
crd->crd_skip + crd->crd_len - ivlen,
ivlen,
cmd->softc->sc_sessions[cmd->session_num].hs_iv);
}
/* XXX We do not handle contig data */
break;
}
}
if (cmd->base_masks & HIFN_BASE_CMD_MAC) {
u_int8_t *macbuf;
macbuf = resbuf + sizeof(struct hifn_base_result);
if (cmd->base_masks & HIFN_BASE_CMD_COMP)
macbuf += sizeof(struct hifn_comp_result);
macbuf += sizeof(struct hifn_mac_result);
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
int len;
if (crd->crd_alg == CRYPTO_MD5)
len = 16;
else if (crd->crd_alg == CRYPTO_SHA1)
len = 20;
else if (crd->crd_alg == CRYPTO_MD5_HMAC_96 ||
crd->crd_alg == CRYPTO_SHA1_HMAC_96)
len = 12;
else
continue;
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copyback((struct mbuf *)crp->crp_buf,
crd->crd_inject, len, macbuf);
else if ((crp->crp_flags & CRYPTO_F_IOV) && crp->crp_mac)
memcpy(crp->crp_mac, (void *)macbuf, len);
break;
}
}
if (cmd->src_map != cmd->dst_map) {
bus_dmamap_unload(sc->sc_dmat, cmd->dst_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->dst_map);
}
bus_dmamap_unload(sc->sc_dmat, cmd->src_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->src_map);
free(cmd, M_DEVBUF);
crypto_done(crp);
}
#ifdef HAVE_CRYPTO_LZS
static int
hifn_compression(struct hifn_softc *sc, struct cryptop *crp,
struct hifn_command *cmd)
{
struct cryptodesc *crd = crp->crp_desc;
int s, err = 0;
cmd->compcrd = crd;
cmd->base_masks |= HIFN_BASE_CMD_COMP;
if ((crp->crp_flags & CRYPTO_F_IMBUF) == 0) {
/*
* XXX can only handle mbufs right now since we can
* XXX dynamically resize them.
*/
err = EINVAL;
return (ENOMEM);
}
if ((crd->crd_flags & CRD_F_COMP) == 0)
cmd->base_masks |= HIFN_BASE_CMD_DECODE;
if (crd->crd_alg == CRYPTO_LZS_COMP)
cmd->comp_masks |= HIFN_COMP_CMD_ALG_LZS |
HIFN_COMP_CMD_CLEARHIST;
if (bus_dmamap_create(sc->sc_dmat, HIFN_MAX_DMALEN, MAX_SCATTER,
HIFN_MAX_SEGLEN, 0, BUS_DMA_NOWAIT, &cmd->src_map)) {
err = ENOMEM;
goto fail;
}
if (bus_dmamap_create(sc->sc_dmat, HIFN_MAX_DMALEN, MAX_SCATTER,
HIFN_MAX_SEGLEN, 0, BUS_DMA_NOWAIT, &cmd->dst_map)) {
err = ENOMEM;
goto fail;
}
if (crp->crp_flags & CRYPTO_F_IMBUF) {
int len;
if (bus_dmamap_load_mbuf(sc->sc_dmat, cmd->src_map,
cmd->srcu.src_m, BUS_DMA_NOWAIT)) {
err = ENOMEM;
goto fail;
}
len = cmd->src_map->dm_mapsize / MCLBYTES;
if ((cmd->src_map->dm_mapsize % MCLBYTES) != 0)
len++;
len *= MCLBYTES;
if ((crd->crd_flags & CRD_F_COMP) == 0)
len *= 4;
if (len > HIFN_MAX_DMALEN)
len = HIFN_MAX_DMALEN;
cmd->dstu.dst_m = hifn_mkmbuf_chain(len, cmd->srcu.src_m);
if (cmd->dstu.dst_m == NULL) {
err = ENOMEM;
goto fail;
}
if (bus_dmamap_load_mbuf(sc->sc_dmat, cmd->dst_map,
cmd->dstu.dst_m, BUS_DMA_NOWAIT)) {
err = ENOMEM;
goto fail;
}
} else if (crp->crp_flags & CRYPTO_F_IOV) {
if (bus_dmamap_load_uio(sc->sc_dmat, cmd->src_map,
cmd->srcu.src_io, BUS_DMA_NOWAIT)) {
err = ENOMEM;
goto fail;
}
if (bus_dmamap_load_uio(sc->sc_dmat, cmd->dst_map,
cmd->dstu.dst_io, BUS_DMA_NOWAIT)) {
err = ENOMEM;
goto fail;
}
}
if (cmd->src_map == cmd->dst_map)
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
0, cmd->src_map->dm_mapsize,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
else {
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
0, cmd->src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
0, cmd->dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
}
cmd->crp = crp;
/*
* Always use session 0. The modes of compression we use are
* stateless and there is always at least one compression
* context, zero.
*/
cmd->session_num = 0;
cmd->softc = sc;
s = splnet();
err = hifn_compress_enter(sc, cmd);
splx(s);
if (err != 0)
goto fail;
return (0);
fail:
if (cmd->dst_map != NULL) {
if (cmd->dst_map->dm_nsegs > 0)
bus_dmamap_unload(sc->sc_dmat, cmd->dst_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->dst_map);
}
if (cmd->src_map != NULL) {
if (cmd->src_map->dm_nsegs > 0)
bus_dmamap_unload(sc->sc_dmat, cmd->src_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->src_map);
}
free(cmd, M_DEVBUF);
if (err == EINVAL)
hifnstats.hst_invalid++;
else
hifnstats.hst_nomem++;
crp->crp_etype = err;
crypto_done(crp);
return (0);
}
/*
* must be called at splnet()
*/
static int
hifn_compress_enter(struct hifn_softc *sc, struct hifn_command *cmd)
{
struct hifn_dma *dma = sc->sc_dma;
int cmdi, resi;
u_int32_t cmdlen;
if ((dma->cmdu + 1) > HIFN_D_CMD_RSIZE ||
(dma->resu + 1) > HIFN_D_CMD_RSIZE)
return (ENOMEM);
if ((dma->srcu + cmd->src_map->dm_nsegs) > HIFN_D_SRC_RSIZE ||
(dma->dstu + cmd->dst_map->dm_nsegs) > HIFN_D_DST_RSIZE)
return (ENOMEM);
if (dma->cmdi == HIFN_D_CMD_RSIZE) {
dma->cmdi = 0;
dma->cmdr[HIFN_D_CMD_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_CMDR_SYNC(sc, HIFN_D_CMD_RSIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
cmdi = dma->cmdi++;
cmdlen = hifn_write_command(cmd, dma->command_bufs[cmdi]);
HIFN_CMD_SYNC(sc, cmdi, BUS_DMASYNC_PREWRITE);
/* .p for command/result already set */
dma->cmdr[cmdi].l = htole32(cmdlen | HIFN_D_VALID | HIFN_D_LAST |
HIFN_D_MASKDONEIRQ);
HIFN_CMDR_SYNC(sc, cmdi,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
dma->cmdu++;
if (sc->sc_c_busy == 0) {
WRITE_REG_1(sc, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
sc->sc_c_busy = 1;
SET_LED(sc, HIFN_MIPSRST_LED0);
}
/*
* We don't worry about missing an interrupt (which a "command wait"
* interrupt salvages us from), unless there is more than one command
* in the queue.
*/
if (dma->cmdu > 1) {
sc->sc_dmaier |= HIFN_DMAIER_C_WAIT;
WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
}
hifnstats.hst_ipackets++;
hifnstats.hst_ibytes += cmd->src_map->dm_mapsize;
hifn_dmamap_load_src(sc, cmd);
if (sc->sc_s_busy == 0) {
WRITE_REG_1(sc, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
sc->sc_s_busy = 1;
SET_LED(sc, HIFN_MIPSRST_LED1);
}
/*
* Unlike other descriptors, we don't mask done interrupt from
* result descriptor.
*/
if (dma->resi == HIFN_D_RES_RSIZE) {
dma->resi = 0;
dma->resr[HIFN_D_RES_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_RESR_SYNC(sc, HIFN_D_RES_RSIZE,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
resi = dma->resi++;
dma->hifn_commands[resi] = cmd;
HIFN_RES_SYNC(sc, resi, BUS_DMASYNC_PREREAD);
dma->resr[resi].l = htole32(HIFN_MAX_RESULT |
HIFN_D_VALID | HIFN_D_LAST);
HIFN_RESR_SYNC(sc, resi,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
dma->resu++;
if (sc->sc_r_busy == 0) {
WRITE_REG_1(sc, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
sc->sc_r_busy = 1;
SET_LED(sc, HIFN_MIPSRST_LED2);
}
if (cmd->sloplen)
cmd->slopidx = resi;
hifn_dmamap_load_dst(sc, cmd);
if (sc->sc_d_busy == 0) {
WRITE_REG_1(sc, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
sc->sc_d_busy = 1;
}
sc->sc_active = 5;
cmd->cmd_callback = hifn_callback_comp;
return (0);
}
static void
hifn_callback_comp(struct hifn_softc *sc, struct hifn_command *cmd,
u_int8_t *resbuf)
{
struct hifn_base_result baseres;
struct cryptop *crp = cmd->crp;
struct hifn_dma *dma = sc->sc_dma;
struct mbuf *m;
int err = 0, i, u;
u_int32_t olen;
bus_size_t dstsize;
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
0, cmd->src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
0, cmd->dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
dstsize = cmd->dst_map->dm_mapsize;
bus_dmamap_unload(sc->sc_dmat, cmd->dst_map);
memcpy(&baseres, resbuf, sizeof(struct hifn_base_result));
i = dma->dstk; u = dma->dstu;
while (u != 0) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
offsetof(struct hifn_dma, dstr[i]), sizeof(struct hifn_desc),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (dma->dstr[i].l & htole32(HIFN_D_VALID)) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
offsetof(struct hifn_dma, dstr[i]),
sizeof(struct hifn_desc),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
break;
}
if (++i == (HIFN_D_DST_RSIZE + 1))
i = 0;
else
u--;
}
dma->dstk = i; dma->dstu = u;
if (baseres.flags & htole16(HIFN_BASE_RES_DSTOVERRUN)) {
bus_size_t xlen;
xlen = dstsize;
m_freem(cmd->dstu.dst_m);
if (xlen == HIFN_MAX_DMALEN) {
/* We've done all we can. */
err = E2BIG;
goto out;
}
xlen += MCLBYTES;
if (xlen > HIFN_MAX_DMALEN)
xlen = HIFN_MAX_DMALEN;
cmd->dstu.dst_m = hifn_mkmbuf_chain(xlen,
cmd->srcu.src_m);
if (cmd->dstu.dst_m == NULL) {
err = ENOMEM;
goto out;
}
if (bus_dmamap_load_mbuf(sc->sc_dmat, cmd->dst_map,
cmd->dstu.dst_m, BUS_DMA_NOWAIT)) {
err = ENOMEM;
goto out;
}
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
0, cmd->src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
0, cmd->dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
/* already at splnet... */
err = hifn_compress_enter(sc, cmd);
if (err != 0)
goto out;
return;
}
olen = dstsize - (letoh16(baseres.dst_cnt) |
(((letoh16(baseres.session) & HIFN_BASE_RES_DSTLEN_M) >>
HIFN_BASE_RES_DSTLEN_S) << 16));
crp->crp_olen = olen - cmd->compcrd->crd_skip;
bus_dmamap_unload(sc->sc_dmat, cmd->src_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->src_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->dst_map);
m = cmd->dstu.dst_m;
if (m->m_flags & M_PKTHDR)
m->m_pkthdr.len = olen;
crp->crp_buf = (void *)m;
for (; m != NULL; m = m->m_next) {
if (olen >= m->m_len)
olen -= m->m_len;
else {
m->m_len = olen;
olen = 0;
}
}
m_freem(cmd->srcu.src_m);
free(cmd, M_DEVBUF);
crp->crp_etype = 0;
crypto_done(crp);
return;
out:
if (cmd->dst_map != NULL) {
if (cmd->src_map->dm_nsegs != 0)
bus_dmamap_unload(sc->sc_dmat, cmd->src_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->dst_map);
}
if (cmd->src_map != NULL) {
if (cmd->src_map->dm_nsegs != 0)
bus_dmamap_unload(sc->sc_dmat, cmd->src_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->src_map);
}
if (cmd->dstu.dst_m != NULL)
m_freem(cmd->dstu.dst_m);
free(cmd, M_DEVBUF);
crp->crp_etype = err;
crypto_done(crp);
}
static struct mbuf *
hifn_mkmbuf_chain(int totlen, struct mbuf *mtemplate)
{
int len;
struct mbuf *m, *m0, *mlast;
if (mtemplate->m_flags & M_PKTHDR) {
len = MHLEN;
MGETHDR(m0, M_DONTWAIT, MT_DATA);
} else {
len = MLEN;
MGET(m0, M_DONTWAIT, MT_DATA);
}
if (m0 == NULL)
return (NULL);
if (len == MHLEN)
M_DUP_PKTHDR(m0, mtemplate);
MCLGET(m0, M_DONTWAIT);
if (!(m0->m_flags & M_EXT))
m_freem(m0);
len = MCLBYTES;
totlen -= len;
m0->m_pkthdr.len = m0->m_len = len;
mlast = m0;
while (totlen > 0) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
m_freem(m0);
return (NULL);
}
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m0);
return (NULL);
}
len = MCLBYTES;
m->m_len = len;
if (m0->m_flags & M_PKTHDR)
m0->m_pkthdr.len += len;
totlen -= len;
mlast->m_next = m;
mlast = m;
}
return (m0);
}
#endif /* HAVE_CRYPTO_LZS */
static void
hifn_write_4(struct hifn_softc *sc, int reggrp, bus_size_t reg, u_int32_t val)
{
/*
* 7811 PB3 rev/2 parts lock-up on burst writes to Group 0
* and Group 1 registers; avoid conditions that could create
* burst writes by doing a read in between the writes.
*/
if (sc->sc_flags & HIFN_NO_BURSTWRITE) {
if (sc->sc_waw_lastgroup == reggrp &&
sc->sc_waw_lastreg == reg - 4) {
bus_space_read_4(sc->sc_st1, sc->sc_sh1, HIFN_1_REVID);
}
sc->sc_waw_lastgroup = reggrp;
sc->sc_waw_lastreg = reg;
}
if (reggrp == 0)
bus_space_write_4(sc->sc_st0, sc->sc_sh0, reg, val);
else
bus_space_write_4(sc->sc_st1, sc->sc_sh1, reg, val);
}
static u_int32_t
hifn_read_4(struct hifn_softc *sc, int reggrp, bus_size_t reg)
{
if (sc->sc_flags & HIFN_NO_BURSTWRITE) {
sc->sc_waw_lastgroup = -1;
sc->sc_waw_lastreg = 1;
}
if (reggrp == 0)
return (bus_space_read_4(sc->sc_st0, sc->sc_sh0, reg));
return (bus_space_read_4(sc->sc_st1, sc->sc_sh1, reg));
}