NetBSD/sbin/fsck_lfs/segwrite.c
dholland dcd34a91c5 Stuff UFS_ in front of a few of ufs's symbols to reduce namespace
pollution. Specifically:
   ROOTINO -> UFS_ROOTINO
   WINO -> UFS_WINO
   NXADDR -> UFS_NXADDR
   NDADDR -> UFS_NDADDR
   NIADDR -> UFS_NIADDR
   MAXSYMLINKLEN -> UFS_MAXSYMLINKLEN
   MAXSYMLINKLEN_UFS[12] -> UFS[12]_MAXSYMLINKLEN (for consistency)

Sort out ext2fs's misuse of NDADDR and NIADDR; fortunately, these have
the same values in ext2fs and ffs.

No functional change intended.
2013-01-22 09:39:11 +00:00

1014 lines
26 KiB
C

/* $NetBSD: segwrite.c,v 1.21 2013/01/22 09:39:12 dholland Exp $ */
/*-
* Copyright (c) 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Konrad E. Schroder <perseant@hhhh.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
*/
/*
* Partial segment writer, taken from the kernel and adapted for userland.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/buf.h>
#include <sys/mount.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufsmount.h>
/* Override certain things to make <ufs/lfs/lfs.h> work */
#define vnode uvnode
#define buf ubuf
#define panic call_panic
#include <ufs/lfs/lfs.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <err.h>
#include <errno.h>
#include <util.h>
#include "bufcache.h"
#include "vnode.h"
#include "lfs_user.h"
#include "segwrite.h"
/* Compatibility definitions */
extern off_t locked_queue_bytes;
int locked_queue_count;
off_t written_bytes = 0;
off_t written_data = 0;
off_t written_indir = 0;
off_t written_dev = 0;
int written_inodes = 0;
/* Global variables */
time_t write_time;
extern u_int32_t cksum(void *, size_t);
extern u_int32_t lfs_sb_cksum(struct dlfs *);
extern int preen;
/*
* Logical block number match routines used when traversing the dirty block
* chain.
*/
int
lfs_match_data(struct lfs * fs, struct ubuf * bp)
{
return (bp->b_lblkno >= 0);
}
int
lfs_match_indir(struct lfs * fs, struct ubuf * bp)
{
daddr_t lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - UFS_NDADDR) % NINDIR(fs) == 0);
}
int
lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
{
daddr_t lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - UFS_NDADDR) % NINDIR(fs) == 1);
}
int
lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
{
daddr_t lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - UFS_NDADDR) % NINDIR(fs) == 2);
}
/*
* Do a checkpoint.
*/
int
lfs_segwrite(struct lfs * fs, int flags)
{
struct inode *ip;
struct segment *sp;
struct uvnode *vp;
int redo;
lfs_seglock(fs, flags | SEGM_CKP);
sp = fs->lfs_sp;
lfs_writevnodes(fs, sp, VN_REG);
lfs_writevnodes(fs, sp, VN_DIROP);
((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
do {
vp = fs->lfs_ivnode;
fs->lfs_flags &= ~LFS_IFDIRTY;
ip = VTOI(vp);
if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || fs->lfs_idaddr <= 0)
lfs_writefile(fs, sp, vp);
redo = lfs_writeinode(fs, sp, ip);
redo += lfs_writeseg(fs, sp);
redo += (fs->lfs_flags & LFS_IFDIRTY);
} while (redo);
lfs_segunlock(fs);
#if 0
printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
written_data, (ufs_daddr_t)btofsb(fs, written_data));
printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
printf("wrote %d inodes (%" PRId32 " fsb)\n",
written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
#endif
return 0;
}
/*
* Write the dirty blocks associated with a vnode.
*/
void
lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
{
struct ubuf *bp;
struct finfo *fip;
struct inode *ip;
IFILE *ifp;
ip = VTOI(vp);
if (sp->seg_bytes_left < fs->lfs_bsize ||
sp->sum_bytes_left < sizeof(struct finfo))
(void) lfs_writeseg(fs, sp);
sp->sum_bytes_left -= FINFOSIZE;
++((SEGSUM *) (sp->segsum))->ss_nfinfo;
if (vp->v_uflag & VU_DIROP)
((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
fip = sp->fip;
fip->fi_nblocks = 0;
fip->fi_ino = ip->i_number;
LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
fip->fi_version = ifp->if_version;
brelse(bp, 0);
lfs_gather(fs, sp, vp, lfs_match_data);
lfs_gather(fs, sp, vp, lfs_match_indir);
lfs_gather(fs, sp, vp, lfs_match_dindir);
lfs_gather(fs, sp, vp, lfs_match_tindir);
fip = sp->fip;
if (fip->fi_nblocks != 0) {
sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
sizeof(ufs_daddr_t) * (fip->fi_nblocks));
sp->start_lbp = &sp->fip->fi_blocks[0];
} else {
sp->sum_bytes_left += FINFOSIZE;
--((SEGSUM *) (sp->segsum))->ss_nfinfo;
}
}
int
lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
{
struct ubuf *bp, *ibp;
struct ufs1_dinode *cdp;
IFILE *ifp;
SEGUSE *sup;
daddr_t daddr;
ino_t ino;
int error, i, ndx, fsb = 0;
int redo_ifile = 0;
struct timespec ts;
int gotblk = 0;
/* Allocate a new inode block if necessary. */
if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
sp->ibp == NULL) {
/* Allocate a new segment if necessary. */
if (sp->seg_bytes_left < fs->lfs_ibsize ||
sp->sum_bytes_left < sizeof(ufs_daddr_t))
(void) lfs_writeseg(fs, sp);
/* Get next inode block. */
daddr = fs->lfs_offset;
fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
sp->ibp = *sp->cbpp++ =
getblk(fs->lfs_devvp, fsbtodb(fs, daddr),
fs->lfs_ibsize);
sp->ibp->b_flags |= B_GATHERED;
gotblk++;
/* Zero out inode numbers */
for (i = 0; i < INOPB(fs); ++i)
((struct ufs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
++sp->start_bpp;
fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
/* Set remaining space counters. */
sp->seg_bytes_left -= fs->lfs_ibsize;
sp->sum_bytes_left -= sizeof(ufs_daddr_t);
ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
sp->ninodes / INOPB(fs) - 1;
((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
}
/* Update the inode times and copy the inode onto the inode page. */
ts.tv_nsec = 0;
ts.tv_sec = write_time;
/* XXX kludge --- don't redirty the ifile just to put times on it */
if (ip->i_number != LFS_IFILE_INUM)
LFS_ITIMES(ip, &ts, &ts, &ts);
/*
* If this is the Ifile, and we've already written the Ifile in this
* partial segment, just overwrite it (it's not on disk yet) and
* continue.
*
* XXX we know that the bp that we get the second time around has
* already been gathered.
*/
if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
*(sp->idp) = *ip->i_din.ffs1_din;
ip->i_lfs_osize = ip->i_ffs1_size;
return 0;
}
bp = sp->ibp;
cdp = ((struct ufs1_dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
*cdp = *ip->i_din.ffs1_din;
/* If all blocks are goig to disk, update the "size on disk" */
ip->i_lfs_osize = ip->i_ffs1_size;
if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
sp->idp = ((struct ufs1_dinode *) bp->b_data) +
(sp->ninodes % INOPB(fs));
if (gotblk) {
LFS_LOCK_BUF(bp);
assert(!(bp->b_flags & B_INVAL));
brelse(bp, 0);
}
/* Increment inode count in segment summary block. */
++((SEGSUM *) (sp->segsum))->ss_ninos;
/* If this page is full, set flag to allocate a new page. */
if (++sp->ninodes % INOPB(fs) == 0)
sp->ibp = NULL;
/*
* If updating the ifile, update the super-block. Update the disk
* address and access times for this inode in the ifile.
*/
ino = ip->i_number;
if (ino == LFS_IFILE_INUM) {
daddr = fs->lfs_idaddr;
fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
sbdirty();
} else {
LFS_IENTRY(ifp, fs, ino, ibp);
daddr = ifp->if_daddr;
ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
error = LFS_BWRITE_LOG(ibp); /* Ifile */
}
/*
* Account the inode: it no longer belongs to its former segment,
* though it will not belong to the new segment until that segment
* is actually written.
*/
if (daddr != LFS_UNUSED_DADDR) {
u_int32_t oldsn = dtosn(fs, daddr);
LFS_SEGENTRY(sup, fs, oldsn, bp);
sup->su_nbytes -= DINODE1_SIZE;
redo_ifile =
(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
if (redo_ifile)
fs->lfs_flags |= LFS_IFDIRTY;
LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
}
return redo_ifile;
}
int
lfs_gatherblock(struct segment * sp, struct ubuf * bp)
{
struct lfs *fs;
int version;
int j, blksinblk;
/*
* If full, finish this segment. We may be doing I/O, so
* release and reacquire the splbio().
*/
fs = sp->fs;
blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
sp->seg_bytes_left < bp->b_bcount) {
lfs_updatemeta(sp);
version = sp->fip->fi_version;
(void) lfs_writeseg(fs, sp);
sp->fip->fi_version = version;
sp->fip->fi_ino = VTOI(sp->vp)->i_number;
/* Add the current file to the segment summary. */
++((SEGSUM *) (sp->segsum))->ss_nfinfo;
sp->sum_bytes_left -= FINFOSIZE;
return 1;
}
/* Insert into the buffer list, update the FINFO block. */
bp->b_flags |= B_GATHERED;
/* bp->b_flags &= ~B_DONE; */
*sp->cbpp++ = bp;
for (j = 0; j < blksinblk; j++)
sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
sp->seg_bytes_left -= bp->b_bcount;
return 0;
}
int
lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
{
struct ubuf *bp, *nbp;
int count = 0;
sp->vp = vp;
loop:
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
assert(bp->b_flags & B_DELWRI);
if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
continue;
}
if (lfs_gatherblock(sp, bp)) {
goto loop;
}
count++;
}
lfs_updatemeta(sp);
sp->vp = NULL;
return count;
}
/*
* Change the given block's address to ndaddr, finding its previous
* location using ufs_bmaparray().
*
* Account for this change in the segment table.
*/
void
lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
ufs_daddr_t ndaddr, int size)
{
SEGUSE *sup;
struct ubuf *bp;
struct indir a[UFS_NIADDR + 2], *ap;
struct inode *ip;
struct uvnode *vp;
daddr_t daddr, ooff;
int num, error;
int osize;
int frags, ofrags;
vp = sp->vp;
ip = VTOI(vp);
error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
if (error)
errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
if (daddr > 0)
daddr = dbtofsb(fs, daddr);
frags = numfrags(fs, size);
switch (num) {
case 0:
ooff = ip->i_ffs1_db[lbn];
if (ooff == UNWRITTEN)
ip->i_ffs1_blocks += frags;
else {
/* possible fragment truncation or extension */
ofrags = btofsb(fs, ip->i_lfs_fragsize[lbn]);
ip->i_ffs1_blocks += (frags - ofrags);
}
ip->i_ffs1_db[lbn] = ndaddr;
break;
case 1:
ooff = ip->i_ffs1_ib[a[0].in_off];
if (ooff == UNWRITTEN)
ip->i_ffs1_blocks += frags;
ip->i_ffs1_ib[a[0].in_off] = ndaddr;
break;
default:
ap = &a[num - 1];
if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, 0, &bp))
errx(1, "lfs_updatemeta: bread bno %" PRId64,
ap->in_lbn);
ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
if (ooff == UNWRITTEN)
ip->i_ffs1_blocks += frags;
((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
(void) VOP_BWRITE(bp);
}
/*
* Update segment usage information, based on old size
* and location.
*/
if (daddr > 0) {
u_int32_t oldsn = dtosn(fs, daddr);
if (lbn >= 0 && lbn < UFS_NDADDR)
osize = ip->i_lfs_fragsize[lbn];
else
osize = fs->lfs_bsize;
LFS_SEGENTRY(sup, fs, oldsn, bp);
sup->su_nbytes -= osize;
if (!(bp->b_flags & B_GATHERED))
fs->lfs_flags |= LFS_IFDIRTY;
LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
}
/*
* Now that this block has a new address, and its old
* segment no longer owns it, we can forget about its
* old size.
*/
if (lbn >= 0 && lbn < UFS_NDADDR)
ip->i_lfs_fragsize[lbn] = size;
}
/*
* Update the metadata that points to the blocks listed in the FINFO
* array.
*/
void
lfs_updatemeta(struct segment * sp)
{
struct ubuf *sbp;
struct lfs *fs;
struct uvnode *vp;
daddr_t lbn;
int i, nblocks, num;
int frags;
int bytesleft, size;
vp = sp->vp;
nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
if (vp == NULL || nblocks == 0)
return;
/*
* This count may be high due to oversize blocks from lfs_gop_write.
* Correct for this. (XXX we should be able to keep track of these.)
*/
fs = sp->fs;
for (i = 0; i < nblocks; i++) {
if (sp->start_bpp[i] == NULL) {
printf("nblocks = %d, not %d\n", i, nblocks);
nblocks = i;
break;
}
num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
nblocks -= num - 1;
}
/*
* Sort the blocks.
*/
lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
/*
* Record the length of the last block in case it's a fragment.
* If there are indirect blocks present, they sort last. An
* indirect block will be lfs_bsize and its presence indicates
* that you cannot have fragments.
*/
sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
fs->lfs_bmask) + 1;
/*
* Assign disk addresses, and update references to the logical
* block and the segment usage information.
*/
for (i = nblocks; i--; ++sp->start_bpp) {
sbp = *sp->start_bpp;
lbn = *sp->start_lbp;
sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
/*
* If we write a frag in the wrong place, the cleaner won't
* be able to correctly identify its size later, and the
* segment will be uncleanable. (Even worse, it will assume
* that the indirect block that actually ends the list
* is of a smaller size!)
*/
if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
errx(1, "lfs_updatemeta: fragment is not last block");
/*
* For each subblock in this possibly oversized block,
* update its address on disk.
*/
for (bytesleft = sbp->b_bcount; bytesleft > 0;
bytesleft -= fs->lfs_bsize) {
size = MIN(bytesleft, fs->lfs_bsize);
frags = numfrags(fs, size);
lbn = *sp->start_lbp++;
lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
fs->lfs_offset += frags;
}
}
}
/*
* Start a new segment.
*/
int
lfs_initseg(struct lfs * fs)
{
struct segment *sp;
SEGUSE *sup;
SEGSUM *ssp;
struct ubuf *bp, *sbp;
int repeat;
sp = fs->lfs_sp;
repeat = 0;
/* Advance to the next segment. */
if (!LFS_PARTIAL_FITS(fs)) {
/* lfs_avail eats the remaining space */
fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
fs->lfs_curseg);
lfs_newseg(fs);
repeat = 1;
fs->lfs_offset = fs->lfs_curseg;
sp->seg_number = dtosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
/*
* If the segment contains a superblock, update the offset
* and summary address to skip over it.
*/
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
if (sup->su_flags & SEGUSE_SUPERBLOCK) {
fs->lfs_offset += btofsb(fs, LFS_SBPAD);
sp->seg_bytes_left -= LFS_SBPAD;
}
brelse(bp, 0);
/* Segment zero could also contain the labelpad */
if (fs->lfs_version > 1 && sp->seg_number == 0 &&
fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
}
} else {
sp->seg_number = dtosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
(fs->lfs_offset - fs->lfs_curseg));
}
fs->lfs_lastpseg = fs->lfs_offset;
sp->fs = fs;
sp->ibp = NULL;
sp->idp = NULL;
sp->ninodes = 0;
sp->ndupino = 0;
/* Get a new buffer for SEGSUM and enter it into the buffer list. */
sp->cbpp = sp->bpp;
sbp = *sp->cbpp = getblk(fs->lfs_devvp,
fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
sp->segsum = sbp->b_data;
memset(sp->segsum, 0, fs->lfs_sumsize);
sp->start_bpp = ++sp->cbpp;
fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
/* Set point to SEGSUM, initialize it. */
ssp = sp->segsum;
ssp->ss_next = fs->lfs_nextseg;
ssp->ss_nfinfo = ssp->ss_ninos = 0;
ssp->ss_magic = SS_MAGIC;
/* Set pointer to first FINFO, initialize it. */
sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
sp->fip->fi_nblocks = 0;
sp->start_lbp = &sp->fip->fi_blocks[0];
sp->fip->fi_lastlength = 0;
sp->seg_bytes_left -= fs->lfs_sumsize;
sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
LFS_LOCK_BUF(sbp);
brelse(sbp, 0);
return repeat;
}
/*
* Return the next segment to write.
*/
void
lfs_newseg(struct lfs * fs)
{
CLEANERINFO *cip;
SEGUSE *sup;
struct ubuf *bp;
int curseg, isdirty, sn;
LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
sup->su_nbytes = 0;
sup->su_nsums = 0;
sup->su_ninos = 0;
LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
LFS_CLEANERINFO(cip, fs, bp);
--cip->clean;
++cip->dirty;
fs->lfs_nclean = cip->clean;
LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
fs->lfs_lastseg = fs->lfs_curseg;
fs->lfs_curseg = fs->lfs_nextseg;
for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
sn = (sn + 1) % fs->lfs_nseg;
if (sn == curseg)
errx(1, "lfs_nextseg: no clean segments");
LFS_SEGENTRY(sup, fs, sn, bp);
isdirty = sup->su_flags & SEGUSE_DIRTY;
brelse(bp, 0);
if (!isdirty)
break;
}
++fs->lfs_nactive;
fs->lfs_nextseg = sntod(fs, sn);
}
int
lfs_writeseg(struct lfs * fs, struct segment * sp)
{
struct ubuf **bpp, *bp;
SEGUSE *sup;
SEGSUM *ssp;
char *datap, *dp;
int i;
int do_again, nblocks, byteoffset;
size_t el_size;
u_short ninos;
struct uvnode *devvp;
/*
* If there are no buffers other than the segment summary to write
* and it is not a checkpoint, don't do anything. On a checkpoint,
* even if there aren't any buffers, you need to write the superblock.
*/
nblocks = sp->cbpp - sp->bpp;
#if 0
printf("write %d blocks at 0x%x\n",
nblocks, (int)dbtofsb(fs, (*sp->bpp)->b_blkno));
#endif
if (nblocks == 1)
return 0;
devvp = fs->lfs_devvp;
/* Update the segment usage information. */
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
/* Loop through all blocks, except the segment summary. */
for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
if ((*bpp)->b_vp != devvp) {
sup->su_nbytes += (*bpp)->b_bcount;
}
assert(dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno)) == sp->seg_number);
}
ssp = (SEGSUM *) sp->segsum;
ssp->ss_flags |= SS_RFW;
ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
sup->su_nbytes += ssp->ss_ninos * DINODE1_SIZE;
if (fs->lfs_version == 1)
sup->su_olastmod = write_time;
else
sup->su_lastmod = write_time;
sup->su_ninos += ninos;
++sup->su_nsums;
fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
fs->lfs_ibsize));
fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
do_again = !(bp->b_flags & B_GATHERED);
LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
/*
* Compute checksum across data and then across summary; the first
* block (the summary block) is skipped. Set the create time here
* so that it's guaranteed to be later than the inode mod times.
*/
if (fs->lfs_version == 1)
el_size = sizeof(u_long);
else
el_size = sizeof(u_int32_t);
datap = dp = emalloc(nblocks * el_size);
for (bpp = sp->bpp, i = nblocks - 1; i--;) {
++bpp;
/* Loop through gop_write cluster blocks */
for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
byteoffset += fs->lfs_bsize) {
memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
dp += el_size;
}
bremfree(*bpp);
(*bpp)->b_flags |= B_BUSY;
}
if (fs->lfs_version == 1)
ssp->ss_ocreate = write_time;
else {
ssp->ss_create = write_time;
ssp->ss_serial = ++fs->lfs_serial;
ssp->ss_ident = fs->lfs_ident;
}
/* Set the summary block busy too */
bremfree(*(sp->bpp));
(*(sp->bpp))->b_flags |= B_BUSY;
ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
ssp->ss_sumsum =
cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
free(datap);
datap = dp = NULL;
fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
btofsb(fs, fs->lfs_sumsize));
if (devvp == NULL)
errx(1, "devvp is NULL");
for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
bp = *bpp;
#if 0
printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
nblocks - i, bp, bp->b_flags, bp->b_blkno);
printf(" vp = %p\n", bp->b_vp);
if (bp->b_vp != fs->lfs_devvp)
printf(" ino = %d lbn = %" PRId64 "\n",
VTOI(bp->b_vp)->i_number, bp->b_lblkno);
#endif
if (bp->b_vp == fs->lfs_devvp)
written_dev += bp->b_bcount;
else {
if (bp->b_lblkno >= 0)
written_data += bp->b_bcount;
else
written_indir += bp->b_bcount;
}
bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
B_LOCKED);
bwrite(bp);
written_bytes += bp->b_bcount;
}
written_inodes += ninos;
return (lfs_initseg(fs) || do_again);
}
/*
* Our own copy of shellsort. XXX use qsort or heapsort.
*/
void
lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
{
static int __rsshell_increments[] = {4, 1, 0};
int incr, *incrp, t1, t2;
struct ubuf *bp_temp;
for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
for (t1 = incr; t1 < nmemb; ++t1)
for (t2 = t1 - incr; t2 >= 0;)
if ((u_int32_t) bp_array[t2]->b_lblkno >
(u_int32_t) bp_array[t2 + incr]->b_lblkno) {
bp_temp = bp_array[t2];
bp_array[t2] = bp_array[t2 + incr];
bp_array[t2 + incr] = bp_temp;
t2 -= incr;
} else
break;
/* Reform the list of logical blocks */
incr = 0;
for (t1 = 0; t1 < nmemb; t1++) {
for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
}
}
}
/*
* lfs_seglock --
* Single thread the segment writer.
*/
int
lfs_seglock(struct lfs * fs, unsigned long flags)
{
struct segment *sp;
if (fs->lfs_seglock) {
++fs->lfs_seglock;
fs->lfs_sp->seg_flags |= flags;
return 0;
}
fs->lfs_seglock = 1;
sp = fs->lfs_sp = emalloc(sizeof(*sp));
sp->bpp = emalloc(fs->lfs_ssize * sizeof(struct ubuf *));
if (!sp->bpp)
errx(!preen, "Could not allocate %zu bytes: %s",
(size_t)(fs->lfs_ssize * sizeof(struct ubuf *)),
strerror(errno));
sp->seg_flags = flags;
sp->vp = NULL;
sp->seg_iocount = 0;
(void) lfs_initseg(fs);
return 0;
}
/*
* lfs_segunlock --
* Single thread the segment writer.
*/
void
lfs_segunlock(struct lfs * fs)
{
struct segment *sp;
struct ubuf *bp;
sp = fs->lfs_sp;
if (fs->lfs_seglock == 1) {
if (sp->bpp != sp->cbpp) {
/* Free allocated segment summary */
fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
bp = *sp->bpp;
bremfree(bp);
bp->b_flags |= B_DONE | B_INVAL;
bp->b_flags &= ~B_DELWRI;
reassignbuf(bp, bp->b_vp);
bp->b_flags |= B_BUSY; /* XXX */
brelse(bp, 0);
} else
printf("unlock to 0 with no summary");
free(sp->bpp);
sp->bpp = NULL;
free(sp);
fs->lfs_sp = NULL;
fs->lfs_nactive = 0;
/* Since we *know* everything's on disk, write both sbs */
lfs_writesuper(fs, fs->lfs_sboffs[0]);
lfs_writesuper(fs, fs->lfs_sboffs[1]);
--fs->lfs_seglock;
fs->lfs_lockpid = 0;
} else if (fs->lfs_seglock == 0) {
errx(1, "Seglock not held");
} else {
--fs->lfs_seglock;
}
}
int
lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
{
struct inode *ip;
struct uvnode *vp;
int inodes_written = 0;
LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
if (vp->v_bmap_op != lfs_vop_bmap)
continue;
ip = VTOI(vp);
if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
(op != VN_DIROP && (vp->v_uflag & VU_DIROP))) {
continue;
}
/*
* Write the inode/file if dirty and it's not the IFILE.
*/
if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
if (ip->i_number != LFS_IFILE_INUM)
lfs_writefile(fs, sp, vp);
(void) lfs_writeinode(fs, sp, ip);
inodes_written++;
}
}
return inodes_written;
}
void
lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
{
struct ubuf *bp;
/* Set timestamp of this version of the superblock */
if (fs->lfs_version == 1)
fs->lfs_otstamp = write_time;
fs->lfs_tstamp = write_time;
/* Checksum the superblock and copy it into a buffer. */
fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
assert(daddr > 0);
bp = getblk(fs->lfs_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
memset(bp->b_data + sizeof(struct dlfs), 0,
LFS_SBPAD - sizeof(struct dlfs));
*(struct dlfs *) bp->b_data = fs->lfs_dlfs;
bwrite(bp);
}