NetBSD/sys/arch/vax/uba/dhu.c

859 lines
19 KiB
C

/* $NetBSD: dhu.c,v 1.4 1996/04/08 18:37:28 ragge Exp $ */
/*
* Copyright (c) 1996 Ken C. Wellsch. All rights reserved.
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Ralph Campbell and Rick Macklem.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "dhu.h"
#if NDHU > 0
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <sys/proc.h>
#include <sys/map.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/uio.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <machine/trap.h>
#include <vax/uba/ubavar.h>
#include <vax/uba/dhureg.h>
/* A DHU has 16 ports while a DHV has only 8 */
#define NDHULINE (NDHU*16)
/* This is an experiment to try and fake DHU behavior with a DHV.
* The DHV does not have any programmable delay on input silo level
* but interrupts immediately when the first character enters.
* This is really kludgy and so I doubt it will stay. From what could
* be measured, doing a timeout() delay reduced the input interrupt
* rate by an order of magnitude (from over 700 to at most 30) with
* heavy input (e.g. via kermit). Input performance increased 5% too
* as more CPU cycles were available for the application to consume input.
*/
#define RX_DELAY 0 /* ticks to delay RX intr handling */
struct dhu_softc
{
dhuregs * sc_addr; /* controller reg address */
struct tty * sc_tty; /* what we work on */
unsigned sc_txaddr; /* UBA map address to TX buf */
u_char sc_type; /* controller type, DHU or DHV */
u_char sc_state; /* to manage TX output status */
u_short sc_cc; /* character count on TX */
u_short sc_modem; /* modem bits state */
};
struct dhu_softc dhu_softc[NDHULINE];
#define IS_DHU 0 /* cntlr is a DHU */
#define IS_DHV 1 /* cntlr is a DHV */
#define STATE_IDLE 000 /* no current output in progress */
#define STATE_DMA_RUNNING 001 /* DMA TX in progress */
#define STATE_DMA_STOPPED 002 /* DMA TX was aborted */
#define STATE_TX_ONE_CHAR 004 /* did a single char directly */
/* Flags used to monitor modem bits, make them understood outside driver */
#define DML_DTR TIOCM_DTR
#define DML_RTS TIOCM_RTS
#define DML_CTS TIOCM_CTS
#define DML_DCD TIOCM_CD
#define DML_RI TIOCM_RI
#define DML_DSR TIOCM_DSR
#define DML_BRK 0100000 /* no equivalent, we will mask */
/* On a stock DHV, channel pairs (0/1, 2/3, etc.) must use */
/* a baud rate from the same group. So limiting to B is likely */
/* best, although clone boards like the ABLE QHV allow all settings. */
static struct speedtab dhuspeedtab[] =
{
{ 0, 0 }, /* Groups */
{ 50, DHU_LPR_B50 }, /* A */
{ 75, DHU_LPR_B75 }, /* B */
{ 110, DHU_LPR_B110 }, /* A and B */
{ 134, DHU_LPR_B134 }, /* A and B */
{ 150, DHU_LPR_B150 }, /* B */
{ 300, DHU_LPR_B300 }, /* A and B */
{ 600, DHU_LPR_B600 }, /* A and B */
{ 1200, DHU_LPR_B1200 }, /* A and B */
{ 1800, DHU_LPR_B1800 }, /* B */
{ 2000, DHU_LPR_B2000 }, /* B */
{ 2400, DHU_LPR_B2400 }, /* A and B */
{ 4800, DHU_LPR_B4800 }, /* A and B */
{ 7200, DHU_LPR_B7200 }, /* A */
{ 9600, DHU_LPR_B9600 }, /* A and B */
{ 19200, DHU_LPR_B19200 }, /* B */
{ 38400, DHU_LPR_B38400 }, /* A */
{ -1, -1 }
};
static int dhu_match __P((struct device *, void *, void *));
static void dhu_attach __P((struct device *, struct device *, void *));
struct cfdriver dhu_cd = {
NULL, "dhu", DV_TTY
};
struct cfattach dhu_ca = {
sizeof(struct device), dhu_match, dhu_attach
};
static void dhurint __P((int));
static void dhuxint __P((int));
static void dhustart __P((struct tty *));
static int dhuparam __P((struct tty *, struct termios *));
static int dhuiflow __P((struct tty *, int));
int dhustop __P((struct tty *, int));
static unsigned dhumctl __P((int, int, int));
int dhuopen __P((dev_t, int, int, struct proc *));
int dhuclose __P((dev_t, int, int, struct proc *));
int dhuread __P((dev_t, struct uio *, int));
int dhuwrite __P((dev_t, struct uio *, int));
int dhuioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
struct tty * dhutty __P((dev_t));
/* Autoconfig handles: setup the controller to interrupt, */
/* then complete the housecleaning for full operation */
static int
dhu_match (parent, match, aux)
struct device *parent;
void *match, *aux;
{
struct uba_attach_args *ua = aux;
static int nunits = 0;
register dhuregs *dhuaddr;
register int n;
if (nunits > NDHU)
return 0;
dhuaddr = (dhuregs *) ua->ua_addr;
/* Reset controller to initialize, enable TX/RX interrupts */
/* to catch floating vector info elsewhere when completed */
dhuaddr->dhu_csr = (DHU_CSR_MASTER_RESET | DHU_CSR_RXIE | DHU_CSR_TXIE);
/* Now wait up to 3 seconds for self-test to complete. */
for (n = 0; n < 300; n++) {
DELAY(10000);
if ((dhuaddr->dhu_csr & DHU_CSR_MASTER_RESET) == 0)
break;
}
/* If the RESET did not clear after 3 seconds, */
/* the controller must be broken. */
if (n >= 300)
return 0;
/* Check whether diagnostic run has signalled a failure. */
if ((dhuaddr->dhu_csr & DHU_CSR_DIAG_FAIL) != 0)
return 0;
/* Register the RX interrupt handler and pass unit # as arg */
ua->ua_ivec = dhurint;
nunits++;
return 1;
}
static void
dhu_attach (parent, self, aux)
struct device *parent, *self;
void *aux;
{
register struct uba_attach_args *ua = aux;
register dhuregs *dhuaddr;
register unsigned c;
register int n, m;
dhuaddr = (dhuregs *) ua->ua_addr;
/* Process the 8 bytes of diagnostic info put into */
/* the FIFO following the master reset operation. */
printf ("\ndhv%d:", self->dv_unit);
for (n = 0; n < 8; n++) {
c = dhuaddr->dhu_rbuf;
if ((c&DHU_DIAG_CODE) == DHU_DIAG_CODE) {
if ((c&0200) == 0000)
printf (" rom(%d) version %d",
((c>>1)&01), ((c>>2)&037));
else if (((c>>2)&07) != 0)
printf (" diag-error(proc%d)=%x",
((c>>1)&01), ((c>>2)&07));
}
}
printf ("\n");
/* Initialize our static softc structure. */
c = dhuaddr->dhu_stat; /* get flag to distinguish DHU from DHV */
for (n = 0; n < ((c & DHU_STAT_DHU)? 16: 8); n++) {
m = ((self->dv_unit) << 4) + n;
dhu_softc[m].sc_addr = dhuaddr;
dhu_softc[m].sc_tty = ttymalloc();
dhu_softc[m].sc_type = (c & DHU_STAT_DHU)? IS_DHU: IS_DHV;
dhu_softc[m].sc_state = STATE_IDLE;
dhu_softc[m].sc_txaddr = uballoc (parent->dv_unit,
dhu_softc[m].sc_tty->t_outq.c_cs,
dhu_softc[m].sc_tty->t_outq.c_cn,
UBA_CANTWAIT);
}
/* Now stuff TX interrupt handler in place */
ubasetvec (self, ua->ua_cvec+1, dhuxint);
return;
}
/* Receiver Interrupt */
#if RX_DELAY > 0
static int RXtimeout = 0;
static void
dhurint (cntlr)
int cntlr;
{
static void dhuRXint __P((void *));
if (RXtimeout == 0) {
RXtimeout = 1;
timeout (dhuRXint, (void *)cntlr, RX_DELAY);
}
return;
}
static void
dhuRXint (arg)
void * arg;
{
#else
static void
dhurint (cntlr)
int cntlr;
{
#endif
register dhuregs *dhuaddr;
register struct tty *tp;
register int cc, unit;
register unsigned c, delta;
int overrun = 0;
#if RX_DELAY > 0
int cntlr = (int) arg;
int s;
s = spltty();
#endif
dhuaddr = dhu_softc[cntlr].sc_addr;
while ((c = dhuaddr->dhu_rbuf) & DHU_RBUF_DATA_VALID)
{
/* Ignore diagnostic FIFO entries. */
if ((c&DHU_DIAG_CODE) == DHU_DIAG_CODE)
continue;
cc = c & 0xff;
unit = (cntlr<<4) | ((c>>8)&017);
tp = dhu_softc[unit].sc_tty;
/* LINK.TYPE is set so we get modem control FIFO entries */
if ((c & DHU_DIAG_CODE) == DHU_MODEM_CODE) {
c = (c << 8);
/* Do MDMBUF flow control, wakeup sleeping opens */
if (c & DHU_STAT_DCD) {
if (!(tp->t_state & TS_CARR_ON))
(void)(*linesw[tp->t_line].l_modem)(tp, 1);
}
else if ((tp->t_state & TS_CARR_ON) &&
(*linesw[tp->t_line].l_modem)(tp, 0) == 0)
(void) dhumctl (unit, 0, DMSET);
/* Do CRTSCTS flow control */
delta = c ^ dhu_softc[unit].sc_modem;
dhu_softc[unit].sc_modem = c;
if ((delta & DHU_STAT_CTS) &&
(tp->t_state & TS_ISOPEN) &&
(tp->t_cflag & CRTSCTS)) {
if (c & DHU_STAT_CTS) {
tp->t_state &= ~TS_TTSTOP;
ttstart (tp);
} else {
tp->t_state |= TS_TTSTOP;
dhustop (tp, 0);
}
}
continue;
}
if ((c & DHU_RBUF_OVERRUN_ERR) && overrun == 0) {
log(LOG_WARNING, "dhv(%d,%d): silo overflow\n",
cntlr, (c >> 8) & 017);
overrun = 1;
}
/* A BREAK key will appear as a NULL with a framing error */
if (c & DHU_RBUF_FRAMING_ERR)
cc |= TTY_FE;
if (c & DHU_RBUF_PARITY_ERR)
cc |= TTY_PE;
(*linesw[tp->t_line].l_rint)(cc, tp);
}
#if RX_DELAY > 0
RXtimeout = 0;
(void) splx(s);
#endif
return;
}
/* Transmitter Interrupt */
static void
dhuxint (cntlr)
int cntlr;
{
register dhuregs *dhuaddr;
register struct dhu_softc *sc;
register struct tty *tp;
register unsigned csr;
register int unit;
dhuaddr = dhu_softc[cntlr].sc_addr;
csr = (dhuaddr->dhu_csr_hi) << 8;
unit = (cntlr<<4)|((csr>>8)&017);
sc = &dhu_softc[unit];
tp = sc->sc_tty;
tp->t_state &= ~TS_BUSY;
if (tp->t_state & TS_FLUSH)
tp->t_state &= ~TS_FLUSH;
else {
if (sc->sc_state == STATE_DMA_STOPPED)
sc->sc_cc -= dhuaddr->dhu_tbufcnt;
ndflush (&tp->t_outq, sc->sc_cc);
sc->sc_cc = 0;
}
sc->sc_state = STATE_IDLE;
if (tp->t_line)
(*linesw[tp->t_line].l_start)(tp);
else
dhustart (tp);
return;
}
int
dhuopen (dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
register struct tty *tp;
register int unit;
int s, error = 0;
unit = minor(dev);
if (unit >= NDHULINE)
return (ENXIO);
tp = dhu_softc[unit].sc_tty;
if (tp == NULL)
tp = dhu_softc[unit].sc_tty = ttymalloc();
tp->t_oproc = dhustart;
tp->t_param = dhuparam;
tp->t_hwiflow = dhuiflow;
tp->t_dev = dev;
if ((tp->t_state & TS_ISOPEN) == 0) {
tp->t_state |= TS_WOPEN;
ttychars(tp);
if (tp->t_ispeed == 0) {
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_cflag = TTYDEF_CFLAG;
tp->t_lflag = TTYDEF_LFLAG;
tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
}
(void) dhuparam(tp, &tp->t_termios);
ttsetwater(tp);
} else if ((tp->t_state & TS_XCLUDE) && curproc->p_ucred->cr_uid != 0)
return (EBUSY);
/* Use DMBIS and *not* DMSET or else we clobber incoming bits */
if (dhumctl (unit, DML_DTR|DML_RTS, DMBIS) & DML_DCD)
tp->t_state |= TS_CARR_ON;
s = spltty();
while (!(flag & O_NONBLOCK) && !(tp->t_cflag & CLOCAL) &&
!(tp->t_state & TS_CARR_ON)) {
tp->t_state |= TS_WOPEN;
error = ttysleep(tp, (caddr_t)&tp->t_rawq,
TTIPRI | PCATCH, ttopen, 0);
if (error)
break;
}
(void) splx(s);
if (error)
return (error);
return ((*linesw[tp->t_line].l_open)(dev, tp));
}
/*ARGSUSED*/
int
dhuclose (dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
register struct tty *tp;
register int unit = minor(dev);
tp = dhu_softc[unit].sc_tty;
(*linesw[tp->t_line].l_close)(tp, flag);
/* Make sure a BREAK state is not left enabled. */
(void) dhumctl (unit, DML_BRK, DMBIC);
/* Do a hangup if so required. */
if ((tp->t_cflag & HUPCL) || (tp->t_state & TS_WOPEN) ||
!(tp->t_state & TS_ISOPEN))
(void) dhumctl (unit, 0, DMSET);
return (ttyclose(tp));
}
int
dhuread (dev, uio, flag)
dev_t dev;
struct uio *uio;
{
register struct tty *tp;
tp = dhu_softc[minor(dev)].sc_tty;
return ((*linesw[tp->t_line].l_read)(tp, uio, flag));
}
int
dhuwrite (dev, uio, flag)
dev_t dev;
struct uio *uio;
{
register struct tty *tp;
tp = dhu_softc[minor(dev)].sc_tty;
return ((*linesw[tp->t_line].l_write)(tp, uio, flag));
}
/*ARGSUSED*/
int
dhuioctl (dev, cmd, data, flag, p)
dev_t dev;
u_long cmd;
caddr_t data;
int flag;
struct proc *p;
{
register struct tty *tp;
register int unit = minor(dev);
int error;
tp = dhu_softc[unit].sc_tty;
error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
if (error >= 0)
return (error);
error = ttioctl(tp, cmd, data, flag, p);
if (error >= 0)
return (error);
switch (cmd) {
case TIOCSBRK:
(void) dhumctl (unit, DML_BRK, DMBIS);
break;
case TIOCCBRK:
(void) dhumctl (unit, DML_BRK, DMBIC);
break;
case TIOCSDTR:
(void) dhumctl (unit, DML_DTR|DML_RTS, DMBIS);
break;
case TIOCCDTR:
(void) dhumctl (unit, DML_DTR|DML_RTS, DMBIC);
break;
case TIOCMSET:
(void) dhumctl (unit, *(int *)data, DMSET);
break;
case TIOCMBIS:
(void) dhumctl (unit, *(int *)data, DMBIS);
break;
case TIOCMBIC:
(void) dhumctl (unit, *(int *)data, DMBIC);
break;
case TIOCMGET:
*(int *)data = (dhumctl (unit, 0, DMGET) & ~DML_BRK);
break;
default:
return (ENOTTY);
}
return (0);
}
struct tty *
dhutty (dev)
dev_t dev;
{
struct tty *tp = dhu_softc[minor(dev)].sc_tty;
return (tp);
}
/*ARGSUSED*/
int
dhustop (tp, flag)
register struct tty *tp;
{
register dhuregs *dhuaddr;
register struct dhu_softc *sc;
int unit = minor(tp->t_dev);
int s;
s = spltty();
if (tp->t_state & TS_BUSY)
{
sc = &dhu_softc[unit];
if (sc->sc_state == STATE_DMA_RUNNING)
{
sc->sc_state = STATE_DMA_STOPPED;
dhuaddr = sc->sc_addr;
dhuaddr->dhu_csr_lo = (DHU_CSR_RXIE | (unit & 017));
dhuaddr->dhu_lnctrl |= DHU_LNCTRL_DMA_ABORT;
}
if (!(tp->t_state & TS_TTSTOP))
tp->t_state |= TS_FLUSH;
}
(void) splx(s);
return 0;
}
static void
dhustart (tp)
register struct tty *tp;
{
register struct dhu_softc *sc;
register dhuregs *dhuaddr;
register int unit = minor(tp->t_dev);
register unsigned addr;
register int cc;
int s;
s = spltty();
if (tp->t_state & (TS_TIMEOUT|TS_BUSY|TS_TTSTOP))
goto out;
if (tp->t_outq.c_cc <= tp->t_lowat) {
if (tp->t_state & TS_ASLEEP) {
tp->t_state &= ~TS_ASLEEP;
wakeup((caddr_t)&tp->t_outq);
}
selwakeup(&tp->t_wsel);
}
if (tp->t_outq.c_cc == 0)
goto out;
cc = ndqb(&tp->t_outq, 0);
if (cc == 0)
goto out;
tp->t_state |= TS_BUSY;
sc = &dhu_softc[unit];
dhuaddr = sc->sc_addr;
dhuaddr->dhu_csr_lo = (DHU_CSR_RXIE | (unit & 017));
sc->sc_cc = cc;
if (cc == 1)
{
sc->sc_state = STATE_TX_ONE_CHAR;
dhuaddr->dhu_txchar = DHU_TXCHAR_DATA_VALID | *tp->t_outq.c_cf;
}
else
{
sc->sc_state = STATE_DMA_RUNNING;
addr = UBAI_ADDR(sc->sc_txaddr) +
(tp->t_outq.c_cf - tp->t_outq.c_cs);
dhuaddr->dhu_tbufcnt = cc;
dhuaddr->dhu_tbufad1 = (addr & 0xffff);
dhuaddr->dhu_tbufad2 = ((addr>>16) & 0x3f) |
DHU_TBUFAD2_TX_ENABLE;
dhuaddr->dhu_lnctrl &= ~DHU_LNCTRL_DMA_ABORT;
dhuaddr->dhu_tbufad2 |= DHU_TBUFAD2_DMA_START;
}
out:
(void) splx(s);
return;
}
static int
dhuparam (tp, t)
register struct tty *tp;
register struct termios *t;
{
register dhuregs *dhuaddr;
register int cflag = t->c_cflag;
int unit = minor(tp->t_dev);
int ispeed = ttspeedtab(t->c_ispeed, dhuspeedtab);
int ospeed = ttspeedtab(t->c_ospeed, dhuspeedtab);
register unsigned lpr, lnctrl;
int s;
/* check requested parameters */
if (ospeed < 0 || ispeed < 0)
return (EINVAL);
tp->t_ispeed = t->c_ispeed;
tp->t_ospeed = t->c_ospeed;
tp->t_cflag = cflag;
if (ospeed == 0) {
(void) dhumctl (unit, 0, DMSET); /* hang up line */
return (0);
}
s = spltty();
dhuaddr = dhu_softc[unit].sc_addr;
dhuaddr->dhu_csr_lo = (DHU_CSR_RXIE | (unit & 017));
lpr = ((ispeed&017)<<8) | ((ospeed&017)<<12) ;
switch (cflag & CSIZE)
{
case CS5:
lpr |= DHU_LPR_5_BIT_CHAR;
break;
case CS6:
lpr |= DHU_LPR_6_BIT_CHAR;
break;
case CS7:
lpr |= DHU_LPR_7_BIT_CHAR;
break;
default:
lpr |= DHU_LPR_8_BIT_CHAR;
break;
}
if (cflag & PARENB)
lpr |= DHU_LPR_PARENB;
if (!(cflag & PARODD))
lpr |= DHU_LPR_EPAR;
if (cflag & CSTOPB)
lpr |= DHU_LPR_2_STOP;
dhuaddr->dhu_lpr = lpr;
dhuaddr->dhu_tbufad2 |= DHU_TBUFAD2_TX_ENABLE;
lnctrl = dhuaddr->dhu_lnctrl;
/* Setting LINK.TYPE enables modem signal change interrupts. */
lnctrl |= (DHU_LNCTRL_RX_ENABLE | DHU_LNCTRL_LINK_TYPE);
if (t->c_iflag & IXON)
lnctrl |= DHU_LNCTRL_OAUTO;
else
lnctrl &= ~DHU_LNCTRL_OAUTO;
if (t->c_iflag & IXOFF)
lnctrl |= DHU_LNCTRL_IAUTO;
else
lnctrl &= ~DHU_LNCTRL_IAUTO;
dhuaddr->dhu_lnctrl = lnctrl;
dhu_softc[unit].sc_modem = dhuaddr->dhu_stat;
(void) splx(s);
return (0);
}
static int
dhuiflow (tp, flag)
struct tty *tp;
int flag;
{
int unit = minor(tp->t_dev);
if (tp->t_cflag & CRTSCTS) {
(void) dhumctl (unit, DML_RTS, ((flag)? DMBIC: DMBIS));
return (1);
}
return (0);
}
static unsigned
dhumctl (unit, bits, how)
int unit, bits, how;
{
register dhuregs *dhuaddr;
register unsigned status;
register unsigned lnctrl;
register unsigned mbits;
int s;
s = spltty();
dhuaddr = dhu_softc[unit].sc_addr;
dhuaddr->dhu_csr_lo = (DHU_CSR_RXIE | (unit & 017));
mbits = 0;
/* external signals as seen from the port */
status = dhuaddr->dhu_stat;
if (status & DHU_STAT_CTS)
mbits |= DML_CTS;
if (status & DHU_STAT_DCD)
mbits |= DML_DCD;
if (status & DHU_STAT_DSR)
mbits |= DML_DSR;
if (status & DHU_STAT_RI)
mbits |= DML_RI;
/* internal signals/state delivered to port */
lnctrl = dhuaddr->dhu_lnctrl;
if (lnctrl & DHU_LNCTRL_RTS)
mbits |= DML_RTS;
if (lnctrl & DHU_LNCTRL_DTR)
mbits |= DML_DTR;
if (lnctrl & DHU_LNCTRL_BREAK)
mbits |= DML_BRK;
switch (how)
{
case DMSET:
mbits = bits;
break;
case DMBIS:
mbits |= bits;
break;
case DMBIC:
mbits &= ~bits;
break;
case DMGET:
(void) splx(s);
return (mbits);
}
if (mbits & DML_RTS)
lnctrl |= DHU_LNCTRL_RTS;
else
lnctrl &= ~DHU_LNCTRL_RTS;
if (mbits & DML_DTR)
lnctrl |= DHU_LNCTRL_DTR;
else
lnctrl &= ~DHU_LNCTRL_DTR;
if (mbits & DML_BRK)
lnctrl |= DHU_LNCTRL_BREAK;
else
lnctrl &= ~DHU_LNCTRL_BREAK;
dhuaddr->dhu_lnctrl = lnctrl;
(void) splx(s);
return (mbits);
}
#endif /* #if NDHU > 0 */