NetBSD/common/lib/libprop/prop_rb.c
2006-10-15 19:08:48 +00:00

1064 lines
31 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* $NetBSD: prop_rb.c,v 1.5 2006/10/15 19:08:48 christos Exp $ */
/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas <matt@3am-software.com>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <prop/proplib.h>
#include "prop_object_impl.h"
#include "prop_rb_impl.h"
#undef KASSERT
#ifdef RBDEBUG
#define KASSERT(x) _PROP_ASSERT(x)
#else
#define KASSERT(x) /* nothing */
#endif
#undef bool
#define bool boolean_t
#undef true
#define true TRUE
#undef false
#define false FALSE
#ifndef __predict_false
#define __predict_false(x) (x)
#endif
static void rb_tree_reparent_nodes(struct rb_tree *, struct rb_node *,
unsigned int);
static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
unsigned int);
#ifdef RBDEBUG
static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
const struct rb_node *, unsigned int);
static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
const struct rb_node *, bool);
#endif
#ifdef RBDEBUG
#define RBT_COUNT_INCR(rbt) (rbt)->rbt_count++
#define RBT_COUNT_DECR(rbt) (rbt)->rbt_count--
#else
#define RBT_COUNT_INCR(rbt) /* nothing */
#define RBT_COUNT_DECR(rbt) /* nothing */
#endif
#define RBUNCONST(a) ((void *)(unsigned long)(const void *)(a))
/*
* Rather than testing for the NULL everywhere, all terminal leaves are
* pointed to this node (and that includes itself). Note that by setting
* it to be const, that on some architectures trying to write to it will
* cause a fault.
*/
static const struct rb_node sentinel_node = {
.rb_nodes = { RBUNCONST(&sentinel_node),
RBUNCONST(&sentinel_node),
NULL },
.rb_u = { .u_s = { .s_sentinel = 1 } },
};
void
_prop_rb_tree_init(struct rb_tree *rbt, const struct rb_tree_ops *ops)
{
RB_TAILQ_INIT(&rbt->rbt_nodes);
#ifdef RBDEBUG
rbt->rbt_count = 0;
#endif
rbt->rbt_ops = ops;
*((const struct rb_node **)&rbt->rbt_root) = &sentinel_node;
}
/*
* Swap the location and colors of 'self' and its child @ which. The child
* can not be a sentinel node.
*/
/*ARGSUSED*/
static void
rb_tree_reparent_nodes(struct rb_tree *rbt __unused, struct rb_node *old_father,
unsigned int which)
{
const unsigned int other = which ^ RB_NODE_OTHER;
struct rb_node * const grandpa = old_father->rb_parent;
struct rb_node * const old_child = old_father->rb_nodes[which];
struct rb_node * const new_father = old_child;
struct rb_node * const new_child = old_father;
unsigned int properties;
KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
KASSERT(!RB_SENTINEL_P(old_child));
KASSERT(old_child->rb_parent == old_father);
KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
KASSERT(RB_ROOT_P(old_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
/*
* Exchange descendant linkages.
*/
grandpa->rb_nodes[old_father->rb_position] = new_father;
new_child->rb_nodes[which] = old_child->rb_nodes[other];
new_father->rb_nodes[other] = new_child;
/*
* Update ancestor linkages
*/
new_father->rb_parent = grandpa;
new_child->rb_parent = new_father;
/*
* Exchange properties between new_father and new_child. The only
* change is that new_child's position is now on the other side.
*/
properties = old_child->rb_properties;
new_father->rb_properties = old_father->rb_properties;
new_child->rb_properties = properties;
new_child->rb_position = other;
/*
* Make sure to reparent the new child to ourself.
*/
if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
new_child->rb_nodes[which]->rb_parent = new_child;
new_child->rb_nodes[which]->rb_position = which;
}
KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
KASSERT(RB_ROOT_P(new_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
}
void
_prop_rb_tree_insert_node(struct rb_tree *rbt, struct rb_node *self)
{
struct rb_node *parent, *tmp;
rb_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
unsigned int position;
self->rb_properties = 0;
tmp = rbt->rbt_root;
/*
* This is a hack. Because rbt->rbt_root is just a struct rb_node *,
* just like rb_node->rb_nodes[RB_NODE_LEFT], we can use this fact to
* avoid a lot of tests for root and know that even at root,
* updating rb_node->rb_parent->rb_nodes[rb_node->rb_position] will
* rbt->rbt_root.
*/
/* LINTED: see above */
parent = (struct rb_node *)&rbt->rbt_root;
position = RB_NODE_LEFT;
/*
* Find out where to place this new leaf.
*/
while (!RB_SENTINEL_P(tmp)) {
const int diff = (*compare_nodes)(tmp, self);
parent = tmp;
KASSERT(diff != 0);
if (diff < 0) {
position = RB_NODE_LEFT;
} else {
position = RB_NODE_RIGHT;
}
tmp = parent->rb_nodes[position];
}
#ifdef RBDEBUG
{
struct rb_node *prev = NULL, *next = NULL;
if (position == RB_NODE_RIGHT)
prev = parent;
else if (tmp != rbt->rbt_root)
next = parent;
/*
* Verify our sequential position
*/
KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
KASSERT(next == NULL || !RB_SENTINEL_P(next));
if (prev != NULL && next == NULL)
next = TAILQ_NEXT(prev, rb_link);
if (prev == NULL && next != NULL)
prev = TAILQ_PREV(next, rb_node_qh, rb_link);
KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
KASSERT(next == NULL || !RB_SENTINEL_P(next));
KASSERT(prev == NULL
|| (*compare_nodes)(prev, self) > 0);
KASSERT(next == NULL
|| (*compare_nodes)(self, next) > 0);
}
#endif
/*
* Initialize the node and insert as a leaf into the tree.
*/
self->rb_parent = parent;
self->rb_position = position;
/* LINTED: rbt_root hack */
if (__predict_false(parent == (struct rb_node *) &rbt->rbt_root)) {
RB_MARK_ROOT(self);
} else {
KASSERT(position == RB_NODE_LEFT || position == RB_NODE_RIGHT);
KASSERT(!RB_ROOT_P(self)); /* Already done */
}
KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
self->rb_left = parent->rb_nodes[position];
self->rb_right = parent->rb_nodes[position];
parent->rb_nodes[position] = self;
KASSERT(self->rb_left == &sentinel_node &&
self->rb_right == &sentinel_node);
/*
* Insert the new node into a sorted list for easy sequential access
*/
RBT_COUNT_INCR(rbt);
#ifdef RBDEBUG
if (RB_ROOT_P(self)) {
RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
} else if (position == RB_NODE_LEFT) {
KASSERT((*compare_nodes)(self, self->rb_parent) > 0);
RB_TAILQ_INSERT_BEFORE(self->rb_parent, self, rb_link);
} else {
KASSERT((*compare_nodes)(self->rb_parent, self) > 0);
RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, self->rb_parent,
self, rb_link);
}
#endif
#if 0
/*
* Validate the tree before we rebalance
*/
_prop_rb_tree_check(rbt, false);
#endif
/*
* Rebalance tree after insertion
*/
rb_tree_insert_rebalance(rbt, self);
#if 0
/*
* Validate the tree after we rebalanced
*/
_prop_rb_tree_check(rbt, true);
#endif
}
static void
rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
{
RB_MARK_RED(self);
while (!RB_ROOT_P(self) && RB_RED_P(self->rb_parent)) {
const unsigned int which =
(self->rb_parent == self->rb_parent->rb_parent->rb_left
? RB_NODE_LEFT
: RB_NODE_RIGHT);
const unsigned int other = which ^ RB_NODE_OTHER;
struct rb_node * father = self->rb_parent;
struct rb_node * grandpa = father->rb_parent;
struct rb_node * const uncle = grandpa->rb_nodes[other];
KASSERT(!RB_SENTINEL_P(self));
/*
* We are red and our parent is red, therefore we must have a
* grandfather and he must be black.
*/
KASSERT(RB_RED_P(self)
&& RB_RED_P(father)
&& RB_BLACK_P(grandpa));
if (RB_RED_P(uncle)) {
/*
* Case 1: our uncle is red
* Simply invert the colors of our parent and
* uncle and make our grandparent red. And
* then solve the problem up at his level.
*/
RB_MARK_BLACK(uncle);
RB_MARK_BLACK(father);
RB_MARK_RED(grandpa);
self = grandpa;
continue;
}
/*
* Case 2&3: our uncle is black.
*/
if (self == father->rb_nodes[other]) {
/*
* Case 2: we are on the same side as our uncle
* Swap ourselves with our parent so this case
* becomes case 3. Basically our parent becomes our
* child.
*/
rb_tree_reparent_nodes(rbt, father, other);
KASSERT(father->rb_parent == self);
KASSERT(self->rb_nodes[which] == father);
KASSERT(self->rb_parent == grandpa);
self = father;
father = self->rb_parent;
}
KASSERT(RB_RED_P(self) && RB_RED_P(father));
KASSERT(grandpa->rb_nodes[which] == father);
/*
* Case 3: we are opposite a child of a black uncle.
* Swap our parent and grandparent. Since our grandfather
* is black, our father will become black and our new sibling
* (former grandparent) will become red.
*/
rb_tree_reparent_nodes(rbt, grandpa, which);
KASSERT(self->rb_parent == father);
KASSERT(self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER] == grandpa);
KASSERT(RB_RED_P(self));
KASSERT(RB_BLACK_P(father));
KASSERT(RB_RED_P(grandpa));
break;
}
/*
* Final step: Set the root to black.
*/
RB_MARK_BLACK(rbt->rbt_root);
}
struct rb_node *
_prop_rb_tree_find(struct rb_tree *rbt, const void *key)
{
struct rb_node *parent = rbt->rbt_root;
rb_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
while (!RB_SENTINEL_P(parent)) {
const int diff = (*compare_key)(parent, key);
if (diff == 0)
return parent;
parent = parent->rb_nodes[diff > 0];
}
return NULL;
}
static void
rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, int rebalance)
{
const unsigned int which = self->rb_position;
struct rb_node *father = self->rb_parent;
KASSERT(rebalance || (RB_ROOT_P(self) || RB_RED_P(self)));
KASSERT(!rebalance || RB_BLACK_P(self));
KASSERT(RB_CHILDLESS_P(self));
KASSERT(rb_tree_check_node(rbt, self, NULL, false));
father->rb_nodes[which] = self->rb_left;
/*
* Remove ourselves from the node list and decrement the count.
*/
RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
RBT_COUNT_DECR(rbt);
if (rebalance)
rb_tree_removal_rebalance(rbt, father, which);
KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, father, NULL, true));
}
static void
rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
struct rb_node *standin)
{
unsigned int standin_which = standin->rb_position;
unsigned int standin_other = standin_which ^ RB_NODE_OTHER;
struct rb_node *standin_child;
struct rb_node *standin_father;
bool rebalance = RB_BLACK_P(standin);
if (standin->rb_parent == self) {
/*
* As a child of self, any childen would be opposite of
* our parent (self).
*/
KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
standin_child = standin->rb_nodes[standin_which];
} else {
/*
* Since we aren't a child of self, any childen would be
* on the same side as our parent (self).
*/
KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
standin_child = standin->rb_nodes[standin_other];
}
/*
* the node we are removing must have two children.
*/
KASSERT(RB_TWOCHILDREN_P(self));
/*
* If standin has a child, it must be red.
*/
KASSERT(RB_SENTINEL_P(standin_child) || RB_RED_P(standin_child));
/*
* Verify things are sane.
*/
KASSERT(rb_tree_check_node(rbt, self, NULL, false));
KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
if (!RB_SENTINEL_P(standin_child)) {
/*
* We know we have a red child so if we swap them we can
* void flipping standin's child to black afterwards.
*/
KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true));
rb_tree_reparent_nodes(rbt, standin,
standin_child->rb_position);
KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true));
/*
* Since we are removing a red leaf, no need to rebalance.
*/
rebalance = false;
/*
* We know that standin can not be a child of self, so
* update before of that.
*/
KASSERT(standin->rb_parent != self);
standin_which = standin->rb_position;
standin_other = standin_which ^ RB_NODE_OTHER;
}
KASSERT(RB_CHILDLESS_P(standin));
/*
* If we are about to delete the standin's father, then when we call
* rebalance, we need to use ourselves as our father. Otherwise
* remember our original father. Also, if we are our standin's father
* we only need to reparent the standin's brother.
*/
if (standin->rb_parent == self) {
/*
* | R --> S |
* | Q S --> Q * |
* | --> |
*/
standin_father = standin;
KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
KASSERT(self->rb_nodes[standin_which] == standin);
/*
* Make our brother our son.
*/
standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
standin->rb_nodes[standin_other]->rb_parent = standin;
KASSERT(standin->rb_nodes[standin_other]->rb_position == standin_other);
} else {
/*
* | P --> P |
* | S --> Q |
* | Q --> |
*/
standin_father = standin->rb_parent;
standin_father->rb_nodes[standin_which] =
standin->rb_nodes[standin_which];
standin->rb_left = self->rb_left;
standin->rb_right = self->rb_right;
standin->rb_left->rb_parent = standin;
standin->rb_right->rb_parent = standin;
}
/*
* Now copy the result of self to standin and then replace
* self with standin in the tree.
*/
standin->rb_parent = self->rb_parent;
standin->rb_properties = self->rb_properties;
standin->rb_parent->rb_nodes[standin->rb_position] = standin;
/*
* Remove ourselves from the node list and decrement the count.
*/
RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
RBT_COUNT_DECR(rbt);
KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
KASSERT(rb_tree_check_node(rbt, standin_father, NULL, false));
if (!rebalance)
return;
rb_tree_removal_rebalance(rbt, standin_father, standin_which);
KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
}
/*
* We could do this by doing
* rb_tree_node_swap(rbt, self, which);
* rb_tree_prune_node(rbt, self, false);
*
* But it's more efficient to just evalate and recolor the child.
*/
/*ARGSUSED*/
static void
rb_tree_prune_blackred_branch(struct rb_tree *rbt __unused,
struct rb_node *self, unsigned int which)
{
struct rb_node *parent = self->rb_parent;
struct rb_node *child = self->rb_nodes[which];
KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
KASSERT(RB_BLACK_P(self) && RB_RED_P(child));
KASSERT(!RB_TWOCHILDREN_P(child));
KASSERT(RB_CHILDLESS_P(child));
KASSERT(rb_tree_check_node(rbt, self, NULL, false));
KASSERT(rb_tree_check_node(rbt, child, NULL, false));
/*
* Remove ourselves from the tree and give our former child our
* properties (position, color, root).
*/
parent->rb_nodes[self->rb_position] = child;
child->rb_parent = parent;
child->rb_properties = self->rb_properties;
/*
* Remove ourselves from the node list and decrement the count.
*/
RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
RBT_COUNT_DECR(rbt);
KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, parent, NULL, true));
KASSERT(rb_tree_check_node(rbt, child, NULL, true));
}
/*
*
*/
void
_prop_rb_tree_remove_node(struct rb_tree *rbt, struct rb_node *self)
{
struct rb_node *standin;
unsigned int which;
/*
* In the following diagrams, we (the node to be removed) are S. Red
* nodes are lowercase. T could be either red or black.
*
* Remember the major axiom of the red-black tree: the number of
* black nodes from the root to each leaf is constant across all
* leaves, only the number of red nodes varies.
*
* Thus removing a red leaf doesn't require any other changes to a
* red-black tree. So if we must remove a node, attempt to rearrange
* the tree so we can remove a red node.
*
* The simpliest case is a childless red node or a childless root node:
*
* | T --> T | or | R --> * |
* | s --> * |
*/
if (RB_CHILDLESS_P(self)) {
if (RB_RED_P(self) || RB_ROOT_P(self)) {
rb_tree_prune_node(rbt, self, false);
return;
}
rb_tree_prune_node(rbt, self, true);
return;
}
KASSERT(!RB_CHILDLESS_P(self));
if (!RB_TWOCHILDREN_P(self)) {
/*
* The next simpliest case is the node we are deleting is
* black and has one red child.
*
* | T --> T --> T |
* | S --> R --> R |
* | r --> s --> * |
*/
which = RB_LEFT_SENTINEL_P(self) ? RB_NODE_RIGHT : RB_NODE_LEFT;
KASSERT(RB_BLACK_P(self));
KASSERT(RB_RED_P(self->rb_nodes[which]));
KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
rb_tree_prune_blackred_branch(rbt, self, which);
return;
}
KASSERT(RB_TWOCHILDREN_P(self));
/*
* We invert these because we prefer to remove from the inside of
* the tree.
*/
which = self->rb_position ^ RB_NODE_OTHER;
/*
* Let's find the node closes to us opposite of our parent
* Now swap it with ourself, "prune" it, and rebalance, if needed.
*/
standin = _prop_rb_tree_iterate(rbt, self, which);
rb_tree_swap_prune_and_rebalance(rbt, self, standin);
}
static void
rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
unsigned int which)
{
KASSERT(!RB_SENTINEL_P(parent));
KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
while (RB_BLACK_P(parent->rb_nodes[which])) {
unsigned int other = which ^ RB_NODE_OTHER;
struct rb_node *brother = parent->rb_nodes[other];
KASSERT(!RB_SENTINEL_P(brother));
/*
* For cases 1, 2a, and 2b, our brother's children must
* be black and our father must be black
*/
if (RB_BLACK_P(parent)
&& RB_BLACK_P(brother->rb_left)
&& RB_BLACK_P(brother->rb_right)) {
/*
* Case 1: Our brother is red, swap its position
* (and colors) with our parent. This is now case 2b.
*
* B -> D
* x d -> b E
* C E -> x C
*/
if (RB_RED_P(brother)) {
KASSERT(RB_BLACK_P(parent));
rb_tree_reparent_nodes(rbt, parent, other);
brother = parent->rb_nodes[other];
KASSERT(!RB_SENTINEL_P(brother));
KASSERT(RB_BLACK_P(brother));
KASSERT(RB_RED_P(parent));
KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
} else {
/*
* Both our parent and brother are black.
* Change our brother to red, advance up rank
* and go through the loop again.
*
* B -> B
* A D -> A d
* C E -> C E
*/
RB_MARK_RED(brother);
KASSERT(RB_BLACK_P(brother->rb_left));
KASSERT(RB_BLACK_P(brother->rb_right));
if (RB_ROOT_P(parent))
return;
KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
which = parent->rb_position;
parent = parent->rb_parent;
}
} else if (RB_RED_P(parent)
&& RB_BLACK_P(brother)
&& RB_BLACK_P(brother->rb_left)
&& RB_BLACK_P(brother->rb_right)) {
KASSERT(RB_BLACK_P(brother));
KASSERT(RB_BLACK_P(brother->rb_left));
KASSERT(RB_BLACK_P(brother->rb_right));
RB_MARK_BLACK(parent);
RB_MARK_RED(brother);
KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
break; /* We're done! */
} else {
KASSERT(RB_BLACK_P(brother));
KASSERT(!RB_CHILDLESS_P(brother));
/*
* Case 3: our brother is black, our left nephew is
* red, and our right nephew is black. Swap our
* brother with our left nephew. This result in a
* tree that matches case 4.
*
* B -> D
* A D -> B E
* c e -> A C
*/
if (RB_BLACK_P(brother->rb_nodes[other])) {
KASSERT(RB_RED_P(brother->rb_nodes[which]));
rb_tree_reparent_nodes(rbt, brother, which);
KASSERT(brother->rb_parent == parent->rb_nodes[other]);
brother = parent->rb_nodes[other];
KASSERT(RB_RED_P(brother->rb_nodes[other]));
}
/*
* Case 4: our brother is black and our right nephew
* is red. Swap our parent and brother locations and
* change our right nephew to black. (these can be
* done in either order so we change the color first).
* The result is a valid red-black tree and is a
* terminal case.
*
* B -> D
* A D -> B E
* c e -> A C
*/
RB_MARK_BLACK(brother->rb_nodes[other]);
rb_tree_reparent_nodes(rbt, parent, other);
break; /* We're done! */
}
}
KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
}
struct rb_node *
_prop_rb_tree_iterate(struct rb_tree *rbt, struct rb_node *self,
unsigned int direction)
{
const unsigned int other = direction ^ RB_NODE_OTHER;
KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT);
if (self == NULL) {
self = rbt->rbt_root;
if (RB_SENTINEL_P(self))
return NULL;
while (!RB_SENTINEL_P(self->rb_nodes[other]))
self = self->rb_nodes[other];
return self;
}
KASSERT(!RB_SENTINEL_P(self));
/*
* We can't go any further in this direction. We proceed up in the
* opposite direction until our parent is in direction we want to go.
*/
if (RB_SENTINEL_P(self->rb_nodes[direction])) {
while (!RB_ROOT_P(self)) {
if (other == self->rb_position)
return self->rb_parent;
self = self->rb_parent;
}
return NULL;
}
/*
* Advance down one in current direction and go down as far as possible
* in the opposite direction.
*/
self = self->rb_nodes[direction];
KASSERT(!RB_SENTINEL_P(self));
while (!RB_SENTINEL_P(self->rb_nodes[other]))
self = self->rb_nodes[other];
return self;
}
#ifdef RBDEBUG
static const struct rb_node *
rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
unsigned int direction)
{
const unsigned int other = direction ^ RB_NODE_OTHER;
KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT);
if (self == NULL) {
self = rbt->rbt_root;
if (RB_SENTINEL_P(self))
return NULL;
while (!RB_SENTINEL_P(self->rb_nodes[other]))
self = self->rb_nodes[other];
return self;
}
KASSERT(!RB_SENTINEL_P(self));
/*
* We can't go any further in this direction. We proceed up in the
* opposite direction until our parent is in direction we want to go.
*/
if (RB_SENTINEL_P(self->rb_nodes[direction])) {
while (!RB_ROOT_P(self)) {
if (other == self->rb_position)
return self->rb_parent;
self = self->rb_parent;
}
return NULL;
}
/*
* Advance down one in current direction and go down as far as possible
* in the opposite direction.
*/
self = self->rb_nodes[direction];
KASSERT(!RB_SENTINEL_P(self));
while (!RB_SENTINEL_P(self->rb_nodes[other]))
self = self->rb_nodes[other];
return self;
}
static bool
rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
const struct rb_node *prev, bool red_check)
{
KASSERT(!self->rb_sentinel);
KASSERT(self->rb_left);
KASSERT(self->rb_right);
KASSERT(prev == NULL ||
(*rbt->rbt_ops->rbto_compare_nodes)(prev, self) > 0);
/*
* Verify our relationship to our parent.
*/
if (RB_ROOT_P(self)) {
KASSERT(self == rbt->rbt_root);
KASSERT(self->rb_position == RB_NODE_LEFT);
KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self);
KASSERT(self->rb_parent == (const struct rb_node *) &rbt->rbt_root);
} else {
KASSERT(self != rbt->rbt_root);
KASSERT(!RB_PARENT_SENTINEL_P(self));
if (self->rb_position == RB_NODE_LEFT) {
KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) > 0);
KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self);
} else {
KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) < 0);
KASSERT(self->rb_parent->rb_nodes[RB_NODE_RIGHT] == self);
}
}
/*
* Verify our position in the linked list against the tree itself.
*/
{
const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT);
const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
if (next0 != TAILQ_NEXT(self, rb_link))
next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
KASSERT(next0 == TAILQ_NEXT(self, rb_link));
}
/*
* The root must be black.
* There can never be two adjacent red nodes.
*/
if (red_check) {
KASSERT(!RB_ROOT_P(self) || RB_BLACK_P(self));
if (RB_RED_P(self)) {
const struct rb_node *brother;
KASSERT(!RB_ROOT_P(self));
brother = self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER];
KASSERT(RB_BLACK_P(self->rb_parent));
/*
* I'm red and have no children, then I must either
* have no brother or my brother also be red and
* also have no children. (black count == 0)
*/
KASSERT(!RB_CHILDLESS_P(self)
|| RB_SENTINEL_P(brother)
|| RB_RED_P(brother)
|| RB_CHILDLESS_P(brother));
/*
* If I'm not childless, I must have two children
* and they must be both be black.
*/
KASSERT(RB_CHILDLESS_P(self)
|| (RB_TWOCHILDREN_P(self)
&& RB_BLACK_P(self->rb_left)
&& RB_BLACK_P(self->rb_right)));
/*
* If I'm not childless, thus I have black children,
* then my brother must either be black or have two
* black children.
*/
KASSERT(RB_CHILDLESS_P(self)
|| RB_BLACK_P(brother)
|| (RB_TWOCHILDREN_P(brother)
&& RB_BLACK_P(brother->rb_left)
&& RB_BLACK_P(brother->rb_right)));
} else {
/*
* If I'm black and have one child, that child must
* be red and childless.
*/
KASSERT(RB_CHILDLESS_P(self)
|| RB_TWOCHILDREN_P(self)
|| (!RB_LEFT_SENTINEL_P(self)
&& RB_RIGHT_SENTINEL_P(self)
&& RB_RED_P(self->rb_left)
&& RB_CHILDLESS_P(self->rb_left))
|| (!RB_RIGHT_SENTINEL_P(self)
&& RB_LEFT_SENTINEL_P(self)
&& RB_RED_P(self->rb_right)
&& RB_CHILDLESS_P(self->rb_right)));
/*
* If I'm a childless black node and my parent is
* black, my 2nd closet relative away from my parent
* is either red or has a red parent or red children.
*/
if (!RB_ROOT_P(self)
&& RB_CHILDLESS_P(self)
&& RB_BLACK_P(self->rb_parent)) {
const unsigned int which = self->rb_position;
const unsigned int other = which ^ RB_NODE_OTHER;
const struct rb_node *relative0, *relative;
relative0 = rb_tree_iterate_const(rbt,
self, other);
KASSERT(relative0 != NULL);
relative = rb_tree_iterate_const(rbt,
relative0, other);
KASSERT(relative != NULL);
KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
#if 0
KASSERT(RB_RED_P(relative)
|| RB_RED_P(relative->rb_left)
|| RB_RED_P(relative->rb_right)
|| RB_RED_P(relative->rb_parent));
#endif
}
}
/*
* A grandparent's children must be real nodes and not
* sentinels. First check out grandparent.
*/
KASSERT(RB_ROOT_P(self)
|| RB_ROOT_P(self->rb_parent)
|| RB_TWOCHILDREN_P(self->rb_parent->rb_parent));
/*
* If we are have grandchildren on our left, then
* we must have a child on our right.
*/
KASSERT(RB_LEFT_SENTINEL_P(self)
|| RB_CHILDLESS_P(self->rb_left)
|| !RB_RIGHT_SENTINEL_P(self));
/*
* If we are have grandchildren on our right, then
* we must have a child on our left.
*/
KASSERT(RB_RIGHT_SENTINEL_P(self)
|| RB_CHILDLESS_P(self->rb_right)
|| !RB_LEFT_SENTINEL_P(self));
/*
* If we have a child on the left and it doesn't have two
* children make sure we don't have great-great-grandchildren on
* the right.
*/
KASSERT(RB_TWOCHILDREN_P(self->rb_left)
|| RB_CHILDLESS_P(self->rb_right)
|| RB_CHILDLESS_P(self->rb_right->rb_left)
|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
|| RB_CHILDLESS_P(self->rb_right->rb_right)
|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
/*
* If we have a child on the right and it doesn't have two
* children make sure we don't have great-great-grandchildren on
* the left.
*/
KASSERT(RB_TWOCHILDREN_P(self->rb_right)
|| RB_CHILDLESS_P(self->rb_left)
|| RB_CHILDLESS_P(self->rb_left->rb_left)
|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
|| RB_CHILDLESS_P(self->rb_left->rb_right)
|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
/*
* If we are fully interior node, then our predecessors and
* successors must have no children in our direction.
*/
if (RB_TWOCHILDREN_P(self)) {
const struct rb_node *prev0;
const struct rb_node *next0;
prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT);
KASSERT(prev0 != NULL);
KASSERT(RB_RIGHT_SENTINEL_P(prev0));
next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
KASSERT(next0 != NULL);
KASSERT(RB_LEFT_SENTINEL_P(next0));
}
}
return true;
}
static unsigned int
rb_tree_count_black(const struct rb_node *self)
{
unsigned int left, right;
if (RB_SENTINEL_P(self))
return 0;
left = rb_tree_count_black(self->rb_left);
right = rb_tree_count_black(self->rb_right);
KASSERT(left == right);
return left + RB_BLACK_P(self);
}
void
_prop_rb_tree_check(const struct rb_tree *rbt, bool red_check)
{
const struct rb_node *self;
const struct rb_node *prev;
unsigned int count;
KASSERT(rbt->rbt_root == NULL || rbt->rbt_root->rb_position == RB_NODE_LEFT);
prev = NULL;
count = 0;
TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
rb_tree_check_node(rbt, self, prev, false);
count++;
}
KASSERT(rbt->rbt_count == count);
KASSERT(RB_SENTINEL_P(rbt->rbt_root)
|| rb_tree_count_black(rbt->rbt_root));
/*
* The root must be black.
* There can never be two adjacent red nodes.
*/
if (red_check) {
KASSERT(rbt->rbt_root == NULL || RB_BLACK_P(rbt->rbt_root));
TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
rb_tree_check_node(rbt, self, NULL, true);
}
}
}
#endif /* RBDEBUG */