NetBSD/sys/dev/i2c/dbcool.c
pgoyette 3ed3895de3 Add i2c bus address checking for these chips. All supported chips live
at predefined addresses 0x2c, 0x2d, or 0x2e.
2008-12-18 20:41:35 +00:00

1872 lines
50 KiB
C

/* $NetBSD: dbcool.c,v 1.7 2008/12/18 20:41:35 pgoyette Exp $ */
/*-
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Goyette
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* a driver for the dbCool(tm) family of environmental controllers
*
* Data sheets for the various supported chips are available at
*
* http://www.onsemi.com/pub/Collateral/ADM1027-D.PDF
* http://www.onsemi.com/pub/Collateral/ADM1030-D.PDF
* http://www.onsemi.com/pub/Collateral/ADT7463-D.PDF
* http://www.onsemi.com/pub/Collateral/ADT7466.PDF
* http://www.onsemi.com/pub/Collateral/ADT7467-D.PDF
* http://www.onsemi.com/pub/Collateral/ADT7468-D.PDF
* http://www.onsemi.com/pub/Collateral/ADT7473-D.PDF
* http://www.onsemi.com/pub/Collateral/ADT7475-D.PDF
* http://www.onsemi.com/pub/Collateral/ADT7476-D.PDF
* http://www.onsemi.com/pub/Collateral/ADT7490-D.PDF
*
* (URLs are correct as of October 5, 2008)
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: dbcool.c,v 1.7 2008/12/18 20:41:35 pgoyette Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#include <uvm/uvm_extern.h>
#include <dev/i2c/dbcool_var.h>
#include <dev/i2c/dbcool_reg.h>
/* Config interface */
static int dbcool_match(device_t, cfdata_t, void *);
static void dbcool_attach(device_t, device_t, void *);
static int dbcool_detach(device_t, int);
/* Device attributes */
static int dbcool_supply_voltage(struct dbcool_softc *);
static bool dbcool_islocked(struct dbcool_softc *);
/* Sensor read functions */
static void dbcool_refresh(struct sysmon_envsys *, envsys_data_t *);
static int dbcool_read_rpm(struct dbcool_softc *, uint8_t);
static int dbcool_read_temp(struct dbcool_softc *, uint8_t, bool);
static int dbcool_read_volt(struct dbcool_softc *, uint8_t, int, bool);
/* SYSCTL Helpers */
static int sysctl_dbcool_temp(SYSCTLFN_PROTO);
static int sysctl_adm1030_temp(SYSCTLFN_PROTO);
static int sysctl_adm1030_trange(SYSCTLFN_PROTO);
static int sysctl_dbcool_duty(SYSCTLFN_PROTO);
static int sysctl_dbcool_behavior(SYSCTLFN_PROTO);
static int sysctl_dbcool_slope(SYSCTLFN_PROTO);
static int sysctl_dbcool_volt_limit(SYSCTLFN_PROTO);
static int sysctl_dbcool_temp_limit(SYSCTLFN_PROTO);
static int sysctl_dbcool_fan_limit(SYSCTLFN_PROTO);
static int sysctl_dbcool_thyst(SYSCTLFN_PROTO);
static int sysctl_dbcool_vid(SYSCTLFN_PROTO);
/* Set-up subroutines */
static void dbcool_setup_controllers(struct dbcool_softc *,
const struct sysctlnode *, int, int);
static int dbcool_setup_sensors(struct dbcool_softc *,
const struct sysctlnode *, int, int);
static int dbcool_attach_sensor(struct dbcool_softc *,
const struct sysctlnode *, int, int (*)(SYSCTLFN_PROTO));
#ifdef DBCOOL_DEBUG
static int sysctl_dbcool_reg_select(SYSCTLFN_PROTO);
static int sysctl_dbcool_reg_access(SYSCTLFN_PROTO);
#endif /* DBCOOL_DEBUG */
/*
* Descriptions for SYSCTL entries
*/
struct dbc_sysctl_info {
const char *name;
const char *desc;
bool lockable;
int (*helper)(SYSCTLFN_PROTO);
};
static struct dbc_sysctl_info dbc_sysctl_table[] = {
/*
* The first several entries must remain in the same order as the
* corresponding entries in enum dbc_pwm_params
*/
{ "behavior", "operating behavior and temp selector",
true, sysctl_dbcool_behavior },
{ "min_duty", "minimum fan controller PWM duty cycle",
true, sysctl_dbcool_duty },
{ "max_duty", "maximum fan controller PWM duty cycle",
true, sysctl_dbcool_duty },
{ "cur_duty", "current fan controller PWM duty cycle",
false, sysctl_dbcool_duty },
/*
* The rest of these should be in the order in which they
* are to be stored in the sysctl tree; the table index is
* used as the high-order bits of the sysctl_num to maintain
* the sequence.
*
* If you rearrange the order of these items, be sure to
* update the sysctl_index in the XXX_sensor_table[] for
* the various chips!
*/
{ "Trange", "temp slope/range to reach 100% duty cycle",
true, sysctl_dbcool_slope },
{ "Tmin", "temp at which to start fan controller",
true, sysctl_dbcool_temp },
{ "Ttherm", "temp at which THERM is asserted",
true, sysctl_dbcool_temp },
{ "Thyst", "temp hysteresis for stopping fan controller",
true, sysctl_dbcool_thyst },
{ "Tmin", "temp at which to start fan controller",
true, sysctl_adm1030_temp },
{ "Trange", "temp slope/range to reach 100% duty cycle",
true, sysctl_adm1030_trange },
};
static const char *dbc_sensor_names[] = {
"l_temp", "r1_temp", "r2_temp", "Vccp", "Vcc", "fan1",
"fan2", "fan3", "fan4", "AIN1", "AIN2", "V2dot5",
"V5", "V12", "Vtt", "Imon"
};
/*
* Following table derived from product data-sheets
*/
static int64_t nominal_voltages[] = {
-1, /* Vcc can be either 3.3 or 5.0V
at 3/4 scale */
2249939, /* Vccp 2.25V 3/4 scale */
2497436, /* 2.5VIN 2.5V 3/4 scale */
5002466, /* 5VIN 5V 3/4 scale */
12000000, /* 12VIN 12V 3/4 scale */
1690809, /* Vtt, Imon 2.25V full scale */
1689600, /* AIN1, AIN2 2.25V full scale */
0
};
/*
* Sensor-type, { val-reg, hilim-reg, lolim-reg}, name-idx, sysctl-table-idx,
* nom-voltage-index
*/
struct dbcool_sensor ADT7490_sensor_table[] = {
{ DBC_TEMP, { DBCOOL_LOCAL_TEMP,
DBCOOL_LOCAL_HIGHLIM,
DBCOOL_LOCAL_LOWLIM }, 0, 0, 0 },
{ DBC_TEMP, { DBCOOL_REMOTE1_TEMP,
DBCOOL_REMOTE1_HIGHLIM,
DBCOOL_REMOTE1_LOWLIM }, 1, 0, 0 },
{ DBC_TEMP, { DBCOOL_REMOTE2_TEMP,
DBCOOL_REMOTE2_HIGHLIM,
DBCOOL_REMOTE2_LOWLIM }, 2, 0, 0 },
{ DBC_VOLT, { DBCOOL_VCCP,
DBCOOL_VCCP_HIGHLIM,
DBCOOL_VCCP_LOWLIM }, 3, 0, 1 },
{ DBC_VOLT, { DBCOOL_VCC,
DBCOOL_VCC_HIGHLIM,
DBCOOL_VCC_LOWLIM }, 4, 0, 0 },
{ DBC_VOLT, { DBCOOL_25VIN,
DBCOOL_25VIN_HIGHLIM,
DBCOOL_25VIN_LOWLIM }, 11, 0, 2 },
{ DBC_VOLT, { DBCOOL_5VIN,
DBCOOL_5VIN_HIGHLIM,
DBCOOL_5VIN_LOWLIM }, 12, 0, 3 },
{ DBC_VOLT, { DBCOOL_12VIN,
DBCOOL_12VIN_HIGHLIM,
DBCOOL_12VIN_LOWLIM }, 13, 0, 4 },
{ DBC_VOLT, { DBCOOL_VTT,
DBCOOL_VTT_HIGHLIM,
DBCOOL_VTT_LOWLIM }, 14, 0, 5 },
{ DBC_VOLT, { DBCOOL_IMON,
DBCOOL_IMON_HIGHLIM,
DBCOOL_IMON_LOWLIM }, 15, 0, 5 },
{ DBC_FAN, { DBCOOL_FAN1_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH1_MIN_LSB }, 5, 0, 0 },
{ DBC_FAN, { DBCOOL_FAN2_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH2_MIN_LSB }, 6, 0, 0 },
{ DBC_FAN, { DBCOOL_FAN3_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH3_MIN_LSB }, 7, 0, 0 },
{ DBC_FAN, { DBCOOL_FAN4_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH4_MIN_LSB }, 8, 0, 0 },
{ DBC_CTL, { DBCOOL_LOCAL_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 5, 0 },
{ DBC_CTL, { DBCOOL_LOCAL_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 6, 0 },
{ DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST | 0x80,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 7, 0 },
{ DBC_CTL, { DBCOOL_REMOTE1_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 5, 0 },
{ DBC_CTL, { DBCOOL_REMOTE1_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 6, 0 },
{ DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 7, 0 },
{ DBC_CTL, { DBCOOL_REMOTE2_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 2, 5, 0 },
{ DBC_CTL, { DBCOOL_REMOTE2_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 2, 6, 0 },
{ DBC_CTL, { DBCOOL_R2_TMIN_HYST,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 2, 7, 0 },
{ DBC_EOF, { 0, 0, 0 }, 0, 0, 0 }
};
struct dbcool_sensor ADT7476_sensor_table[] = {
{ DBC_TEMP, { DBCOOL_LOCAL_TEMP,
DBCOOL_LOCAL_HIGHLIM,
DBCOOL_LOCAL_LOWLIM }, 0, 0, 0 },
{ DBC_TEMP, { DBCOOL_REMOTE1_TEMP,
DBCOOL_REMOTE1_HIGHLIM,
DBCOOL_REMOTE1_LOWLIM }, 1, 0, 0 },
{ DBC_TEMP, { DBCOOL_REMOTE2_TEMP,
DBCOOL_REMOTE2_HIGHLIM,
DBCOOL_REMOTE2_LOWLIM }, 2, 0, 0 },
{ DBC_VOLT, { DBCOOL_VCCP,
DBCOOL_VCCP_HIGHLIM,
DBCOOL_VCCP_LOWLIM }, 3, 0, 1 },
{ DBC_VOLT, { DBCOOL_VCC,
DBCOOL_VCC_HIGHLIM,
DBCOOL_VCC_LOWLIM }, 4, 0, 0 },
{ DBC_VOLT, { DBCOOL_25VIN,
DBCOOL_25VIN_HIGHLIM,
DBCOOL_25VIN_LOWLIM }, 11, 0, 2 },
{ DBC_VOLT, { DBCOOL_5VIN,
DBCOOL_5VIN_HIGHLIM,
DBCOOL_5VIN_LOWLIM }, 12, 0, 3 },
{ DBC_VOLT, { DBCOOL_12VIN,
DBCOOL_12VIN_HIGHLIM,
DBCOOL_12VIN_LOWLIM }, 13, 0, 4 },
{ DBC_FAN, { DBCOOL_FAN1_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH1_MIN_LSB }, 5, 0, 0 },
{ DBC_FAN, { DBCOOL_FAN2_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH2_MIN_LSB }, 6, 0, 0 },
{ DBC_FAN, { DBCOOL_FAN3_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH3_MIN_LSB }, 7, 0, 0 },
{ DBC_FAN, { DBCOOL_FAN4_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH4_MIN_LSB }, 8, 0, 0 },
{ DBC_CTL, { DBCOOL_LOCAL_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 5, 0 },
{ DBC_CTL, { DBCOOL_LOCAL_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 6, 0 },
{ DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST | 0x80,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 7, 0 },
{ DBC_CTL, { DBCOOL_REMOTE1_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 5, 0 },
{ DBC_CTL, { DBCOOL_REMOTE1_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 6, 0 },
{ DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 7, 0 },
{ DBC_CTL, { DBCOOL_REMOTE2_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 2, 5, 0 },
{ DBC_CTL, { DBCOOL_REMOTE2_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 2, 6, 0 },
{ DBC_CTL, { DBCOOL_R2_TMIN_HYST,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 2, 7, 0 },
{ DBC_EOF, { 0, 0, 0 }, 0, 0, 0 }
};
struct dbcool_sensor ADT7475_sensor_table[] = {
{ DBC_TEMP, { DBCOOL_LOCAL_TEMP,
DBCOOL_LOCAL_HIGHLIM,
DBCOOL_LOCAL_LOWLIM }, 0, 0, 0 },
{ DBC_TEMP, { DBCOOL_REMOTE1_TEMP,
DBCOOL_REMOTE1_HIGHLIM,
DBCOOL_REMOTE1_LOWLIM }, 1, 0, 0 },
{ DBC_TEMP, { DBCOOL_REMOTE2_TEMP,
DBCOOL_REMOTE2_HIGHLIM,
DBCOOL_REMOTE2_LOWLIM }, 2, 0, 0 },
{ DBC_VOLT, { DBCOOL_VCCP,
DBCOOL_VCCP_HIGHLIM,
DBCOOL_VCCP_LOWLIM }, 3, 0, 1 },
{ DBC_VOLT, { DBCOOL_VCC,
DBCOOL_VCC_HIGHLIM,
DBCOOL_VCC_LOWLIM }, 4, 0, 0 },
{ DBC_FAN, { DBCOOL_FAN1_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH1_MIN_LSB }, 5, 0, 0 },
{ DBC_FAN, { DBCOOL_FAN2_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH2_MIN_LSB }, 6, 0, 0 },
{ DBC_FAN, { DBCOOL_FAN3_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH3_MIN_LSB }, 7, 0, 0 },
{ DBC_FAN, { DBCOOL_FAN4_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH4_MIN_LSB }, 8, 0, 0 },
{ DBC_CTL, { DBCOOL_LOCAL_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 5, 0 },
{ DBC_CTL, { DBCOOL_LOCAL_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 6, 0 },
{ DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST | 0x80,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 7, 0 },
{ DBC_CTL, { DBCOOL_REMOTE1_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 5, 0 },
{ DBC_CTL, { DBCOOL_REMOTE1_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 6, 0 },
{ DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 7, 0 },
{ DBC_CTL, { DBCOOL_REMOTE2_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 2, 5, 0 },
{ DBC_CTL, { DBCOOL_REMOTE2_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 2, 6, 0 },
{ DBC_CTL, { DBCOOL_R2_TMIN_HYST,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 2, 7, 0 },
{ DBC_EOF, { 0, 0, 0 }, 0, 0, 0 }
};
/*
* The registers of dbcool_power_control must be in the same order as
* in enum dbc_pwm_params
*/
struct dbcool_power_control ADT7475_power_table[] = {
{ { DBCOOL_PWM1_CTL, DBCOOL_PWM1_MINDUTY,
DBCOOL_PWM1_MAXDUTY, DBCOOL_PWM1_CURDUTY },
"fan_control_1" },
{ { DBCOOL_PWM2_CTL, DBCOOL_PWM2_MINDUTY,
DBCOOL_PWM2_MAXDUTY, DBCOOL_PWM2_CURDUTY },
"fan_control_2" },
{ { DBCOOL_PWM3_CTL, DBCOOL_PWM3_MINDUTY,
DBCOOL_PWM3_MAXDUTY, DBCOOL_PWM3_CURDUTY },
"fan_control_3" },
{ { 0, 0, 0, 0 }, NULL }
};
struct dbcool_sensor ADT7466_sensor_table[] = {
{ DBC_TEMP, { DBCOOL_ADT7466_LCL_TEMP_MSB,
DBCOOL_ADT7466_LCL_TEMP_HILIM,
DBCOOL_ADT7466_LCL_TEMP_LOLIM }, 0, 0, 0 },
{ DBC_TEMP, { DBCOOL_ADT7466_REM_TEMP_MSB,
DBCOOL_ADT7466_REM_TEMP_HILIM,
DBCOOL_ADT7466_REM_TEMP_LOLIM }, 1, 0, 0 },
{ DBC_VOLT, { DBCOOL_ADT7466_VCC,
DBCOOL_ADT7466_VCC_HILIM,
DBCOOL_ADT7466_VCC_LOLIM }, 4, 0, 0 },
{ DBC_VOLT, { DBCOOL_ADT7466_AIN1,
DBCOOL_ADT7466_AIN1_HILIM,
DBCOOL_ADT7466_AIN1_LOLIM }, 9, 0, 6 },
{ DBC_VOLT, { DBCOOL_ADT7466_AIN2,
DBCOOL_ADT7466_AIN2_HILIM,
DBCOOL_ADT7466_AIN2_LOLIM }, 10, 0, 6 },
{ DBC_FAN, { DBCOOL_ADT7466_FANA_LSB,
DBCOOL_NO_REG,
DBCOOL_ADT7466_FANA_LOLIM_LSB }, 5, 0, 0 },
{ DBC_FAN, { DBCOOL_ADT7466_FANB_LSB,
DBCOOL_NO_REG,
DBCOOL_ADT7466_FANB_LOLIM_LSB }, 6, 0, 0 },
{ DBC_EOF, { 0, 0, 0 }, 0, 0, 0 }
};
struct dbcool_sensor ADM1027_sensor_table[] = {
{ DBC_TEMP, { DBCOOL_LOCAL_TEMP,
DBCOOL_LOCAL_HIGHLIM,
DBCOOL_LOCAL_LOWLIM }, 0, 0, 0 },
{ DBC_TEMP, { DBCOOL_REMOTE1_TEMP,
DBCOOL_REMOTE1_HIGHLIM,
DBCOOL_REMOTE1_LOWLIM }, 1, 0, 0 },
{ DBC_TEMP, { DBCOOL_REMOTE2_TEMP,
DBCOOL_REMOTE2_HIGHLIM,
DBCOOL_REMOTE2_LOWLIM }, 2, 0, 0 },
{ DBC_VOLT, { DBCOOL_VCCP,
DBCOOL_VCCP_HIGHLIM,
DBCOOL_VCCP_LOWLIM }, 3, 0, 1 },
{ DBC_VOLT, { DBCOOL_VCC,
DBCOOL_VCC_HIGHLIM,
DBCOOL_VCC_LOWLIM }, 4, 0, 0 },
{ DBC_VOLT, { DBCOOL_25VIN,
DBCOOL_25VIN_HIGHLIM,
DBCOOL_25VIN_LOWLIM }, 11, 0, 2 },
{ DBC_VOLT, { DBCOOL_5VIN,
DBCOOL_5VIN_HIGHLIM,
DBCOOL_5VIN_LOWLIM }, 12, 0, 3 },
{ DBC_VOLT, { DBCOOL_12VIN,
DBCOOL_12VIN_HIGHLIM,
DBCOOL_12VIN_LOWLIM }, 13, 0, 4 },
{ DBC_FAN, { DBCOOL_FAN1_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH1_MIN_LSB }, 5, 0, 0 },
{ DBC_FAN, { DBCOOL_FAN2_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH2_MIN_LSB }, 6, 0, 0 },
{ DBC_FAN, { DBCOOL_FAN3_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH3_MIN_LSB }, 7, 0, 0 },
{ DBC_FAN, { DBCOOL_FAN4_TACH_LSB,
DBCOOL_NO_REG,
DBCOOL_TACH4_MIN_LSB }, 8, 0, 0 },
{ DBC_CTL, { DBCOOL_LOCAL_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 5, 0 },
{ DBC_CTL, { DBCOOL_LOCAL_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 6, 0 },
{ DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST | 0x80,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 7, 0 },
{ DBC_CTL, { DBCOOL_REMOTE1_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 5, 0 },
{ DBC_CTL, { DBCOOL_REMOTE1_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 6, 0 },
{ DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 7, 0 },
{ DBC_CTL, { DBCOOL_REMOTE2_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 2, 5, 0 },
{ DBC_CTL, { DBCOOL_REMOTE2_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 2, 6, 0 },
{ DBC_CTL, { DBCOOL_R2_TMIN_HYST,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 2, 7, 0 },
{ DBC_EOF, { 0, 0, 0 }, 0, 0, 0 }
};
struct dbcool_sensor ADM1030_sensor_table[] = {
{ DBC_TEMP, { DBCOOL_ADM1030_L_TEMP,
DBCOOL_ADM1030_L_HI_LIM,
DBCOOL_ADM1030_L_LO_LIM }, 0, 0, 0 },
{ DBC_TEMP, { DBCOOL_ADM1030_R_TEMP,
DBCOOL_ADM1030_R_HI_LIM,
DBCOOL_ADM1030_R_LO_LIM }, 1, 0, 0 },
{ DBC_FAN, { DBCOOL_ADM1030_FAN_TACH,
DBCOOL_NO_REG,
DBCOOL_ADM1030_FAN_LO_LIM }, 5, 0, 0 },
{ DBC_CTL, { DBCOOL_ADM1030_L_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 8, 0 },
{ DBC_CTL, { DBCOOL_ADM1030_L_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 9, 0 },
{ DBC_CTL, { DBCOOL_ADM1030_L_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 0, 6, 0 },
{ DBC_CTL, { DBCOOL_ADM1030_R_TMIN,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 8, 0 },
{ DBC_CTL, { DBCOOL_ADM1030_L_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 9, 0 },
{ DBC_CTL, { DBCOOL_ADM1030_R_TTHRESH,
DBCOOL_NO_REG,
DBCOOL_NO_REG }, 1, 6, 0 },
{ DBC_EOF, {0, 0, 0 }, 0, 0, 0 }
};
struct dbcool_power_control ADM1030_power_table[] = {
{ { DBCOOL_ADM1030_CFG1, DBCOOL_NO_REG, DBCOOL_NO_REG,
DBCOOL_ADM1030_FAN_SPEED_CFG },
"fan_control_1" },
{ { 0, 0, 0, 0 }, NULL }
};
struct chip_id chip_table[] = {
{ DBCOOL_COMPANYID, ADT7490_DEVICEID, ADT7490_REV_ID,
ADT7475_sensor_table, ADT7475_power_table,
DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_VID |
DBCFLAG_HAS_PECI,
90000 * 60, "ADT7490" },
{ DBCOOL_COMPANYID, ADT7476_DEVICEID, 0xff,
ADT7476_sensor_table, ADT7475_power_table,
DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_VID,
90000 * 60, "ADT7476" },
{ DBCOOL_COMPANYID, ADT7475_DEVICEID, 0xff,
ADT7475_sensor_table, ADT7475_power_table,
DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_SHDN,
90000 * 60, "ADT7475" },
{ DBCOOL_COMPANYID, ADT7473_DEVICEID, ADT7473_REV_ID1,
ADT7475_sensor_table, ADT7475_power_table,
DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_SHDN,
90000 * 60, "ADT7463" },
{ DBCOOL_COMPANYID, ADT7473_DEVICEID, ADT7473_REV_ID2,
ADT7475_sensor_table, ADT7475_power_table,
DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_SHDN,
90000 * 60, "ADT7463-1" },
{ DBCOOL_COMPANYID, ADT7468_DEVICEID, 0xff,
ADT7476_sensor_table, ADT7475_power_table,
DBCFLAG_TEMPOFFSET | DBCFLAG_MULTI_VCC | DBCFLAG_HAS_MAXDUTY |
DBCFLAG_4BIT_VER | DBCFLAG_HAS_SHDN | DBCFLAG_HAS_VID,
90000 * 60, "ADT7467/ADT7468" },
{ DBCOOL_COMPANYID, ADT7466_DEVICEID, 0xff,
ADT7466_sensor_table, NULL,
DBCFLAG_ADT7466 | DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_SHDN,
82000 * 60, "ADT7466" },
{ DBCOOL_COMPANYID, ADT7463_DEVICEID, ADT7463_REV_ID1,
ADM1027_sensor_table, ADT7475_power_table,
DBCFLAG_MULTI_VCC | DBCFLAG_4BIT_VER | DBCFLAG_HAS_SHDN |
DBCFLAG_ADM1027 | DBCFLAG_HAS_VID,
90000 * 60, "ADT7463" },
{ DBCOOL_COMPANYID, ADT7463_DEVICEID, ADT7463_REV_ID2,
ADM1027_sensor_table, ADT7475_power_table,
DBCFLAG_MULTI_VCC | DBCFLAG_4BIT_VER | DBCFLAG_HAS_SHDN |
DBCFLAG_HAS_VID | DBCFLAG_HAS_VID_SEL,
90000 * 60, "ADT7463" },
{ DBCOOL_COMPANYID, ADM1027_DEVICEID, ADM1027_REV_ID,
ADM1027_sensor_table, ADT7475_power_table,
DBCFLAG_MULTI_VCC | DBCFLAG_4BIT_VER | DBCFLAG_HAS_VID,
90000 * 60, "ADM1027" },
{ DBCOOL_COMPANYID, ADM1030_DEVICEID, 0xff,
ADM1030_sensor_table, ADM1030_power_table,
DBCFLAG_ADM1030,
11250 * 60, "ADM1030" },
{ 0, 0, 0, NULL, NULL, 0, 0, NULL }
};
static const char *behavior[] = {
"remote1", "local", "remote2", "full-speed",
"disabled", "local+remote2","all-temps", "manual"
};
static char dbcool_cur_behav[16];
CFATTACH_DECL_NEW(dbcool, sizeof(struct dbcool_softc),
dbcool_match, dbcool_attach, dbcool_detach, NULL);
int
dbcool_match(device_t parent, cfdata_t cf, void *aux)
{
struct i2c_attach_args *ia = aux;
struct dbcool_softc sc;
sc.sc_tag = ia->ia_tag;
sc.sc_addr = ia->ia_addr;
sc.sc_readreg = dbcool_readreg;
sc.sc_writereg = dbcool_writereg;
/* no probing if we attach to iic, but verify chip id and address */
if ((ia->ia_addr & DBCOOL_ADDRMASK) != DBCOOL_ADDR)
return 0;
if (dbcool_chip_ident(&sc) >= 0)
return 1;
return 0;
}
void
dbcool_attach(device_t parent, device_t self, void *aux)
{
struct dbcool_softc *sc = device_private(self);
struct i2c_attach_args *args = aux;
uint8_t ver;
sc->sc_addr = args->ia_addr;
sc->sc_tag = args->ia_tag;
sc->sc_dev = self;
sc->sc_readreg = dbcool_readreg;
sc->sc_writereg = dbcool_writereg;
(void)dbcool_chip_ident(sc);
aprint_naive("\n");
aprint_normal("\n");
ver = sc->sc_readreg(sc, DBCOOL_REVISION_REG);
if (sc->sc_chip->flags & DBCFLAG_4BIT_VER)
aprint_normal_dev(self, "%s dBCool(tm) Controller "
"(rev 0x%02x, stepping 0x%02x)\n", sc->sc_chip->name,
ver >> 4, ver & 0x0f);
else
aprint_normal_dev(self, "%s dBCool(tm) Controller "
"(rev 0x%04x)\n", sc->sc_chip->name, ver);
dbcool_setup(self);
if (!pmf_device_register(self, dbcool_pmf_suspend, dbcool_pmf_resume))
aprint_error_dev(self, "couldn't establish power handler\n");
}
static int
dbcool_detach(device_t self, int flags)
{
struct dbcool_softc *sc = device_private(self);
sysmon_envsys_unregister(sc->sc_sme);
sc->sc_sme = NULL;
return 0;
}
/* On suspend, we save the state of the SHDN bit, then set it */
bool dbcool_pmf_suspend(device_t dev PMF_FN_ARGS)
{
struct dbcool_softc *sc = device_private(dev);
uint8_t reg, bit, cfg;
if ((sc->sc_chip->flags && DBCFLAG_HAS_SHDN) == 0)
return true;
if (sc->sc_chip->flags && DBCFLAG_ADT7466) {
reg = DBCOOL_ADT7466_CONFIG2;
bit = DBCOOL_ADT7466_CFG2_SHDN;
} else {
reg = DBCOOL_CONFIG2_REG;
bit = DBCOOL_CFG2_SHDN;
}
cfg = sc->sc_readreg(sc, reg);
sc->sc_suspend = cfg & bit;
cfg |= bit;
sc->sc_writereg(sc, reg, cfg);
return true;
}
/* On resume, we restore the previous state of the SHDN bit */
bool dbcool_pmf_resume(device_t dev PMF_FN_ARGS)
{
struct dbcool_softc *sc = device_private(dev);
uint8_t reg, bit, cfg;
if ((sc->sc_chip->flags && DBCFLAG_HAS_SHDN) == 0)
return true;
if (sc->sc_chip->flags && DBCFLAG_ADT7466) {
reg = DBCOOL_ADT7466_CONFIG2;
bit = DBCOOL_ADT7466_CFG2_SHDN;
} else {
reg = DBCOOL_CONFIG2_REG;
bit = DBCOOL_CFG2_SHDN;
}
cfg = sc->sc_readreg(sc, reg);
cfg &= ~sc->sc_suspend;
sc->sc_writereg(sc, reg, cfg);
return true;
}
uint8_t
dbcool_readreg(struct dbcool_softc *sc, uint8_t reg)
{
uint8_t data = 0;
if (iic_acquire_bus(sc->sc_tag, 0) != 0)
goto bad;
if (iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
sc->sc_addr, NULL, 0, &reg, 1, 0) != 0)
goto bad;
iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_addr, NULL, 0, &data, 1, 0);
bad:
iic_release_bus(sc->sc_tag, 0);
return data;
}
void
dbcool_writereg(struct dbcool_softc *sc, uint8_t reg, uint8_t val)
{
if (iic_acquire_bus(sc->sc_tag, 0) != 0)
return;
iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
sc->sc_addr, &reg, 1, &val, 1, 0);
iic_release_bus(sc->sc_tag, 0);
return;
}
static bool
dbcool_islocked(struct dbcool_softc *sc)
{
uint8_t cfg_reg;
if (sc->sc_chip->flags & DBCFLAG_ADM1030)
return 0;
if (sc->sc_chip->flags & DBCFLAG_ADT7466)
cfg_reg = DBCOOL_ADT7466_CONFIG1;
else
cfg_reg = DBCOOL_CONFIG1_REG;
if (sc->sc_readreg(sc, cfg_reg) & DBCOOL_CFG1_LOCK)
return 1;
else
return 0;
}
static int
dbcool_read_temp(struct dbcool_softc *sc, uint8_t reg, bool extres)
{
uint8_t t1, t2, t3, val, ext = 0;
int temp;
if (sc->sc_chip->flags & DBCFLAG_ADT7466) {
/*
* ADT7466 temps are in strange location
*/
ext = sc->sc_readreg(sc, DBCOOL_ADT7466_CONFIG1);
val = sc->sc_readreg(sc, reg);
if (extres)
ext = sc->sc_readreg(sc, reg + 1);
} else if (sc->sc_chip->flags & DBCFLAG_ADM1030) {
/*
* ADM1030 temps are in their own special place, too
*/
if (extres) {
ext = sc->sc_readreg(sc, DBCOOL_ADM1030_TEMP_EXTRES);
if (reg == DBCOOL_ADM1030_L_TEMP)
ext >>= 6;
else
ext >>= 1;
ext &= 0x03;
}
val = sc->sc_readreg(sc, reg);
} else if (extres) {
ext = sc->sc_readreg(sc, DBCOOL_EXTRES2_REG);
/* Read all msb regs to unlatch them */
t1 = sc->sc_readreg(sc, DBCOOL_12VIN);
t1 = sc->sc_readreg(sc, DBCOOL_REMOTE1_TEMP);
t2 = sc->sc_readreg(sc, DBCOOL_REMOTE2_TEMP);
t3 = sc->sc_readreg(sc, DBCOOL_LOCAL_TEMP);
switch (reg) {
case DBCOOL_REMOTE1_TEMP:
val = t1;
ext >>= 2;
break;
case DBCOOL_LOCAL_TEMP:
val = t3;
ext >>= 4;
break;
case DBCOOL_REMOTE2_TEMP:
val = t2;
ext >>= 6;
break;
default:
val = 0;
break;
}
ext &= 0x03;
}
else
val = sc->sc_readreg(sc, reg);
/* Check for invalid temp values */
if ((sc->sc_temp_offset == 0 && val == 0x80) ||
(sc->sc_temp_offset != 0 && val == 0))
return 0;
/* If using offset mode, adjust, else treat as signed */
if (sc->sc_temp_offset) {
temp = val;
temp -= sc->sc_temp_offset;
} else
temp = (int8_t)val;
/* Convert degC to uK and include extended precision bits */
temp *= 1000000;
temp += 250000 * (int)ext;
temp += 273150000U;
return temp;
}
static int
dbcool_read_rpm(struct dbcool_softc *sc, uint8_t reg)
{
int rpm;
uint8_t rpm_lo, rpm_hi;
rpm_lo = sc->sc_readreg(sc, reg);
if (sc->sc_chip->flags & DBCFLAG_ADM1030)
rpm_hi = (rpm_lo == 0xff)?0xff:0x0;
else
rpm_hi = sc->sc_readreg(sc, reg + 1);
rpm = (rpm_hi << 8) | rpm_lo;
if (rpm == 0xffff)
return 0; /* 0xffff indicates stalled/failed fan */
return (sc->sc_chip->rpm_dividend / rpm);
}
/* Provide chip's supply voltage, in microvolts */
static int
dbcool_supply_voltage(struct dbcool_softc *sc)
{
if (sc->sc_chip->flags & DBCFLAG_MULTI_VCC) {
if (sc->sc_readreg(sc, DBCOOL_CONFIG1_REG) & DBCOOL_CFG1_Vcc)
return 5002500;
else
return 3300000;
} else if (sc->sc_chip->flags & DBCFLAG_ADT7466) {
if (sc->sc_readreg(sc, DBCOOL_ADT7466_CONFIG1) &
DBCOOL_ADT7466_CFG1_Vcc)
return 5000000;
else
return 3300000;
} else
return 3300000;
}
/*
* Nominal voltages are calculated in microvolts
*/
static int
dbcool_read_volt(struct dbcool_softc *sc, uint8_t reg, int nom_idx, bool extres)
{
uint8_t ext = 0, v1, v2, v3, v4, val;
int64_t ret;
int64_t nom;
nom = nominal_voltages[nom_idx];
if (nom < 0)
nom = sc->sc_supply_voltage;
/* ADT7466 voltages are in strange locations with only 8-bits */
if (sc->sc_chip->flags & DBCFLAG_ADT7466)
val = sc->sc_readreg(sc, reg);
else
/*
* It's a "normal" dbCool chip - check for regs that
* share extended resolution bits since we have to
* read all the MSB registers to unlatch them.
*/
if (!extres)
val = sc->sc_readreg(sc, reg);
else if (reg == DBCOOL_12VIN) {
ext = sc->sc_readreg(sc, DBCOOL_EXTRES2_REG) && 0x03;
val = sc->sc_readreg(sc, reg);
(void)dbcool_read_temp(sc, DBCOOL_LOCAL_TEMP, true);
} else if (reg == DBCOOL_VTT || reg == DBCOOL_IMON) {
ext = sc->sc_readreg(sc, DBCOOL_EXTRES_VTT_IMON);
v1 = sc->sc_readreg(sc, DBCOOL_IMON);
v2 = sc->sc_readreg(sc, DBCOOL_VTT);
if (reg == DBCOOL_IMON) {
val = v1;
ext >>= 6;
} else
val = v2;
ext >>= 4;
ext &= 0x0f;
} else {
ext = sc->sc_readreg(sc, DBCOOL_EXTRES1_REG);
v1 = sc->sc_readreg(sc, DBCOOL_25VIN);
v2 = sc->sc_readreg(sc, DBCOOL_VCCP);
v3 = sc->sc_readreg(sc, DBCOOL_VCC);
v4 = sc->sc_readreg(sc, DBCOOL_5VIN);
switch (reg) {
case DBCOOL_25VIN:
val = v1;
break;
case DBCOOL_VCCP:
val = v2;
ext >>= 2;
break;
case DBCOOL_VCC:
val = v3;
ext >>= 4;
break;
case DBCOOL_5VIN:
val = v4;
ext >>= 6;
break;
default:
val = nom = 0;
}
ext &= 0x03;
}
/*
* Scale the nominal value by the 10-bit fraction
*
* Returned value is in microvolts.
*/
ret = val;
ret <<= 2;
ret |= ext;
ret = (ret * nom) / 0x300;
return ret;
}
SYSCTL_SETUP(sysctl_dbcoolsetup, "sysctl dBCool subtree setup")
{
sysctl_createv(NULL, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "hw", NULL,
NULL, 0, NULL, 0,
CTL_HW, CTL_EOL);
}
static int
sysctl_dbcool_temp(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct dbcool_softc *sc;
int reg, error;
uint8_t chipreg;
uint8_t newreg;
node = *rnode;
sc = (struct dbcool_softc *)node.sysctl_data;
chipreg = node.sysctl_num & 0xff;
if (sc->sc_temp_offset) {
reg = sc->sc_readreg(sc, chipreg);
reg -= sc->sc_temp_offset;
} else
reg = (int8_t)sc->sc_readreg(sc, chipreg);
node.sysctl_data = &reg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
/* We were asked to update the value - sanity check before writing */
if (*(int *)node.sysctl_data < -64 ||
*(int *)node.sysctl_data > 127 + sc->sc_temp_offset)
return EINVAL;
newreg = *(int *)node.sysctl_data;
newreg += sc->sc_temp_offset;
sc->sc_writereg(sc, chipreg, newreg);
return 0;
}
static int
sysctl_adm1030_temp(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct dbcool_softc *sc;
int reg, error;
uint8_t chipreg, oldreg, newreg;
node = *rnode;
sc = (struct dbcool_softc *)node.sysctl_data;
chipreg = node.sysctl_num & 0xff;
oldreg = (int8_t)sc->sc_readreg(sc, chipreg);
reg = (oldreg >> 1) & ~0x03;
node.sysctl_data = &reg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
/* We were asked to update the value - sanity check before writing */
if (*(int *)node.sysctl_data < 0 || *(int *)node.sysctl_data > 127)
return EINVAL;
newreg = *(int *)node.sysctl_data;
newreg &= ~0x03;
newreg <<= 1;
newreg |= (oldreg & 0x07);
sc->sc_writereg(sc, chipreg, newreg);
return 0;
}
static int
sysctl_adm1030_trange(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct dbcool_softc *sc;
int reg, error, newval;
uint8_t chipreg, oldreg, newreg;
node = *rnode;
sc = (struct dbcool_softc *)node.sysctl_data;
chipreg = node.sysctl_num & 0xff;
oldreg = (int8_t)sc->sc_readreg(sc, chipreg);
reg = oldreg & 0x07;
node.sysctl_data = &reg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
/* We were asked to update the value - sanity check before writing */
newval = *(int *)node.sysctl_data;
if (newval == 5)
newreg = 0;
else if (newval == 10)
newreg = 1;
else if (newval == 20)
newreg = 2;
else if (newval == 40)
newreg = 3;
else if (newval == 80)
newreg = 4;
else
return EINVAL;
newreg |= (oldreg & ~0x07);
sc->sc_writereg(sc, chipreg, newreg);
return 0;
}
static int
sysctl_dbcool_duty(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct dbcool_softc *sc;
int reg, error;
uint8_t chipreg, oldreg, newreg;
node = *rnode;
sc = (struct dbcool_softc *)node.sysctl_data;
chipreg = node.sysctl_num & 0xff;
oldreg = sc->sc_readreg(sc, chipreg);
reg = (uint32_t)oldreg;
if (sc->sc_chip->flags & DBCFLAG_ADM1030)
reg = ((reg & 0x0f) * 100) / 15;
else
reg = (reg * 100) / 255;
node.sysctl_data = &reg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
/* We were asked to update the value - sanity check before writing */
if (*(int *)node.sysctl_data < 0 || *(int *)node.sysctl_data > 100)
return EINVAL;
if (sc->sc_chip->flags & DBCFLAG_ADM1030) {
newreg = *(uint8_t *)(node.sysctl_data) * 15 / 100;
newreg |= oldreg & 0xf0;
} else
newreg = *(uint8_t *)(node.sysctl_data) * 255 / 100;
sc->sc_writereg(sc, chipreg, newreg);
return 0;
}
static int
sysctl_dbcool_behavior(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct dbcool_softc *sc;
int i, reg, error;
uint8_t chipreg, oldreg, newreg;
node = *rnode;
sc = (struct dbcool_softc *)node.sysctl_data;
chipreg = node.sysctl_num & 0xff;
oldreg = sc->sc_readreg(sc, chipreg);
if (sc->sc_chip->flags & DBCFLAG_ADM1030) {
if ((sc->sc_readreg(sc, DBCOOL_ADM1030_CFG2) & 1) == 0)
reg = 4;
else if ((oldreg & 0x80) == 0)
reg = 7;
else if ((oldreg & 0x60) == 0)
reg = 4;
else
reg = 6;
} else
reg = (oldreg >> 5) & 0x07;
strlcpy(dbcool_cur_behav, behavior[reg], sizeof(dbcool_cur_behav));
node.sysctl_data = dbcool_cur_behav;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
/* We were asked to update the value - convert string to value */
newreg = __arraycount(behavior);
for (i = 0; i < __arraycount(behavior); i++)
if (strcmp(node.sysctl_data, behavior[i]) == 0)
break;
if (i >= __arraycount(behavior))
return EINVAL;
if (sc->sc_chip->flags & DBCFLAG_ADM1030) {
/*
* ADM1030 splits fan controller behavior across two
* registers. We also do not support Auto-Filter mode
* nor do we support Manual-RPM-feedback.
*/
if (newreg == 4) {
oldreg = sc->sc_readreg(sc, DBCOOL_ADM1030_CFG2);
oldreg &= ~0x01;
sc->sc_writereg(sc, DBCOOL_ADM1030_CFG2, oldreg);
} else {
if (newreg == 0)
newreg = 4;
else if (newreg == 6)
newreg = 7;
else if (newreg == 7)
newreg = 0;
else
return EINVAL;
newreg <<= 5;
newreg |= (oldreg & 0x1f);
sc->sc_writereg(sc, chipreg, newreg);
oldreg = sc->sc_readreg(sc, DBCOOL_ADM1030_CFG2) | 1;
sc->sc_writereg(sc, DBCOOL_ADM1030_CFG2, oldreg);
}
} else {
newreg = (sc->sc_readreg(sc, chipreg) & 0x1f) | (i << 5);
sc->sc_writereg(sc, chipreg, newreg);
}
return 0;
}
static int
sysctl_dbcool_slope(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct dbcool_softc *sc;
int reg, error;
uint8_t chipreg;
uint8_t newreg;
node = *rnode;
sc = (struct dbcool_softc *)node.sysctl_data;
chipreg = node.sysctl_num & 0xff;
reg = (sc->sc_readreg(sc, chipreg) >> 4) & 0x0f;
node.sysctl_data = &reg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
/* We were asked to update the value - sanity check before writing */
if (*(int *)node.sysctl_data < 0 || *(int *)node.sysctl_data > 0x0f)
return EINVAL;
newreg = (sc->sc_readreg(sc, chipreg) & 0x0f) |
(*(int *)node.sysctl_data << 4);
sc->sc_writereg(sc, chipreg, newreg);
return 0;
}
static int
sysctl_dbcool_volt_limit(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct dbcool_softc *sc;
int reg, error;
int nom, sensor_index;
int64_t val, newval;
uint8_t chipreg, newreg;
node = *rnode;
sc = (struct dbcool_softc *)node.sysctl_data;
chipreg = node.sysctl_num & 0xff;
/*
* Retrieve the nominal value for the voltage sensor
*/
sensor_index = (node.sysctl_num >> 8 ) & 0xff;
nom = nominal_voltages[sc->sc_chip->table[sensor_index].nom_volt_index];
if (nom < 0)
nom = dbcool_supply_voltage(sc);
/*
* Use int64_t for calculation to avoid overflow
*/
val = sc->sc_readreg(sc, chipreg);
val *= nom;
val /= 0xc0; /* values are scaled so 0xc0 == nominal voltage */
reg = val;
node.sysctl_data = &reg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
/*
* We were asked to update the value, so scale it and sanity
* check before writing
*/
if (nom == 0)
return EINVAL;
newval = *(int *)node.sysctl_data;
newval *= 0xc0;
newval /= nom;
if (newval < 0 || newval > 0xff)
return EINVAL;
newreg = newval;
sc->sc_writereg(sc, chipreg, newreg);
return 0;
}
static int
sysctl_dbcool_temp_limit(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct dbcool_softc *sc;
int reg, error, newtemp;
uint8_t chipreg;
node = *rnode;
sc = (struct dbcool_softc *)node.sysctl_data;
chipreg = node.sysctl_num & 0xff;
/* If using offset mode, adjust, else treat as signed */
if (sc->sc_temp_offset) {
reg = sc->sc_readreg(sc, chipreg);
reg -= sc->sc_temp_offset;
} else
reg = (int8_t)sc->sc_readreg(sc, chipreg);
node.sysctl_data = &reg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
/* We were asked to update the value - sanity check before writing */
newtemp = *(int *)node.sysctl_data + sc->sc_temp_offset;
if (newtemp < 0 || newtemp > 0xff)
return EINVAL;
sc->sc_writereg(sc, chipreg, newtemp);
return 0;
}
static int
sysctl_dbcool_fan_limit(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct dbcool_softc *sc;
int reg, error, newrpm, dividend;
uint8_t chipreg;
uint8_t newreg;
node = *rnode;
sc = (struct dbcool_softc *)node.sysctl_data;
chipreg = node.sysctl_num & 0xff;
/* retrieve two-byte limit */
reg = dbcool_read_rpm(sc, chipreg);
node.sysctl_data = &reg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
/*
* We were asked to update the value. Calculate the two-byte
* limit and validate it. Due to the way fan RPM is calculated,
* the new value must be at least 83 RPM (331 RPM for ADM1030)!
* Allow a value of -1 or 0 to indicate no limit.
*/
newrpm = *(int *)node.sysctl_data;
if (newrpm == 0 || newrpm == -1)
newrpm = 0xffff;
else {
if (sc->sc_chip->flags & DBCFLAG_ADM1030)
dividend = 11250 * 60;
else
dividend = 90000 * 60;
newrpm = dividend / newrpm;
if (newrpm & ~0xffff)
return EINVAL;
}
/* Update the on-chip registers with new value */
newreg = newrpm & 0xff;
sc->sc_writereg(sc, chipreg, newreg);
newreg = (newrpm >> 8) & 0xff;
sc->sc_writereg(sc, chipreg + 1, newreg);
return 0;
}
static int
sysctl_dbcool_vid(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct dbcool_softc *sc;
int reg, error;
uint8_t chipreg, newreg;
node = *rnode;
sc = (struct dbcool_softc *)node.sysctl_data;
chipreg = node.sysctl_num;
/* retrieve 5- or 6-bit value */
newreg = sc->sc_readreg(sc, chipreg);
if ((sc->sc_chip->flags & DBCFLAG_HAS_VID_SEL) &&
(reg & 0x80))
reg = newreg & 0x3f;
else
reg = newreg & 0x1f;
node.sysctl_data = &reg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error == 0 && newp != NULL)
error = EINVAL;
return error;
}
static int
sysctl_dbcool_thyst(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct dbcool_softc *sc;
int reg, error;
uint8_t chipreg;
uint8_t newreg, newhyst;
node = *rnode;
sc = (struct dbcool_softc *)node.sysctl_data;
chipreg = node.sysctl_num & 0x7f;
/* retrieve 4-bit value */
newreg = sc->sc_readreg(sc, chipreg);
if ((node.sysctl_num & 0x80) == 0)
reg = newreg >> 4;
else
reg = newreg;
reg = reg & 0x0f;
node.sysctl_data = &reg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
/* We were asked to update the value - sanity check before writing */
newhyst = *(int *)node.sysctl_data;
if (newhyst > 0x0f)
return EINVAL;
/* Insert new value into field and update register */
if ((node.sysctl_num & 0x80) == 0) {
newreg &= 0x0f;
newreg |= (newhyst << 4);
} else {
newreg &= 0xf0;
newreg |= newhyst;
}
sc->sc_writereg(sc, chipreg, newreg);
return 0;
}
#ifdef DBCOOL_DEBUG
/*
* These routines can be used for debugging. reg_select is used to
* select any arbitrary register in the device. reg_access is used
* to read (and optionally update) the selected register.
*
* No attempt is made to validate the data passed. If you use these
* routines, you are assumed to know what you're doing!
*
* Caveat user
*/
static int
sysctl_dbcool_reg_select(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct dbcool_softc *sc;
int reg, error;
node = *rnode;
sc = (struct dbcool_softc *)node.sysctl_data;
reg = sc->sc_user_reg;
node.sysctl_data = &reg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
sc->sc_user_reg = *(int *)node.sysctl_data;
return 0;
}
static int
sysctl_dbcool_reg_access(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct dbcool_softc *sc;
int reg, error;
uint8_t chipreg;
uint8_t newreg;
node = *rnode;
sc = (struct dbcool_softc *)node.sysctl_data;
chipreg = sc->sc_user_reg;
reg = sc->sc_readreg(sc, chipreg);
node.sysctl_data = &reg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
newreg = *(int *)node.sysctl_data;
sc->sc_writereg(sc, chipreg, newreg);
return 0;
}
#endif /* DBCOOL_DEBUG */
/*
* Encode an index number and register number for use as a sysctl_num
* so we can select the correct device register later.
*/
#define DBC_PWM_SYSCTL(seq, reg) ((seq << 8) | reg)
void
dbcool_setup(device_t self)
{
struct dbcool_softc *sc = device_private(self);
const struct sysctlnode *me = NULL;
struct sysctlnode *node = NULL;
uint8_t cfg_val, cfg_reg;
int ro_flag, rw_flag, ret, error;
/*
* Some chips are capable of reporting an extended temperature range
* by default. On these models, config register 5 bit 0 can be set
* to 1 for compatability with other chips that report 2s complement.
*/
if (sc->sc_chip->flags & DBCFLAG_ADT7466) {
if (sc->sc_readreg(sc, DBCOOL_ADT7466_CONFIG1) & 0x80)
sc->sc_temp_offset = 64;
else
sc->sc_temp_offset = 0;
} else if (sc->sc_chip->flags & DBCFLAG_TEMPOFFSET) {
if (sc->sc_readreg(sc, DBCOOL_CONFIG5_REG) &
DBCOOL_CFG5_TWOSCOMP)
sc->sc_temp_offset = 0;
else
sc->sc_temp_offset = 64;
} else
sc->sc_temp_offset = 0;
/* Determine Vcc for this chip */
sc->sc_supply_voltage = dbcool_supply_voltage(sc);
sc->sc_sme = sysmon_envsys_create();
ro_flag = dbcool_islocked(sc)?CTLFLAG_READONLY:CTLFLAG_READWRITE;
ro_flag |= CTLFLAG_OWNDESC;
rw_flag = CTLFLAG_READWRITE | CTLFLAG_OWNDESC;
ret = sysctl_createv(NULL, 0, NULL, &me,
CTLFLAG_READWRITE,
CTLTYPE_NODE, device_xname(self), NULL,
NULL, 0, NULL, 0,
CTL_HW, CTL_CREATE, CTL_EOL);
if (sc->sc_chip->flags & DBCFLAG_HAS_VID) {
ret = sysctl_createv(NULL, 0, NULL,
(const struct sysctlnode **)&node,
CTLFLAG_READONLY, CTLTYPE_INT, "CPU_VID_bits", NULL,
sysctl_dbcool_vid,
0, sc, sizeof(int),
CTL_HW, me->sysctl_num, DBCOOL_VID_REG, CTL_EOL);
if (node != NULL)
node->sysctl_data = sc;
}
#ifdef DBCOOL_DEBUG
ret = sysctl_createv(NULL, 0, NULL,
(const struct sysctlnode **)&node,
CTLFLAG_READWRITE, CTLTYPE_INT, "reg_select", NULL,
sysctl_dbcool_reg_select,
0, sc, sizeof(int),
CTL_HW, me->sysctl_num, CTL_CREATE, CTL_EOL);
if (node != NULL)
node->sysctl_data = sc;
ret = sysctl_createv(NULL, 0, NULL,
(const struct sysctlnode **)&node,
CTLFLAG_READWRITE, CTLTYPE_INT, "reg_access", NULL,
sysctl_dbcool_reg_access,
0, sc, sizeof(int),
CTL_HW, me->sysctl_num, CTL_CREATE, CTL_EOL);
if (node != NULL)
node->sysctl_data = sc;
#endif /* DBCOOL_DEBUG */
/* Create the sensors for this device */
if (dbcool_setup_sensors(sc, me, rw_flag, ro_flag))
goto out;
/* If supported, create sysctl tree for fan PWM controllers */
if (sc->sc_chip->power != NULL)
dbcool_setup_controllers(sc, me, rw_flag, ro_flag);
/*
* Read and rewrite config register to activate device
*/
if (sc->sc_chip->flags & DBCFLAG_ADM1030)
cfg_reg = DBCOOL_ADM1030_CFG1;
else if (sc->sc_chip->flags & DBCFLAG_ADT7466)
cfg_reg = DBCOOL_ADT7466_CONFIG1;
else
cfg_reg = DBCOOL_CONFIG1_REG;
cfg_val = sc->sc_readreg(sc, DBCOOL_CONFIG1_REG);
if ((cfg_val & DBCOOL_CFG1_START) == 0) {
cfg_val |= DBCOOL_CFG1_START;
sc->sc_writereg(sc, cfg_reg, cfg_val);
}
if (dbcool_islocked(sc))
aprint_normal_dev(self, "configuration locked\n");
sc->sc_sme->sme_name = device_xname(self);
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_refresh = dbcool_refresh;
if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
aprint_error_dev(self,
"unable to register with sysmon (%d)\n", error);
goto out;
}
return;
out:
sysmon_envsys_destroy(sc->sc_sme);
}
static int
dbcool_setup_sensors(struct dbcool_softc *sc, const struct sysctlnode *me,
int rw_flag, int ro_flag)
{
int i, j, ret;
int error = 0;
uint8_t sysctl_reg;
struct sysctlnode *node = NULL;
int sysctl_index, sysctl_num;
char name[SYSCTL_NAMELEN];
for (i=0; sc->sc_chip->table[i].type != DBC_EOF; i++) {
if (i >= DBCOOL_MAXSENSORS &&
sc->sc_chip->table[i].type != DBC_CTL) {
aprint_normal_dev(sc->sc_dev, "chip table too big!\n");
break;
}
switch (sc->sc_chip->table[i].type) {
case DBC_TEMP:
sc->sc_sensor[i].units = ENVSYS_STEMP;
error = dbcool_attach_sensor(sc, me, i,
sysctl_dbcool_temp_limit);
break;
case DBC_VOLT:
sc->sc_sensor[i].units = ENVSYS_SVOLTS_DC;
error = dbcool_attach_sensor(sc, me, i,
sysctl_dbcool_volt_limit);
break;
case DBC_FAN:
sc->sc_sensor[i].units = ENVSYS_SFANRPM;
error = dbcool_attach_sensor(sc, me, i,
sysctl_dbcool_fan_limit);
break;
case DBC_CTL:
/*
* Search for the corresponding temp sensor
* (temp sensors need to be created first!)
*/
sysctl_num = -1;
for (j = 0; j < i; j++) {
if (j > DBCOOL_MAXSENSORS ||
sc->sc_chip->table[j].type != DBC_TEMP)
continue;
if (sc->sc_chip->table[j].name_index ==
sc->sc_chip->table[i].name_index) {
sysctl_num = sc->sc_sysctl_num[j];
break;
}
}
if (sysctl_num == -1)
break;
sysctl_index = sc->sc_chip->table[i].sysctl_index;
sysctl_reg = sc->sc_chip->table[i].reg.val_reg;
strlcpy(name, dbc_sysctl_table[sysctl_index].name,
sizeof(name));
ret = sysctl_createv(NULL, 0, NULL,
(const struct sysctlnode **)&node,
dbc_sysctl_table[sysctl_index].lockable?
ro_flag:rw_flag,
CTLTYPE_INT, name,
dbc_sysctl_table[sysctl_index].desc,
dbc_sysctl_table[sysctl_index].helper,
0, sc, sizeof(int),
CTL_HW, me->sysctl_num, sysctl_num,
DBC_PWM_SYSCTL(i, sysctl_reg), CTL_EOL);
if (node != NULL)
node->sysctl_data = sc;
break;
default:
aprint_error_dev(sc->sc_dev,
"sensor_table index %d has bad type %d\n",
i, sc->sc_chip->table[i].type);
break;
}
if (error)
break;
}
return error;
}
static int
dbcool_attach_sensor(struct dbcool_softc *sc, const struct sysctlnode *me,
int idx, int (*helper)(SYSCTLFN_PROTO))
{
struct sysctlnode *node = NULL;
const struct sysctlnode *me2 = NULL;
uint8_t sysctl_reg;
int name_index;
int ret;
int error = 0;
name_index = sc->sc_chip->table[idx].name_index;
strlcpy(sc->sc_sensor[idx].desc, dbc_sensor_names[name_index],
sizeof(sc->sc_sensor[idx].desc));
sc->sc_regs[idx] = &sc->sc_chip->table[idx].reg;
sc->sc_nom_volt[idx] = sc->sc_chip->table[idx].nom_volt_index;
sc->sc_sensor[idx].flags |= ENVSYS_FMONCRITUNDER;
if (sc->sc_chip->table[idx].type != DBC_FAN)
sc->sc_sensor[idx].flags |= ENVSYS_FMONCRITOVER;
error = sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[idx]);
if (error)
return error;
/*
* create sysctl node for the sensor, and the nodes for
* the sensor's high and low limit values
*/
ret = sysctl_createv(NULL, 0, NULL, &me2, CTLFLAG_READWRITE,
CTLTYPE_NODE, sc->sc_sensor[idx].desc, NULL,
NULL, 0, NULL, 0,
CTL_HW, me->sysctl_num, CTL_CREATE, CTL_EOL);
if (me2 == NULL)
return 0;
sc->sc_sysctl_num[idx] = me2->sysctl_num;
/* create sysctl node for the low limit */
sysctl_reg = sc->sc_regs[idx]->lo_lim_reg;
ret = sysctl_createv(NULL, 0, NULL,
(const struct sysctlnode **)&node,
CTLFLAG_READWRITE,
CTLTYPE_INT, "low_lim", NULL, helper, 0, sc, 0,
CTL_HW, me->sysctl_num, me2->sysctl_num,
DBC_PWM_SYSCTL(idx, sysctl_reg), CTL_EOL);
if (node != NULL)
node->sysctl_data = sc;
/* Fans do not have a high limit */
if (sc->sc_chip->table[idx].type == DBC_FAN)
return 0;
sysctl_reg = sc->sc_regs[idx]->hi_lim_reg;
ret = sysctl_createv(NULL, 0, NULL,
(const struct sysctlnode **)&node,
CTLFLAG_READWRITE,
CTLTYPE_INT, "hi_lim", NULL, helper, 0, sc, 0,
CTL_HW, me->sysctl_num, me2->sysctl_num,
DBC_PWM_SYSCTL(idx, sysctl_reg), CTL_EOL);
if (node != NULL)
node->sysctl_data = sc;
return 0;
}
static void
dbcool_setup_controllers(struct dbcool_softc *sc, const struct sysctlnode *me,
int rw_flag, int ro_flag)
{
int i, j, ret;
uint8_t sysctl_reg;
const struct sysctlnode *me2 = NULL;
struct sysctlnode *node = NULL;
char name[SYSCTL_NAMELEN];
for (i = 0; sc->sc_chip->power[i].desc != NULL; i++) {
snprintf(name, sizeof(name), "fan_ctl_%d", i);
ret = sysctl_createv(NULL, 0, NULL, &me2,
rw_flag,
CTLTYPE_NODE, name, NULL,
NULL, 0, NULL, 0,
CTL_HW, me->sysctl_num, CTL_CREATE, CTL_EOL);
for (j = DBC_PWM_BEHAVIOR; j < DBC_PWM_LAST_PARAM; j++) {
if (j == DBC_PWM_MAX_DUTY &&
(sc->sc_chip->flags & DBCFLAG_HAS_MAXDUTY) == 0)
continue;
sysctl_reg = sc->sc_chip->power[i].power_regs[j];
if (sysctl_reg == DBCOOL_NO_REG)
continue;
strlcpy(name, dbc_sysctl_table[j].name, sizeof(name));
ret = sysctl_createv(NULL, 0, NULL,
(const struct sysctlnode **)&node,
(dbc_sysctl_table[j].lockable)?ro_flag:rw_flag,
(j == DBC_PWM_BEHAVIOR)?
CTLTYPE_STRING:CTLTYPE_INT,
name,
dbc_sysctl_table[j].desc,
dbc_sysctl_table[j].helper,
0, sc,
( j == DBC_PWM_BEHAVIOR)?
sizeof(dbcool_cur_behav): sizeof(int),
CTL_HW, me->sysctl_num, me2->sysctl_num,
DBC_PWM_SYSCTL(j, sysctl_reg), CTL_EOL);
if (node != NULL)
node->sysctl_data = sc;
}
}
}
static void
dbcool_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct dbcool_softc *sc=sme->sme_cookie;
int i, nom_volt_idx;
int cur, hi, low;
struct reg_list *reg;
i = edata->sensor;
reg = sc->sc_regs[i];
switch (edata->units)
{
case ENVSYS_STEMP:
cur = dbcool_read_temp(sc, reg->val_reg, true);
low = dbcool_read_temp(sc, reg->lo_lim_reg, false);
hi = dbcool_read_temp(sc, reg->hi_lim_reg, false);
break;
case ENVSYS_SVOLTS_DC:
nom_volt_idx = sc->sc_nom_volt[i];
cur = dbcool_read_volt(sc, reg->val_reg, nom_volt_idx,
true);
low = dbcool_read_volt(sc, reg->lo_lim_reg,
nom_volt_idx, false);
hi = dbcool_read_volt(sc, reg->hi_lim_reg,
nom_volt_idx, false);
break;
case ENVSYS_SFANRPM:
cur = dbcool_read_rpm(sc, reg->val_reg);
low = dbcool_read_rpm(sc, reg->lo_lim_reg);
hi = 1 << 16;
break;
default:
edata->state = ENVSYS_SINVALID;
return;
}
if (cur == 0 && edata->units != ENVSYS_SFANRPM)
edata->state = ENVSYS_SINVALID;
/* Make sure limits are sensible */
else if (hi <= low)
edata->state = ENVSYS_SVALID;
/*
* If fan is "stalled" but has no low limit, treat
* it as though the fan is not installed.
*/
else if (edata->units == ENVSYS_SFANRPM && cur == 0 &&
(low == 0 || low == -1))
edata->state = ENVSYS_SINVALID;
/*
* Compare current value against the limits
*/
else if (cur < low)
edata->state = ENVSYS_SCRITUNDER;
else if (cur > hi)
edata->state = ENVSYS_SCRITOVER;
else
edata->state = ENVSYS_SVALID;
edata->value_cur = cur;
}
int
dbcool_chip_ident(struct dbcool_softc *sc)
{
/* verify this is a supported dbCool chip */
uint8_t c_id, d_id, r_id;
int i;
c_id = sc->sc_readreg(sc, DBCOOL_COMPANYID_REG);
d_id = sc->sc_readreg(sc, DBCOOL_DEVICEID_REG);
r_id = sc->sc_readreg(sc, DBCOOL_REVISION_REG);
for (i = 0; chip_table[i].company != 0; i++)
if ((c_id == chip_table[i].company) &&
(d_id == chip_table[i].device ||
chip_table[i].device == 0xff) &&
(r_id == chip_table[i].rev ||
chip_table[i].rev == 0xff)) {
sc->sc_chip = &chip_table[i];
return i;
}
aprint_verbose("dbcool_chip_ident: addr 0x%02x c_id 0x%02x d_id 0x%02x"
" r_id 0x%02x: No match.\n", sc->sc_addr, c_id, d_id,
r_id);
return -1;
}