NetBSD/sys/dev/pci/amr.c
lukem 06de426449 SIMPLEQ rototill:
- implement SIMPLEQ_REMOVE(head, elm, type, field).  whilst it's O(n),
  this mirrors the functionality of SLIST_REMOVE() (the other
  singly-linked list type) and FreeBSD's STAILQ_REMOVE()
- remove the unnecessary elm arg from SIMPLEQ_REMOVE_HEAD().
  this mirrors the functionality of SLIST_REMOVE_HEAD() (the other
  singly-linked list type) and FreeBSD's STAILQ_REMOVE_HEAD()
- remove notes about SIMPLEQ not supporting arbitrary element removal
- use SIMPLEQ_FOREACH() instead of home-grown for loops
- use SIMPLEQ_EMPTY() appropriately
- use SIMPLEQ_*() instead of accessing sqh_first,sqh_last,sqe_next directly
- reorder manual page; be consistent about how the types are listed
- other minor cleanups
2002-06-01 23:50:52 +00:00

1005 lines
26 KiB
C

/* $NetBSD: amr.c,v 1.2 2002/06/01 23:50:59 lukem Exp $ */
/*-
* Copyright (c) 2002 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1999,2000 Michael Smith
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
* from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
*/
/*
* Driver for AMI RAID controllers.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.2 2002/06/01 23:50:59 lukem Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/malloc.h>
#include <uvm/uvm_extern.h>
#include <machine/endian.h>
#include <machine/bus.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/amrreg.h>
#include <dev/pci/amrvar.h>
#if AMR_MAX_SEGS > 32
#error AMR_MAX_SEGS too high
#endif
#define AMR_ENQUIRY_BUFSIZE 2048
#define AMR_SGL_SIZE (sizeof(struct amr_sgentry) * 32)
void amr_attach(struct device *, struct device *, void *);
void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t);
int amr_init(struct amr_softc *, const char *,
struct pci_attach_args *pa);
int amr_intr(void *);
int amr_match(struct device *, struct cfdata *, void *);
int amr_print(void *, const char *);
void amr_shutdown(void *);
int amr_submatch(struct device *, struct cfdata *, void *);
int amr_mbox_wait(struct amr_softc *);
int amr_quartz_get_work(struct amr_softc *, struct amr_mailbox *);
int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
int amr_std_get_work(struct amr_softc *, struct amr_mailbox *);
int amr_std_submit(struct amr_softc *, struct amr_ccb *);
static inline u_int8_t amr_inb(struct amr_softc *, int);
static inline u_int32_t amr_inl(struct amr_softc *, int);
static inline void amr_outb(struct amr_softc *, int, u_int8_t);
static inline void amr_outl(struct amr_softc *, int, u_int32_t);
struct cfattach amr_ca = {
sizeof(struct amr_softc), amr_match, amr_attach
};
#define AT_QUARTZ 0x01 /* `Quartz' chipset */
#define AT_SIG 0x02 /* Check for signature */
struct amr_pci_type {
u_short apt_vendor;
u_short apt_product;
u_short apt_flags;
} static const amr_pci_type[] = {
{ PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
{ PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
{ PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG }
};
struct amr_typestr {
const char *at_str;
int at_sig;
} static const amr_typestr[] = {
{ "Series 431", AMR_SIG_431 },
{ "Series 438", AMR_SIG_438 },
{ "Series 466", AMR_SIG_466 },
{ "Series 467", AMR_SIG_467 },
{ "Series 490", AMR_SIG_490 },
{ "Series 762", AMR_SIG_762 },
{ "HP NetRAID (T5)", AMR_SIG_T5 },
{ "HP NetRAID (T7)", AMR_SIG_T7 },
};
static void *amr_sdh;
static inline u_int8_t
amr_inb(struct amr_softc *amr, int off)
{
bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
}
static inline u_int32_t
amr_inl(struct amr_softc *amr, int off)
{
bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
}
static inline void
amr_outb(struct amr_softc *amr, int off, u_int8_t val)
{
bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
BUS_SPACE_BARRIER_WRITE);
}
static inline void
amr_outl(struct amr_softc *amr, int off, u_int32_t val)
{
bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
BUS_SPACE_BARRIER_WRITE);
}
/*
* Match a supported device.
*/
int
amr_match(struct device *parent, struct cfdata *match, void *aux)
{
struct pci_attach_args *pa;
pcireg_t s;
int i;
pa = (struct pci_attach_args *)aux;
/*
* Don't match the device if it's operating in I2O mode. In this
* case it should be handled by the `iop' driver.
*/
if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
return (0);
for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
break;
if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
return (0);
if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
return (1);
s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
}
/*
* Attach a supported device. XXX This doesn't fail gracefully, and may
* over-allocate resources.
*/
void
amr_attach(struct device *parent, struct device *self, void *aux)
{
bus_space_tag_t memt, iot;
bus_space_handle_t memh, ioh;
struct pci_attach_args *pa;
struct amr_attach_args amra;
const struct amr_pci_type *apt;
struct amr_softc *amr;
pci_chipset_tag_t pc;
pci_intr_handle_t ih;
const char *intrstr;
pcireg_t reg;
int rseg, i, size, rv, memreg, ioreg;
bus_dma_segment_t seg;
struct amr_ccb *ac;
amr = (struct amr_softc *)self;
pa = (struct pci_attach_args *)aux;
pc = pa->pa_pc;
for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
break;
apt = amr_pci_type + i;
memreg = ioreg = 0;
for (i = 0x10; i <= 0x14; i += 4) {
reg = pci_conf_read(pc, pa->pa_tag, i);
switch (PCI_MAPREG_TYPE(reg)) {
case PCI_MAPREG_TYPE_MEM:
if (PCI_MAPREG_MEM_SIZE(reg) != 0)
memreg = i;
break;
case PCI_MAPREG_TYPE_IO:
if (PCI_MAPREG_IO_SIZE(reg) != 0)
ioreg = i;
break;
}
}
if (memreg != 0)
if (pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
&memt, &memh, NULL, NULL))
memreg = 0;
if (ioreg != 0)
if (pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
&iot, &ioh, NULL, NULL))
ioreg = 0;
if (memreg) {
amr->amr_iot = memt;
amr->amr_ioh = memh;
} else if (ioreg) {
amr->amr_iot = iot;
amr->amr_ioh = ioh;
} else {
printf("can't map control registers\n");
return;
}
amr->amr_dmat = pa->pa_dmat;
/* Enable the device. */
reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
reg | PCI_COMMAND_MASTER_ENABLE);
/* Map and establish the interrupt. */
if (pci_intr_map(pa, &ih)) {
printf("can't map interrupt\n");
return;
}
intrstr = pci_intr_string(pc, ih);
amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
if (amr->amr_ih == NULL) {
printf("can't establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
/*
* Allocate space for the mailbox and S/G lists. Some controllers
* don't like S/G lists to be located below 0x2000, so we allocate
* enough slop to enable us to compensate.
*
* The standard mailbox structure needs to be aligned on a 16-byte
* boundary. The 64-bit mailbox has one extra field, 4 bytes in
* size, which preceeds the standard mailbox.
*/
size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, NULL, &seg,
1, &rseg, BUS_DMA_NOWAIT)) != 0) {
printf("%s: unable to allocate buffer, rv = %d\n",
amr->amr_dv.dv_xname, rv);
return;
}
if ((rv = bus_dmamem_map(amr->amr_dmat, &seg, rseg, size,
(caddr_t *)&amr->amr_mbox,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map buffer, rv = %d\n",
amr->amr_dv.dv_xname, rv);
return;
}
if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
printf("%s: unable to create buffer DMA map, rv = %d\n",
amr->amr_dv.dv_xname, rv);
return;
}
if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
printf("%s: unable to load buffer DMA map, rv = %d\n",
amr->amr_dv.dv_xname, rv);
return;
}
memset(amr->amr_mbox, 0, size);
amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr + 16;
amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
amr->amr_sgls = (struct amr_sgentry *)((caddr_t)amr->amr_mbox +
amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
amr->amr_mbox = (struct amr_mailbox *)((caddr_t)amr->amr_mbox + 16);
/*
* Allocate and initalise the command control blocks.
*/
ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
amr->amr_ccbs = ac;
SLIST_INIT(&amr->amr_ccb_freelist);
for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
rv = bus_dmamap_create(amr->amr_dmat, AMR_MAX_XFER,
AMR_MAX_SEGS, AMR_MAX_XFER, 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&ac->ac_xfer_map);
if (rv != 0)
break;
ac->ac_ident = i;
SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
}
if (i != AMR_MAX_CMDS)
printf("%s: %d/%d CCBs created\n", amr->amr_dv.dv_xname,
i, AMR_MAX_CMDS);
/*
* Take care of model-specific tasks.
*/
if ((apt->apt_flags & AT_QUARTZ) != 0) {
amr->amr_submit = amr_quartz_submit;
amr->amr_get_work = amr_quartz_get_work;
} else {
amr->amr_submit = amr_std_submit;
amr->amr_get_work = amr_std_get_work;
/* Notify the controller of the mailbox location. */
amr_outl(amr, AMR_SREG_MBOX, amr->amr_mbox_paddr);
amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
/* Clear outstanding interrupts and enable interrupts. */
amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
amr_outb(amr, AMR_SREG_TOGL,
amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
}
/*
* Retrieve parameters, and tell the world about us.
*/
amr->amr_maxqueuecnt = i;
printf(": AMI RAID ");
if (amr_init(amr, intrstr, pa) != 0)
return;
/*
* Cap the maximum number of outstanding commands. AMI's Linux
* driver doesn't trust the controller's reported value, and lockups
* have been seen when we do.
*/
amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
if (amr->amr_maxqueuecnt > i)
amr->amr_maxqueuecnt = i;
/* Set our `shutdownhook' before we start any device activity. */
if (amr_sdh == NULL)
amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
/* Attach sub-devices. */
for (i = 0; i < amr->amr_numdrives; i++) {
if (amr->amr_drive[i].al_size == 0)
continue;
amra.amra_unit = i;
config_found_sm(&amr->amr_dv, &amra, amr_print, amr_submatch);
}
SIMPLEQ_INIT(&amr->amr_ccb_queue);
}
/*
* Print autoconfiguration message for a sub-device.
*/
int
amr_print(void *aux, const char *pnp)
{
struct amr_attach_args *amra;
amra = (struct amr_attach_args *)aux;
if (pnp != NULL)
printf("block device at %s", pnp);
printf(" unit %d", amra->amra_unit);
return (UNCONF);
}
/*
* Match a sub-device.
*/
int
amr_submatch(struct device *parent, struct cfdata *cf, void *aux)
{
struct amr_attach_args *amra;
amra = (struct amr_attach_args *)aux;
if (cf->amracf_unit != AMRCF_UNIT_DEFAULT &&
cf->amracf_unit != amra->amra_unit)
return (0);
return ((*cf->cf_attach->ca_match)(parent, cf, aux));
}
/*
* Retrieve operational parameters and describe the controller.
*/
int
amr_init(struct amr_softc *amr, const char *intrstr,
struct pci_attach_args *pa)
{
struct amr_prodinfo *ap;
struct amr_enquiry *ae;
struct amr_enquiry3 *aex;
const char *prodstr;
u_int i, sig;
char buf[64];
/*
* Try to get 40LD product info, which tells us what the card is
* labelled as.
*/
ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0);
if (ap != NULL) {
printf("<%.80s>\n", ap->ap_product);
if (intrstr != NULL)
printf("%s: interrupting at %s\n",
amr->amr_dv.dv_xname, intrstr);
printf("%s: firmware %.16s, BIOS %.16s, %dMB RAM\n",
amr->amr_dv.dv_xname, ap->ap_firmware, ap->ap_bios,
le16toh(ap->ap_memsize));
amr->amr_maxqueuecnt = ap->ap_maxio;
free(ap, M_DEVBUF);
/*
* Fetch and record state of logical drives.
*/
aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
AMR_CONFIG_ENQ3_SOLICITED_FULL);
if (aex == NULL) {
printf("%s ENQUIRY3 failed\n", amr->amr_dv.dv_xname);
return (-1);
}
if (aex->ae_numldrives > AMR_MAX_UNITS) {
printf("%s: adjust AMR_MAX_UNITS to %d (currently %d)"
"\n", amr->amr_dv.dv_xname,
ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
amr->amr_numdrives = AMR_MAX_UNITS;
} else
amr->amr_numdrives = aex->ae_numldrives;
for (i = 0; i < amr->amr_numdrives; i++) {
amr->amr_drive[i].al_size =
le32toh(aex->ae_drivesize[i]);
amr->amr_drive[i].al_state = aex->ae_drivestate[i];
amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
}
free(aex, M_DEVBUF);
return (0);
}
/*
* Try 8LD extended ENQUIRY to get the controller signature. Once
* found, search for a product description.
*/
if ((ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0)) != NULL) {
i = 0;
sig = le32toh(ae->ae_signature);
while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
if (amr_typestr[i].at_sig == sig)
break;
i++;
}
if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
sprintf(buf, "unknown ENQUIRY2 sig (0x%08x)", sig);
prodstr = buf;
} else
prodstr = amr_typestr[i].at_str;
} else {
if ((ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0)) == NULL) {
printf("%s: unsupported controller\n",
amr->amr_dv.dv_xname);
return (-1);
}
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_AMI_MEGARAID:
prodstr = "Series 428";
break;
case PCI_PRODUCT_AMI_MEGARAID2:
prodstr = "Series 434";
break;
default:
sprintf(buf, "unknown PCI dev (0x%04x)",
PCI_PRODUCT(pa->pa_id));
prodstr = buf;
break;
}
}
printf("<%s>\n", prodstr);
if (intrstr != NULL)
printf("%s: interrupting at %s\n", amr->amr_dv.dv_xname,
intrstr);
printf("%s: firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
amr->amr_dv.dv_xname, ae->ae_adapter.aa_firmware,
ae->ae_adapter.aa_bios, ae->ae_adapter.aa_memorysize);
amr->amr_maxqueuecnt = ae->ae_adapter.aa_maxio;
/*
* Record state of logical drives.
*/
if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
printf("%s: adjust AMR_MAX_UNITS to %d (currently %d)\n",
amr->amr_dv.dv_xname, ae->ae_ldrv.al_numdrives,
AMR_MAX_UNITS);
amr->amr_numdrives = AMR_MAX_UNITS;
} else
amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
for (i = 0; i < AMR_MAX_UNITS; i++) {
amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
}
free(ae, M_DEVBUF);
return (0);
}
/*
* Flush the internal cache on each configured controller. Called at
* shutdown time.
*/
void
amr_shutdown(void *cookie)
{
extern struct cfdriver amr_cd;
struct amr_softc *amr;
struct amr_ccb *ac;
int i, rv;
for (i = 0; i < amr_cd.cd_ndevs; i++) {
if ((amr = device_lookup(&amr_cd, i)) == NULL)
continue;
if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
ac->ac_mbox.mb_command = AMR_CMD_FLUSH;
rv = amr_ccb_poll(amr, ac, 30000);
amr_ccb_free(amr, ac);
}
if (rv != 0)
printf("%s: unable to flush cache (%d)\n",
amr->amr_dv.dv_xname, rv);
}
}
/*
* Interrupt service routine.
*/
int
amr_intr(void *cookie)
{
struct amr_softc *amr;
struct amr_ccb *ac;
struct amr_mailbox mbox;
u_int i, forus, idx;
amr = cookie;
forus = 0;
while ((*amr->amr_get_work)(amr, &mbox) == 0) {
/* Iterate over completed commands in this result. */
for (i = 0; i < mbox.mb_nstatus; i++) {
idx = mbox.mb_completed[i] - 1;
ac = amr->amr_ccbs + idx;
if (idx >= amr->amr_maxqueuecnt) {
printf("%s: bad status (bogus ID: %u=%u)\n",
amr->amr_dv.dv_xname, i, idx);
continue;
}
if ((ac->ac_flags & AC_ACTIVE) == 0) {
printf("%s: bad status (not active; 0x04%x)\n",
amr->amr_dv.dv_xname, ac->ac_flags);
continue;
}
ac->ac_status = mbox.mb_status;
ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
AC_COMPLETE;
/* Pass notification to upper layers. */
if (ac->ac_handler != NULL)
(*ac->ac_handler)(ac);
}
forus = 1;
}
if (forus)
amr_ccb_enqueue(amr, NULL);
return (forus);
}
/*
* Run a generic enquiry-style command.
*/
void *
amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
u_int8_t cmdqual)
{
struct amr_ccb *ac;
u_int8_t *mb;
void *buf;
int rv;
if (amr_ccb_alloc(amr, &ac) != 0)
return (NULL);
buf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
/* Build the command proper. */
mb = (u_int8_t *)&ac->ac_mbox;
mb[0] = cmd;
mb[2] = cmdsub;
mb[3] = cmdqual;
if ((rv = amr_ccb_map(amr, ac, buf, AMR_ENQUIRY_BUFSIZE, 0)) == 0) {
rv = amr_ccb_poll(amr, ac, 2000);
amr_ccb_unmap(amr, ac);
}
amr_ccb_free(amr, ac);
if (rv != 0) {
free(buf, M_DEVBUF);
buf = NULL;
}
return (buf);
}
/*
* Allocate and initialise a CCB.
*/
int
amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
{
struct amr_ccb *ac;
struct amr_mailbox *mb;
int s;
s = splbio();
if ((ac = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
splx(s);
return (EAGAIN);
}
SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
splx(s);
ac->ac_handler = NULL;
mb = &ac->ac_mbox;
*acp = ac;
memset(mb, 0, sizeof(*mb));
mb->mb_ident = ac->ac_ident + 1;
mb->mb_busy = 1;
mb->mb_poll = 0;
mb->mb_ack = 0;
return (0);
}
/*
* Free a CCB.
*/
void
amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
{
int s;
ac->ac_flags = 0;
s = splbio();
SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
splx(s);
}
/*
* If a CCB is specified, enqueue it. Pull CCBs off the software queue in
* the order that they were enqueued and try to submit their command blocks
* to the controller for execution.
*/
void
amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
{
int s;
s = splbio();
if (ac != NULL)
SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
if ((*amr->amr_submit)(amr, ac) != 0)
break;
SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
}
splx(s);
}
/*
* Map the specified CCB's data buffer onto the bus, and fill the
* scatter-gather list.
*/
int
amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
int out)
{
struct amr_sgentry *sge;
struct amr_mailbox *mb;
int nsegs, i, rv, sgloff;
bus_dmamap_t xfer;
xfer = ac->ac_xfer_map;
rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
BUS_DMA_NOWAIT);
if (rv != 0)
return (rv);
mb = &ac->ac_mbox;
ac->ac_xfer_size = size;
ac->ac_flags |= (out ? AC_XFER_OUT : AC_XFER_IN);
sgloff = AMR_SGL_SIZE * ac->ac_ident;
/* We don't need to use a scatter/gather list for just 1 segment. */
nsegs = xfer->dm_nsegs;
if (nsegs == 1) {
mb->mb_nsgelem = 0;
mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
ac->ac_flags |= AC_NOSGL;
} else {
mb->mb_nsgelem = nsegs;
mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
sge = (struct amr_sgentry *)((caddr_t)amr->amr_sgls + sgloff);
for (i = 0; i < nsegs; i++, sge++) {
sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
}
}
bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size,
out ? BUS_DMASYNC_PREWRITE : BUS_DMASYNC_PREREAD);
if ((ac->ac_flags & AC_NOSGL) == 0)
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Unmap the specified CCB's data buffer.
*/
void
amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
{
if ((ac->ac_flags & AC_NOSGL) == 0)
bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
(ac->ac_flags & AC_XFER_IN) != 0 ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
}
/*
* Submit a command to the controller and poll on completion. Return
* non-zero on timeout or error. Must be called with interrupts blocked.
*/
int
amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
{
int rv;
if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
return (rv);
for (timo *= 10; timo != 0; timo--) {
amr_intr(amr);
if ((ac->ac_flags & AC_COMPLETE) != 0)
break;
DELAY(100);
}
return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
}
/*
* Wait for the mailbox to become available.
*/
int
amr_mbox_wait(struct amr_softc *amr)
{
int timo;
for (timo = 10000; timo != 0; timo--) {
if (amr->amr_mbox->mb_busy == 0)
break;
DELAY(100);
}
#if 0
if (timo != 0)
printf("%s: controller wedged\n", amr->amr_dv.dv_xname);
#endif
return (timo != 0 ? 0 : EIO);
}
/*
* Tell the controller that the mailbox contains a valid command. Must be
* called with interrupts blocked.
*/
int
amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
{
u_int32_t v;
v = amr_inl(amr, AMR_QREG_IDB);
if ((v & (AMR_QIDB_SUBMIT | AMR_QIDB_ACK)) != 0)
return (EBUSY);
memcpy(amr->amr_mbox, &ac->ac_mbox, sizeof(ac->ac_mbox));
ac->ac_flags |= AC_ACTIVE;
amr_outl(amr, AMR_QREG_IDB, amr->amr_mbox_paddr | AMR_QIDB_SUBMIT);
DELAY(10);
return (0);
}
int
amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
{
if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0)
return (EBUSY);
memcpy(amr->amr_mbox, &ac->ac_mbox, sizeof(ac->ac_mbox));
ac->ac_flags |= AC_ACTIVE;
amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
return (0);
}
/*
* Claim any work that the controller has completed; acknowledge completion,
* save details of the completion in (mbsave). Must be called with
* interrupts blocked.
*/
int
amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox *mbsave)
{
u_int32_t v;
if (amr_mbox_wait(amr))
return (EBUSY);
v = amr_inl(amr, AMR_QREG_IDB);
if ((v & (AMR_QIDB_SUBMIT | AMR_QIDB_ACK)) != 0)
return (EBUSY);
/* Work waiting for us? */
if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
return (-1);
/* Save the mailbox, which contains a list of completed commands. */
memcpy(mbsave, amr->amr_mbox, sizeof(*mbsave));
/* Ack the interrupt and mailbox transfer. */
amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
amr_outl(amr, AMR_QREG_IDB, amr->amr_mbox_paddr | AMR_QIDB_ACK);
DELAY(10);
#if 0
/*
* This waits for the controller to notice that we've taken the
* command from it. It's very inefficient, and we shouldn't do it,
* but if we remove this code, we stop completing commands under
* load.
*
* Peter J says we shouldn't do this. The documentation says we
* should. Who is right?
*/
while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
;
#endif
return (0);
}
int
amr_std_get_work(struct amr_softc *amr, struct amr_mailbox *mbsave)
{
u_int8_t istat;
if (amr_mbox_wait(amr))
return (EBUSY);
/* Puke if the mailbox is busy. */
if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0)
return (-1);
/* Check for valid interrupt status. */
if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
return (-1);
/* Ack the interrupt. */
amr_outb(amr, AMR_SREG_INTR, istat);
/* Save mailbox, which contains a list of completed commands. */
memcpy(mbsave, amr->amr_mbox, sizeof(*mbsave));
/* Ack mailbox transfer. */
amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
return (0);
}