804 lines
19 KiB
C
804 lines
19 KiB
C
/* $NetBSD: vfs_lockf.c,v 1.16 2000/06/12 14:33:06 sommerfeld Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Scooter Morris at Genentech Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/file.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/lockf.h>
|
|
|
|
/*
|
|
* This variable controls the maximum number of processes that will
|
|
* be checked in doing deadlock detection.
|
|
*/
|
|
int maxlockdepth = MAXDEPTH;
|
|
|
|
#ifdef LOCKF_DEBUG
|
|
int lockf_debug = 0;
|
|
#endif
|
|
|
|
#define NOLOCKF (struct lockf *)0
|
|
#define SELF 0x1
|
|
#define OTHERS 0x2
|
|
|
|
/*
|
|
* XXX TODO
|
|
* Misc cleanups: "caddr_t id" should be visible in the API as a
|
|
* "struct proc *".
|
|
* (This requires rototilling all VFS's which support advisory locking).
|
|
*
|
|
* Use pools for lock allocation.
|
|
*/
|
|
|
|
/*
|
|
* XXXSMP TODO: Using either (a) a global lock, or (b) the vnode's
|
|
* interlock should be sufficient; (b) requires a change to the API
|
|
* because the vnode isn't visible here.
|
|
*
|
|
* If there's a lot of lock contention on a single vnode, locking
|
|
* schemes which allow for more paralleism would be needed. Given how
|
|
* infrequently byte-range locks are actually used in typical BSD
|
|
* code, a more complex approach probably isn't worth it.
|
|
*/
|
|
|
|
/*
|
|
* Do an advisory lock operation.
|
|
*/
|
|
int
|
|
lf_advlock(head, size, id, op, fl, flags)
|
|
struct lockf **head;
|
|
off_t size;
|
|
caddr_t id;
|
|
int op;
|
|
struct flock *fl;
|
|
int flags;
|
|
{
|
|
struct lockf *lock;
|
|
off_t start, end;
|
|
int error;
|
|
|
|
/*
|
|
* Convert the flock structure into a start and end.
|
|
*/
|
|
switch (fl->l_whence) {
|
|
case SEEK_SET:
|
|
case SEEK_CUR:
|
|
/*
|
|
* Caller is responsible for adding any necessary offset
|
|
* when SEEK_CUR is used.
|
|
*/
|
|
start = fl->l_start;
|
|
break;
|
|
|
|
case SEEK_END:
|
|
start = size + fl->l_start;
|
|
break;
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
if (start < 0)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Avoid the common case of unlocking when inode has no locks.
|
|
*/
|
|
if (*head == (struct lockf *)0) {
|
|
if (op != F_SETLK) {
|
|
fl->l_type = F_UNLCK;
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
if (fl->l_len == 0)
|
|
end = -1;
|
|
else
|
|
end = start + fl->l_len - 1;
|
|
/*
|
|
* Create the lockf structure.
|
|
*/
|
|
MALLOC(lock, struct lockf *, sizeof(*lock), M_LOCKF, M_WAITOK);
|
|
lock->lf_start = start;
|
|
lock->lf_end = end;
|
|
lock->lf_id = id;
|
|
lock->lf_head = head;
|
|
lock->lf_type = fl->l_type;
|
|
lock->lf_next = (struct lockf *)0;
|
|
TAILQ_INIT(&lock->lf_blkhd);
|
|
lock->lf_flags = flags;
|
|
/*
|
|
* Do the requested operation.
|
|
*/
|
|
switch (op) {
|
|
|
|
case F_SETLK:
|
|
return (lf_setlock(lock));
|
|
|
|
case F_UNLCK:
|
|
error = lf_clearlock(lock);
|
|
FREE(lock, M_LOCKF);
|
|
return (error);
|
|
|
|
case F_GETLK:
|
|
error = lf_getlock(lock, fl);
|
|
FREE(lock, M_LOCKF);
|
|
return (error);
|
|
|
|
default:
|
|
FREE(lock, M_LOCKF);
|
|
return (EINVAL);
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Set a byte-range lock.
|
|
*/
|
|
int
|
|
lf_setlock(lock)
|
|
struct lockf *lock;
|
|
{
|
|
struct lockf *block;
|
|
struct lockf **head = lock->lf_head;
|
|
struct lockf **prev, *overlap, *ltmp;
|
|
static char lockstr[] = "lockf";
|
|
int ovcase, priority, needtolink, error;
|
|
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 1)
|
|
lf_print("lf_setlock", lock);
|
|
#endif /* LOCKF_DEBUG */
|
|
|
|
/*
|
|
* Set the priority
|
|
*/
|
|
priority = PLOCK;
|
|
if (lock->lf_type == F_WRLCK)
|
|
priority += 4;
|
|
priority |= PCATCH;
|
|
/*
|
|
* Scan lock list for this file looking for locks that would block us.
|
|
*/
|
|
while ((block = lf_getblock(lock)) != NULL) {
|
|
/*
|
|
* Free the structure and return if nonblocking.
|
|
*/
|
|
if ((lock->lf_flags & F_WAIT) == 0) {
|
|
FREE(lock, M_LOCKF);
|
|
return (EAGAIN);
|
|
}
|
|
/*
|
|
* We are blocked. Since flock style locks cover
|
|
* the whole file, there is no chance for deadlock.
|
|
* For byte-range locks we must check for deadlock.
|
|
*
|
|
* Deadlock detection is done by looking through the
|
|
* wait channels to see if there are any cycles that
|
|
* involve us. MAXDEPTH is set just to make sure we
|
|
* do not go off into neverneverland.
|
|
*/
|
|
if ((lock->lf_flags & F_POSIX) &&
|
|
(block->lf_flags & F_POSIX)) {
|
|
struct proc *wproc;
|
|
struct lockf *waitblock;
|
|
int i = 0;
|
|
|
|
/* The block is waiting on something */
|
|
wproc = (struct proc *)block->lf_id;
|
|
while (wproc->p_wchan &&
|
|
(wproc->p_wmesg == lockstr) &&
|
|
(i++ < maxlockdepth)) {
|
|
waitblock = (struct lockf *)wproc->p_wchan;
|
|
/* Get the owner of the blocking lock */
|
|
waitblock = waitblock->lf_next;
|
|
if ((waitblock->lf_flags & F_POSIX) == 0)
|
|
break;
|
|
wproc = (struct proc *)waitblock->lf_id;
|
|
if (wproc == (struct proc *)lock->lf_id) {
|
|
free(lock, M_LOCKF);
|
|
return (EDEADLK);
|
|
}
|
|
}
|
|
/*
|
|
* If we're still following a dependancy chain
|
|
* after maxlockdepth iterations, assume we're in
|
|
* a cycle to be safe.
|
|
*/
|
|
if (i >= maxlockdepth) {
|
|
free(lock, M_LOCKF);
|
|
return (EDEADLK);
|
|
}
|
|
}
|
|
/*
|
|
* For flock type locks, we must first remove
|
|
* any shared locks that we hold before we sleep
|
|
* waiting for an exclusive lock.
|
|
*/
|
|
if ((lock->lf_flags & F_FLOCK) &&
|
|
lock->lf_type == F_WRLCK) {
|
|
lock->lf_type = F_UNLCK;
|
|
(void) lf_clearlock(lock);
|
|
lock->lf_type = F_WRLCK;
|
|
}
|
|
/*
|
|
* Add our lock to the blocked list and sleep until we're free.
|
|
* Remember who blocked us (for deadlock detection).
|
|
*/
|
|
lock->lf_next = block;
|
|
TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 1) {
|
|
lf_print("lf_setlock: blocking on", block);
|
|
lf_printlist("lf_setlock", block);
|
|
}
|
|
#endif /* LOCKF_DEBUG */
|
|
error = tsleep((caddr_t)lock, priority, lockstr, 0);
|
|
|
|
/*
|
|
* We may have been awakened by a signal (in
|
|
* which case we must remove ourselves from the
|
|
* blocked list) and/or by another process
|
|
* releasing a lock (in which case we have already
|
|
* been removed from the blocked list and our
|
|
* lf_next field set to NOLOCKF).
|
|
*/
|
|
if (lock->lf_next != NOLOCKF) {
|
|
TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
|
|
lock->lf_next = NOLOCKF;
|
|
}
|
|
if (error) {
|
|
free(lock, M_LOCKF);
|
|
return (error);
|
|
}
|
|
}
|
|
/*
|
|
* No blocks!! Add the lock. Note that we will
|
|
* downgrade or upgrade any overlapping locks this
|
|
* process already owns.
|
|
*
|
|
* Skip over locks owned by other processes.
|
|
* Handle any locks that overlap and are owned by ourselves.
|
|
*/
|
|
prev = head;
|
|
block = *head;
|
|
needtolink = 1;
|
|
for (;;) {
|
|
ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
|
|
if (ovcase)
|
|
block = overlap->lf_next;
|
|
/*
|
|
* Six cases:
|
|
* 0) no overlap
|
|
* 1) overlap == lock
|
|
* 2) overlap contains lock
|
|
* 3) lock contains overlap
|
|
* 4) overlap starts before lock
|
|
* 5) overlap ends after lock
|
|
*/
|
|
switch (ovcase) {
|
|
case 0: /* no overlap */
|
|
if (needtolink) {
|
|
*prev = lock;
|
|
lock->lf_next = overlap;
|
|
}
|
|
break;
|
|
|
|
case 1: /* overlap == lock */
|
|
/*
|
|
* If downgrading lock, others may be
|
|
* able to acquire it.
|
|
*/
|
|
if (lock->lf_type == F_RDLCK &&
|
|
overlap->lf_type == F_WRLCK)
|
|
lf_wakelock(overlap);
|
|
overlap->lf_type = lock->lf_type;
|
|
FREE(lock, M_LOCKF);
|
|
lock = overlap; /* for debug output below */
|
|
break;
|
|
|
|
case 2: /* overlap contains lock */
|
|
/*
|
|
* Check for common starting point and different types.
|
|
*/
|
|
if (overlap->lf_type == lock->lf_type) {
|
|
free(lock, M_LOCKF);
|
|
lock = overlap; /* for debug output below */
|
|
break;
|
|
}
|
|
if (overlap->lf_start == lock->lf_start) {
|
|
*prev = lock;
|
|
lock->lf_next = overlap;
|
|
overlap->lf_start = lock->lf_end + 1;
|
|
} else
|
|
lf_split(overlap, lock);
|
|
lf_wakelock(overlap);
|
|
break;
|
|
|
|
case 3: /* lock contains overlap */
|
|
/*
|
|
* If downgrading lock, others may be able to
|
|
* acquire it, otherwise take the list.
|
|
*/
|
|
if (lock->lf_type == F_RDLCK &&
|
|
overlap->lf_type == F_WRLCK) {
|
|
lf_wakelock(overlap);
|
|
} else {
|
|
while ((ltmp = overlap->lf_blkhd.tqh_first)) {
|
|
KASSERT(ltmp->lf_next == overlap);
|
|
TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
|
|
lf_block);
|
|
ltmp->lf_next = lock;
|
|
TAILQ_INSERT_TAIL(&lock->lf_blkhd,
|
|
ltmp, lf_block);
|
|
}
|
|
}
|
|
/*
|
|
* Add the new lock if necessary and delete the overlap.
|
|
*/
|
|
if (needtolink) {
|
|
*prev = lock;
|
|
lock->lf_next = overlap->lf_next;
|
|
prev = &lock->lf_next;
|
|
needtolink = 0;
|
|
} else
|
|
*prev = overlap->lf_next;
|
|
free(overlap, M_LOCKF);
|
|
continue;
|
|
|
|
case 4: /* overlap starts before lock */
|
|
/*
|
|
* Add lock after overlap on the list.
|
|
*/
|
|
lock->lf_next = overlap->lf_next;
|
|
overlap->lf_next = lock;
|
|
overlap->lf_end = lock->lf_start - 1;
|
|
prev = &lock->lf_next;
|
|
lf_wakelock(overlap);
|
|
needtolink = 0;
|
|
continue;
|
|
|
|
case 5: /* overlap ends after lock */
|
|
/*
|
|
* Add the new lock before overlap.
|
|
*/
|
|
if (needtolink) {
|
|
*prev = lock;
|
|
lock->lf_next = overlap;
|
|
}
|
|
overlap->lf_start = lock->lf_end + 1;
|
|
lf_wakelock(overlap);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 1) {
|
|
lf_print("lf_setlock: got the lock", lock);
|
|
lf_printlist("lf_setlock", lock);
|
|
}
|
|
#endif /* LOCKF_DEBUG */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Remove a byte-range lock on an inode.
|
|
*
|
|
* Generally, find the lock (or an overlap to that lock)
|
|
* and remove it (or shrink it), then wakeup anyone we can.
|
|
*/
|
|
int
|
|
lf_clearlock(unlock)
|
|
struct lockf *unlock;
|
|
{
|
|
struct lockf **head = unlock->lf_head;
|
|
struct lockf *lf = *head;
|
|
struct lockf *overlap, **prev;
|
|
int ovcase;
|
|
|
|
if (lf == NOLOCKF)
|
|
return (0);
|
|
#ifdef LOCKF_DEBUG
|
|
if (unlock->lf_type != F_UNLCK)
|
|
panic("lf_clearlock: bad type");
|
|
if (lockf_debug & 1)
|
|
lf_print("lf_clearlock", unlock);
|
|
#endif /* LOCKF_DEBUG */
|
|
prev = head;
|
|
while ((ovcase = lf_findoverlap(lf, unlock, SELF,
|
|
&prev, &overlap)) != 0) {
|
|
/*
|
|
* Wakeup the list of locks to be retried.
|
|
*/
|
|
lf_wakelock(overlap);
|
|
|
|
switch (ovcase) {
|
|
|
|
case 1: /* overlap == lock */
|
|
*prev = overlap->lf_next;
|
|
FREE(overlap, M_LOCKF);
|
|
break;
|
|
|
|
case 2: /* overlap contains lock: split it */
|
|
if (overlap->lf_start == unlock->lf_start) {
|
|
overlap->lf_start = unlock->lf_end + 1;
|
|
break;
|
|
}
|
|
lf_split(overlap, unlock);
|
|
overlap->lf_next = unlock->lf_next;
|
|
break;
|
|
|
|
case 3: /* lock contains overlap */
|
|
*prev = overlap->lf_next;
|
|
lf = overlap->lf_next;
|
|
free(overlap, M_LOCKF);
|
|
continue;
|
|
|
|
case 4: /* overlap starts before lock */
|
|
overlap->lf_end = unlock->lf_start - 1;
|
|
prev = &overlap->lf_next;
|
|
lf = overlap->lf_next;
|
|
continue;
|
|
|
|
case 5: /* overlap ends after lock */
|
|
overlap->lf_start = unlock->lf_end + 1;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 1)
|
|
lf_printlist("lf_clearlock", unlock);
|
|
#endif /* LOCKF_DEBUG */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check whether there is a blocking lock,
|
|
* and if so return its process identifier.
|
|
*/
|
|
int
|
|
lf_getlock(lock, fl)
|
|
struct lockf *lock;
|
|
struct flock *fl;
|
|
{
|
|
struct lockf *block;
|
|
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 1)
|
|
lf_print("lf_getlock", lock);
|
|
#endif /* LOCKF_DEBUG */
|
|
|
|
if ((block = lf_getblock(lock)) != NULL) {
|
|
fl->l_type = block->lf_type;
|
|
fl->l_whence = SEEK_SET;
|
|
fl->l_start = block->lf_start;
|
|
if (block->lf_end == -1)
|
|
fl->l_len = 0;
|
|
else
|
|
fl->l_len = block->lf_end - block->lf_start + 1;
|
|
if (block->lf_flags & F_POSIX)
|
|
fl->l_pid = ((struct proc *)(block->lf_id))->p_pid;
|
|
else
|
|
fl->l_pid = -1;
|
|
} else {
|
|
fl->l_type = F_UNLCK;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Walk the list of locks for an inode and
|
|
* return the first blocking lock.
|
|
*/
|
|
struct lockf *
|
|
lf_getblock(lock)
|
|
struct lockf *lock;
|
|
{
|
|
struct lockf **prev, *overlap, *lf = *(lock->lf_head);
|
|
int ovcase;
|
|
|
|
prev = lock->lf_head;
|
|
while ((ovcase = lf_findoverlap(lf, lock, OTHERS,
|
|
&prev, &overlap)) != 0) {
|
|
/*
|
|
* We've found an overlap, see if it blocks us
|
|
*/
|
|
if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
|
|
return (overlap);
|
|
/*
|
|
* Nope, point to the next one on the list and
|
|
* see if it blocks us
|
|
*/
|
|
lf = overlap->lf_next;
|
|
}
|
|
return (NOLOCKF);
|
|
}
|
|
|
|
/*
|
|
* Walk the list of locks for an inode to
|
|
* find an overlapping lock (if any).
|
|
*
|
|
* NOTE: this returns only the FIRST overlapping lock. There
|
|
* may be more than one.
|
|
*/
|
|
int
|
|
lf_findoverlap(lf, lock, type, prev, overlap)
|
|
struct lockf *lf;
|
|
struct lockf *lock;
|
|
int type;
|
|
struct lockf ***prev;
|
|
struct lockf **overlap;
|
|
{
|
|
off_t start, end;
|
|
|
|
*overlap = lf;
|
|
if (lf == NOLOCKF)
|
|
return (0);
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
lf_print("lf_findoverlap: looking for overlap in", lock);
|
|
#endif /* LOCKF_DEBUG */
|
|
start = lock->lf_start;
|
|
end = lock->lf_end;
|
|
while (lf != NOLOCKF) {
|
|
if (((type & SELF) && lf->lf_id != lock->lf_id) ||
|
|
((type & OTHERS) && lf->lf_id == lock->lf_id)) {
|
|
*prev = &lf->lf_next;
|
|
*overlap = lf = lf->lf_next;
|
|
continue;
|
|
}
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
lf_print("\tchecking", lf);
|
|
#endif /* LOCKF_DEBUG */
|
|
/*
|
|
* OK, check for overlap
|
|
*
|
|
* Six cases:
|
|
* 0) no overlap
|
|
* 1) overlap == lock
|
|
* 2) overlap contains lock
|
|
* 3) lock contains overlap
|
|
* 4) overlap starts before lock
|
|
* 5) overlap ends after lock
|
|
*/
|
|
if ((lf->lf_end != -1 && start > lf->lf_end) ||
|
|
(end != -1 && lf->lf_start > end)) {
|
|
/* Case 0 */
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
printf("no overlap\n");
|
|
#endif /* LOCKF_DEBUG */
|
|
if ((type & SELF) && end != -1 && lf->lf_start > end)
|
|
return (0);
|
|
*prev = &lf->lf_next;
|
|
*overlap = lf = lf->lf_next;
|
|
continue;
|
|
}
|
|
if ((lf->lf_start == start) && (lf->lf_end == end)) {
|
|
/* Case 1 */
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
printf("overlap == lock\n");
|
|
#endif /* LOCKF_DEBUG */
|
|
return (1);
|
|
}
|
|
if ((lf->lf_start <= start) &&
|
|
(end != -1) &&
|
|
((lf->lf_end >= end) || (lf->lf_end == -1))) {
|
|
/* Case 2 */
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
printf("overlap contains lock\n");
|
|
#endif /* LOCKF_DEBUG */
|
|
return (2);
|
|
}
|
|
if (start <= lf->lf_start &&
|
|
(end == -1 ||
|
|
(lf->lf_end != -1 && end >= lf->lf_end))) {
|
|
/* Case 3 */
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
printf("lock contains overlap\n");
|
|
#endif /* LOCKF_DEBUG */
|
|
return (3);
|
|
}
|
|
if ((lf->lf_start < start) &&
|
|
((lf->lf_end >= start) || (lf->lf_end == -1))) {
|
|
/* Case 4 */
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
printf("overlap starts before lock\n");
|
|
#endif /* LOCKF_DEBUG */
|
|
return (4);
|
|
}
|
|
if ((lf->lf_start > start) &&
|
|
(end != -1) &&
|
|
((lf->lf_end > end) || (lf->lf_end == -1))) {
|
|
/* Case 5 */
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
printf("overlap ends after lock\n");
|
|
#endif /* LOCKF_DEBUG */
|
|
return (5);
|
|
}
|
|
panic("lf_findoverlap: default");
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Split a lock and a contained region into
|
|
* two or three locks as necessary.
|
|
*/
|
|
void
|
|
lf_split(lock1, lock2)
|
|
struct lockf *lock1;
|
|
struct lockf *lock2;
|
|
{
|
|
struct lockf *splitlock;
|
|
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2) {
|
|
lf_print("lf_split", lock1);
|
|
lf_print("splitting from", lock2);
|
|
}
|
|
#endif /* LOCKF_DEBUG */
|
|
/*
|
|
* Check to see if spliting into only two pieces.
|
|
*/
|
|
if (lock1->lf_start == lock2->lf_start) {
|
|
lock1->lf_start = lock2->lf_end + 1;
|
|
lock2->lf_next = lock1;
|
|
return;
|
|
}
|
|
if (lock1->lf_end == lock2->lf_end) {
|
|
lock1->lf_end = lock2->lf_start - 1;
|
|
lock2->lf_next = lock1->lf_next;
|
|
lock1->lf_next = lock2;
|
|
return;
|
|
}
|
|
/*
|
|
* Make a new lock consisting of the last part of
|
|
* the encompassing lock
|
|
*/
|
|
MALLOC(splitlock, struct lockf *, sizeof(*splitlock), M_LOCKF, M_WAITOK);
|
|
memcpy((caddr_t)splitlock, (caddr_t)lock1, sizeof(*splitlock));
|
|
splitlock->lf_start = lock2->lf_end + 1;
|
|
TAILQ_INIT(&splitlock->lf_blkhd);
|
|
lock1->lf_end = lock2->lf_start - 1;
|
|
/*
|
|
* OK, now link it in
|
|
*/
|
|
splitlock->lf_next = lock1->lf_next;
|
|
lock2->lf_next = splitlock;
|
|
lock1->lf_next = lock2;
|
|
}
|
|
|
|
/*
|
|
* Wakeup a blocklist
|
|
*/
|
|
void
|
|
lf_wakelock(listhead)
|
|
struct lockf *listhead;
|
|
{
|
|
struct lockf *wakelock;
|
|
|
|
while ((wakelock = listhead->lf_blkhd.tqh_first)) {
|
|
KASSERT(wakelock->lf_next == listhead);
|
|
TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
|
|
wakelock->lf_next = NOLOCKF;
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
lf_print("lf_wakelock: awakening", wakelock);
|
|
#endif
|
|
wakeup((caddr_t)wakelock);
|
|
}
|
|
}
|
|
|
|
#ifdef LOCKF_DEBUG
|
|
/*
|
|
* Print out a lock.
|
|
*/
|
|
void
|
|
lf_print(tag, lock)
|
|
char *tag;
|
|
struct lockf *lock;
|
|
{
|
|
|
|
printf("%s: lock %p for ", tag, lock);
|
|
if (lock->lf_flags & F_POSIX)
|
|
printf("proc %d", ((struct proc *)(lock->lf_id))->p_pid);
|
|
else
|
|
printf("id 0x%p", lock->lf_id);
|
|
printf(" %s, start %qx, end %qx",
|
|
lock->lf_type == F_RDLCK ? "shared" :
|
|
lock->lf_type == F_WRLCK ? "exclusive" :
|
|
lock->lf_type == F_UNLCK ? "unlock" :
|
|
"unknown", lock->lf_start, lock->lf_end);
|
|
if (lock->lf_blkhd.tqh_first)
|
|
printf(" block %p\n", lock->lf_blkhd.tqh_first);
|
|
else
|
|
printf("\n");
|
|
}
|
|
|
|
void
|
|
lf_printlist(tag, lock)
|
|
char *tag;
|
|
struct lockf *lock;
|
|
{
|
|
struct lockf *lf, *blk;
|
|
|
|
printf("%s: Lock list:\n", tag);
|
|
for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
|
|
printf("\tlock %p for ", lf);
|
|
if (lf->lf_flags & F_POSIX)
|
|
printf("proc %d", ((struct proc *)(lf->lf_id))->p_pid);
|
|
else
|
|
printf("id 0x%p", lf->lf_id);
|
|
printf(", %s, start %qx, end %qx",
|
|
lf->lf_type == F_RDLCK ? "shared" :
|
|
lf->lf_type == F_WRLCK ? "exclusive" :
|
|
lf->lf_type == F_UNLCK ? "unlock" :
|
|
"unknown", lf->lf_start, lf->lf_end);
|
|
for (blk = lf->lf_blkhd.tqh_first; blk;
|
|
blk = blk->lf_block.tqe_next) {
|
|
if (blk->lf_flags & F_POSIX)
|
|
printf("proc %d",
|
|
((struct proc *)(blk->lf_id))->p_pid);
|
|
else
|
|
printf("id 0x%p", blk->lf_id);
|
|
printf(", %s, start %qx, end %qx",
|
|
blk->lf_type == F_RDLCK ? "shared" :
|
|
blk->lf_type == F_WRLCK ? "exclusive" :
|
|
blk->lf_type == F_UNLCK ? "unlock" :
|
|
"unknown", blk->lf_start, blk->lf_end);
|
|
if (blk->lf_blkhd.tqh_first)
|
|
panic("lf_printlist: bad list");
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif /* LOCKF_DEBUG */
|