NetBSD/sys/dev/tprof/tprof.c
2008-05-07 08:48:11 +00:00

530 lines
11 KiB
C

/* $NetBSD: tprof.c,v 1.2 2008/05/07 08:48:11 yamt Exp $ */
/*-
* Copyright (c)2008 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: tprof.c,v 1.2 2008/05/07 08:48:11 yamt Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/cpu.h>
#include <sys/conf.h>
#include <sys/callout.h>
#include <sys/kmem.h>
#include <sys/workqueue.h>
#include <sys/queue.h>
#include <dev/tprof/tprof.h>
#include <dev/tprof/tprof_ioctl.h>
#include <machine/db_machdep.h> /* PC_REGS */
typedef struct {
uintptr_t s_pc; /* program counter */
} tprof_sample_t;
typedef struct tprof_buf {
u_int b_used;
u_int b_size;
u_int b_overflow;
u_int b_unused;
STAILQ_ENTRY(tprof_buf) b_list;
tprof_sample_t b_data[];
} tprof_buf_t;
#define TPROF_BUF_BYTESIZE(sz) \
(sizeof(tprof_buf_t) + (sz) * sizeof(tprof_sample_t))
#define TPROF_MAX_SAMPLES_PER_BUF 10000
#define TPROF_MAX_BUF 100
typedef struct {
tprof_buf_t *c_buf;
struct work c_work;
callout_t c_callout;
} __aligned(CACHE_LINE_SIZE) tprof_cpu_t;
static kmutex_t tprof_lock;
static bool tprof_running;
static u_int tprof_nworker;
static lwp_t *tprof_owner;
static STAILQ_HEAD(, tprof_buf) tprof_list;
static u_int tprof_nbuf_on_list;
static struct workqueue *tprof_wq;
static tprof_cpu_t tprof_cpus[MAXCPUS] __aligned(CACHE_LINE_SIZE);
static u_int tprof_samples_per_buf;
static kmutex_t tprof_reader_lock;
static kcondvar_t tprof_reader_cv;
static off_t tprof_reader_offset;
static kmutex_t tprof_startstop_lock;
static kcondvar_t tprof_cv;
static struct tprof_stat tprof_stat;
static tprof_cpu_t *
tprof_cpu(struct cpu_info *ci)
{
return &tprof_cpus[cpu_index(ci)];
}
static tprof_cpu_t *
tprof_curcpu(void)
{
return tprof_cpu(curcpu());
}
static tprof_buf_t *
tprof_buf_alloc(void)
{
tprof_buf_t *new;
u_int size = tprof_samples_per_buf;
new = kmem_alloc(TPROF_BUF_BYTESIZE(size), KM_SLEEP);
new->b_used = 0;
new->b_size = size;
new->b_overflow = 0;
return new;
}
static void
tprof_buf_free(tprof_buf_t *buf)
{
kmem_free(buf, TPROF_BUF_BYTESIZE(buf->b_size));
}
static tprof_buf_t *
tprof_buf_switch(tprof_cpu_t *c, tprof_buf_t *new)
{
tprof_buf_t *old;
old = c->c_buf;
c->c_buf = new;
return old;
}
static tprof_buf_t *
tprof_buf_refresh(void)
{
tprof_cpu_t * const c = tprof_curcpu();
tprof_buf_t *new;
new = tprof_buf_alloc();
return tprof_buf_switch(c, new);
}
static void
tprof_worker(struct work *wk, void *dummy)
{
tprof_cpu_t * const c = tprof_curcpu();
tprof_buf_t *buf;
bool shouldstop;
KASSERT(wk == &c->c_work);
KASSERT(dummy == NULL);
/*
* get a per cpu buffer.
*/
buf = tprof_buf_refresh();
/*
* and put it on the global list for read(2).
*/
mutex_enter(&tprof_lock);
shouldstop = !tprof_running;
if (shouldstop) {
KASSERT(tprof_nworker > 0);
tprof_nworker--;
cv_broadcast(&tprof_cv);
cv_broadcast(&tprof_reader_cv);
}
if (buf->b_used == 0) {
tprof_stat.ts_emptybuf++;
} else if (tprof_nbuf_on_list < TPROF_MAX_BUF) {
tprof_stat.ts_sample += buf->b_used;
tprof_stat.ts_overflow += buf->b_overflow;
tprof_stat.ts_buf++;
STAILQ_INSERT_TAIL(&tprof_list, buf, b_list);
tprof_nbuf_on_list++;
buf = NULL;
cv_broadcast(&tprof_reader_cv);
} else {
tprof_stat.ts_dropbuf_sample += buf->b_used;
tprof_stat.ts_dropbuf++;
}
mutex_exit(&tprof_lock);
if (buf) {
tprof_buf_free(buf);
}
if (!shouldstop) {
callout_schedule(&c->c_callout, hz);
}
}
static void
tprof_kick(void *vp)
{
struct cpu_info * const ci = vp;
tprof_cpu_t * const c = tprof_cpu(ci);
workqueue_enqueue(tprof_wq, &c->c_work, ci);
}
static void
tprof_stop1(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
KASSERT(mutex_owned(&tprof_startstop_lock));
for (CPU_INFO_FOREACH(cii, ci)) {
tprof_cpu_t * const c = tprof_cpu(ci);
tprof_buf_t *old;
old = tprof_buf_switch(c, NULL);
if (old != NULL) {
tprof_buf_free(old);
}
callout_destroy(&c->c_callout);
}
workqueue_destroy(tprof_wq);
}
static int
tprof_start(const struct tprof_param *param)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
int error;
uint64_t freq;
KASSERT(mutex_owned(&tprof_startstop_lock));
if (tprof_running) {
error = EBUSY;
goto done;
}
freq = tprof_backend_estimate_freq();
tprof_samples_per_buf = MIN(freq * 2, TPROF_MAX_SAMPLES_PER_BUF);
error = workqueue_create(&tprof_wq, "tprofmv", tprof_worker, NULL,
PRI_NONE, IPL_SOFTCLOCK, WQ_MPSAFE | WQ_PERCPU);
if (error != 0) {
goto done;
}
for (CPU_INFO_FOREACH(cii, ci)) {
tprof_cpu_t * const c = tprof_cpu(ci);
tprof_buf_t *new;
tprof_buf_t *old;
new = tprof_buf_alloc();
old = tprof_buf_switch(c, new);
if (old != NULL) {
tprof_buf_free(old);
}
callout_init(&c->c_callout, CALLOUT_MPSAFE);
callout_setfunc(&c->c_callout, tprof_kick, ci);
}
error = tprof_backend_start();
if (error != 0) {
tprof_stop1();
goto done;
}
mutex_enter(&tprof_lock);
tprof_running = true;
mutex_exit(&tprof_lock);
for (CPU_INFO_FOREACH(cii, ci)) {
tprof_cpu_t * const c = tprof_cpu(ci);
mutex_enter(&tprof_lock);
tprof_nworker++;
mutex_exit(&tprof_lock);
workqueue_enqueue(tprof_wq, &c->c_work, ci);
}
done:
return error;
}
static void
tprof_stop(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
KASSERT(mutex_owned(&tprof_startstop_lock));
if (!tprof_running) {
goto done;
}
tprof_backend_stop();
mutex_enter(&tprof_lock);
tprof_running = false;
cv_broadcast(&tprof_reader_cv);
mutex_exit(&tprof_lock);
for (CPU_INFO_FOREACH(cii, ci)) {
mutex_enter(&tprof_lock);
while (tprof_nworker > 0) {
cv_wait(&tprof_cv, &tprof_lock);
}
mutex_exit(&tprof_lock);
}
tprof_stop1();
done:
;
}
static void
tprof_clear(void)
{
tprof_buf_t *buf;
mutex_enter(&tprof_reader_lock);
mutex_enter(&tprof_lock);
while ((buf = STAILQ_FIRST(&tprof_list)) != NULL) {
if (buf != NULL) {
STAILQ_REMOVE_HEAD(&tprof_list, b_list);
KASSERT(tprof_nbuf_on_list > 0);
tprof_nbuf_on_list--;
mutex_exit(&tprof_lock);
tprof_buf_free(buf);
mutex_enter(&tprof_lock);
}
}
KASSERT(tprof_nbuf_on_list == 0);
mutex_exit(&tprof_lock);
tprof_reader_offset = 0;
mutex_exit(&tprof_reader_lock);
memset(&tprof_stat, 0, sizeof(tprof_stat));
}
/* -------------------- backend interfaces */
/*
* tprof_sample: record a sample on the per-cpu buffer.
*
* be careful; can be called in NMI context.
* we are assuming that curcpu() is safe.
*/
void
tprof_sample(const struct trapframe *tf)
{
tprof_cpu_t * const c = tprof_curcpu();
tprof_buf_t * const buf = c->c_buf;
const uintptr_t pc = PC_REGS(tf);
u_int idx;
idx = buf->b_used;
if (__predict_false(idx >= buf->b_size)) {
buf->b_overflow++;
return;
}
buf->b_data[idx].s_pc = pc;
buf->b_used = idx + 1;
}
/* -------------------- cdevsw interfaces */
void tprofattach(int);
static int
tprof_open(dev_t dev, int flags, int type, struct lwp *l)
{
if (minor(dev) != 0) {
return EXDEV;
}
mutex_enter(&tprof_lock);
if (tprof_owner != NULL) {
mutex_exit(&tprof_lock);
return EBUSY;
}
tprof_owner = curlwp;
mutex_exit(&tprof_lock);
return 0;
}
static int
tprof_close(dev_t dev, int flags, int type, struct lwp *l)
{
KASSERT(minor(dev) == 0);
mutex_enter(&tprof_startstop_lock);
mutex_enter(&tprof_lock);
tprof_owner = NULL;
mutex_exit(&tprof_lock);
tprof_stop();
tprof_clear();
mutex_exit(&tprof_startstop_lock);
return 0;
}
static int
tprof_read(dev_t dev, struct uio *uio, int flags)
{
tprof_buf_t *buf;
size_t bytes;
size_t resid;
size_t done;
int error = 0;
KASSERT(minor(dev) == 0);
mutex_enter(&tprof_reader_lock);
while (uio->uio_resid > 0 && error == 0) {
/*
* take the first buffer from the list.
*/
mutex_enter(&tprof_lock);
buf = STAILQ_FIRST(&tprof_list);
if (buf == NULL) {
if (tprof_nworker == 0) {
mutex_exit(&tprof_lock);
error = 0;
break;
}
mutex_exit(&tprof_reader_lock);
error = cv_wait_sig(&tprof_reader_cv, &tprof_lock);
mutex_exit(&tprof_lock);
mutex_enter(&tprof_reader_lock);
continue;
}
STAILQ_REMOVE_HEAD(&tprof_list, b_list);
KASSERT(tprof_nbuf_on_list > 0);
tprof_nbuf_on_list--;
mutex_exit(&tprof_lock);
/*
* copy it out.
*/
bytes = MIN(buf->b_used * sizeof(tprof_sample_t) -
tprof_reader_offset, uio->uio_resid);
resid = uio->uio_resid;
error = uiomove((char *)buf->b_data + tprof_reader_offset,
bytes, uio);
done = resid - uio->uio_resid;
tprof_reader_offset += done;
/*
* if we didn't consume the whole buffer,
* put it back to the list.
*/
if (tprof_reader_offset <
buf->b_used * sizeof(tprof_sample_t)) {
mutex_enter(&tprof_lock);
STAILQ_INSERT_HEAD(&tprof_list, buf, b_list);
tprof_nbuf_on_list++;
cv_broadcast(&tprof_reader_cv);
mutex_exit(&tprof_lock);
} else {
tprof_buf_free(buf);
tprof_reader_offset = 0;
}
}
mutex_exit(&tprof_reader_lock);
return error;
}
static int
tprof_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
{
const struct tprof_param *param;
int error = 0;
KASSERT(minor(dev) == 0);
switch (cmd) {
case TPROF_IOC_GETVERSION:
*(int *)data = TPROF_VERSION;
break;
case TPROF_IOC_START:
param = data;
mutex_enter(&tprof_startstop_lock);
error = tprof_start(param);
mutex_exit(&tprof_startstop_lock);
break;
case TPROF_IOC_STOP:
mutex_enter(&tprof_startstop_lock);
tprof_stop();
mutex_exit(&tprof_startstop_lock);
break;
case TPROF_IOC_GETSTAT:
mutex_enter(&tprof_lock);
memcpy(data, &tprof_stat, sizeof(tprof_stat));
mutex_exit(&tprof_lock);
break;
default:
error = EINVAL;
break;
}
return error;
}
const struct cdevsw tprof_cdevsw = {
.d_open = tprof_open,
.d_close = tprof_close,
.d_read = tprof_read,
.d_write = nowrite,
.d_ioctl = tprof_ioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = nommap,
.d_kqfilter = nokqfilter,
.d_flag = D_OTHER | D_MPSAFE,
};
void
tprofattach(int nunits)
{
mutex_init(&tprof_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&tprof_reader_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&tprof_startstop_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&tprof_cv, "tprof");
cv_init(&tprof_reader_cv, "tprofread");
STAILQ_INIT(&tprof_list);
}