NetBSD/external/bsd/top/dist/machine/m_irix5.c
2008-07-16 00:20:32 +00:00

764 lines
20 KiB
C

/*
* Copyright (c) 1984 through 2008, William LeFebvre
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* * Neither the name of William LeFebvre nor the names of other
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* top - a top users display for Unix
*
* SYNOPSIS: any uniprocessor, 32 bit SGI machine running IRIX 5.3
*
* DESCRIPTION:
* This is the machine-dependent module for IRIX 5.3.
* It has been tested on Indys running 5.3 and Indigos running 5.3XFS
*
* LIBS: -lmld
* CFLAGS: -DHAVE_GETOPT
*
* AUTHOR: Sandeep Cariapa <cariapa@sgi.com>
* This is not a supported product of Silicon Graphics, Inc.
* Please do not call SGI for support.
*
*/
#define _KMEMUSER
#include "config.h"
#include <sys/types.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/swap.h>
#include <sys/proc.h>
#include <sys/procfs.h>
#include <sys/sysinfo.h>
#include <sys/sysmp.h>
#include <paths.h>
#include <dirent.h>
#include <stdio.h>
#include <nlist.h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include "top.h"
#include "machine.h"
#ifdef IRIX64
#define nlist nlist64
#define lseek lseek64
#define off_t off64_t
#endif
#define UNIX "/unix"
#define KMEM "/dev/kmem"
#define CPUSTATES 6
#ifndef FSCALE
#define FSHIFT 8 /* bits to right of fixed binary point */
#define FSCALE (1<<FSHIFT)
#endif /* FSCALE */
#ifdef FIXED_LOADAVG
typedef long load_avg;
# define loaddouble(la) ((double)(la) / FIXED_LOADAVG)
# define intload(i) ((int)((i) * FIXED_LOADAVG))
#else
typedef double load_avg;
# define loaddouble(la) (la)
# define intload(i) ((double)(i))
#endif
#define percent_cpu(pp) (*(double *)pp->pr_fill)
#define weighted_cpu(pp) (*(double *)&pp->pr_fill[2])
static int pagesize;
#define pagetok(size) ((size)*pagesize)
static int numcpus;
/*
* These definitions control the format of the per-process area
*/
static char header[] =
" PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
/* 0123456 -- field to fill in starts at header+6 */
#define UNAME_START 6
#define Proc_format \
"%5d %-8.8s %3d %4d %5s %5s %-5s %6s %5.2f%% %5.2f%% %.16s"
/* these are for detailing the process states */
char *state_abbrev[] =
{"", "sleep", "run\0\0\0", "zombie", "stop", "idle", "", "swap"};
int process_states[8];
char *procstatenames[] = {
"", " sleeping, ", " running, ", " zombie, ", " stopped, ",
" idle, ", "", " swapped, ",
NULL
};
/* these are for detailing the cpu states */
int cpu_states[CPUSTATES];
char *cpustatenames[] = {
"idle", "usr", "ker", "wait", "swp", "intr",
NULL
};
/* these are for detailing the memory statistics */
long memory_stats[5];
char *memorynames[] = {
"K max, ", "K avail, ", "K free, ", "K swap, ", "K free swap", NULL
};
/* useful externals */
extern int errno;
extern char *myname;
extern char *sys_errlist[];
extern char *format_k();
extern char *format_time();
extern long percentages();
/* forward references */
int proc_compare (void *pp1, void *pp2);
#define X_AVENRUN 0
#define X_NPROC 1
#define X_FREEMEM 2
#define X_MAXMEM 3
#define X_AVAILRMEM 4
#define X_MPID 5
static struct nlist nlst[] = {
{ "avenrun" }, /* 0. Array containing the 3 load averages. */
{ "nproc" }, /* 1. Kernel parameter: Max number of processes. */
{ "freemem" }, /* 2. Amount of free memory in system. */
{ "maxmem" }, /* 3. Maximum amount of memory usable by system. */
{ "availrmem" }, /* 4. Available real memory. */
#ifndef IRIX64
{ "mpid" }, /* 5. PID of last process. */
#endif
{ 0 }
};
static unsigned long avenrun_offset;
static unsigned long nproc_offset;
static unsigned long freemem_offset;
static unsigned long maxmem_offset;
static unsigned long availrmem_offset;
static unsigned long mpid_offset;
double load[3];
char fmt[MAX_COLS];
static int kmem;
static int nproc;
static int bytes;
static struct prpsinfo *pbase;
static struct prpsinfo **pref;
static DIR *procdir;
/* get_process_info passes back a handle. This is what it looks like: */
struct handle {
struct prpsinfo **next_proc;/* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
static struct handle handle;
void getptable();
/*
* Structure for keeping track of CPU times from last time around
* the program. We keep these things in a hash table, which is
* recreated at every cycle.
*/
struct oldproc
{
pid_t oldpid;
double oldtime;
double oldpct;
};
static int oldprocs; /* size of table */
static struct oldproc *oldbase;
#define HASH(x) ((x << 1) % oldprocs)
#define PRPSINFOSIZE (sizeof(struct prpsinfo))
int machine_init(statics)
struct statics *statics;
{
struct oldproc *op, *endbase;
if ((kmem = open(KMEM, O_RDONLY)) == -1) {
perror(KMEM);
return(-1);
}
/* get the list of symbols we want to access in the kernel */
(void) nlist(UNIX, nlst);
if (nlst[0].n_type == 0) {
fprintf(stderr, "%s: nlist failed\n", myname);
return(-1);
}
/* Check if we got all of 'em. */
if (check_nlist(nlst) > 0) {
return(-1);
}
avenrun_offset = nlst[X_AVENRUN].n_value;
nproc_offset = nlst[X_NPROC].n_value;
freemem_offset = nlst[X_FREEMEM].n_value;
maxmem_offset = nlst[X_MAXMEM].n_value;
availrmem_offset = nlst[X_AVAILRMEM].n_value;
#ifndef IRIX64
mpid_offset = nlst[X_MPID].n_value;
#endif
/* Got to do this first so that we can map real estate for the
process array. */
(void) getkval(nproc_offset, (int *) (&nproc), sizeof(nproc), "nproc");
/* allocate space for proc structure array and array of pointers */
bytes = nproc * sizeof (struct prpsinfo);
pbase = (struct prpsinfo *) malloc (bytes);
pref = (struct prpsinfo **) malloc (nproc * sizeof (struct prpsinfo *));
oldbase = (struct oldproc *) malloc (2 * nproc * sizeof (struct oldproc));
/* Just in case ... */
if (pbase == (struct prpsinfo *) NULL || pref == (struct prpsinfo **) NULL ||
oldbase == (struct oldproc *)NULL) {
(void) fprintf (stderr, "%s: can't allocate sufficient memory\n", myname);
return (-1);
}
oldprocs = 2 * nproc;
endbase = oldbase + oldprocs;
for (op = oldbase; op < endbase; op++) {
op->oldpid = -1;
}
if (!(procdir = opendir (_PATH_PROCFSPI))) {
(void) fprintf (stderr, "Unable to open %s\n", _PATH_PROCFSPI);
return (-1);
}
if (chdir (_PATH_PROCFSPI)) {
/* handy for later on when we're reading it */
(void) fprintf (stderr, "Unable to chdir to %s\n", _PATH_PROCFSPI);
return (-1);
}
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
pagesize = getpagesize()/1024;
/* all done! */
return(0);
}
char *format_header(uname_field)
register char *uname_field;
{
register char *ptr;
ptr = header + UNAME_START;
while (*uname_field != '\0') {
*ptr++ = *uname_field++;
}
return(header);
}
void get_system_info(si)
struct system_info *si;
{
register int i;
int avenrun[3];
static int freemem;
static int maxmem;
static int availrmem;
struct sysinfo sysinfo;
static long cp_new[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES]; /* for cpu state percentages */
off_t fswap; /* current free swap in blocks */
off_t tswap; /* total swap in blocks */
(void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun), "avenrun");
for (i = 0; i < 3; i++) {
si->load_avg[i] = loaddouble (avenrun[i]);
si->load_avg[i] = si->load_avg[i]/1024.0;
}
(void) getkval(freemem_offset, (int *) (&freemem), sizeof(freemem),
"freemem");
(void) getkval(maxmem_offset, (int *) (&maxmem), sizeof(maxmem), "maxmem");
(void) getkval(availrmem_offset, (int *) (&availrmem), sizeof(availrmem),
"availrmem");
#ifdef IRIX64
si->last_pid = 0;
#else
(void) getkval(mpid_offset, &(si->last_pid), sizeof (si->last_pid), "mpid");
#endif
swapctl(SC_GETFREESWAP, &fswap);
swapctl(SC_GETSWAPTOT, &tswap);
memory_stats[0] = pagetok(maxmem);
memory_stats[1] = pagetok(availrmem);
memory_stats[2] = pagetok(freemem);
memory_stats[3] = tswap / 2;
memory_stats[4] = fswap / 2;
/* use sysmp() to get current sysinfo usage. Can run into all kinds of
problems if you try to nlist this kernel variable. */
if (sysmp(MP_SAGET, MPSA_SINFO, &sysinfo, sizeof(struct sysinfo)) == -1) {
perror("sysmp");
return;
}
/* copy sysinfo.cpu to an array of longs, as expected by percentages() */
for (i = 0; i < CPUSTATES; i++) {
cp_new[i] = sysinfo.cpu[i];
}
(void) percentages (CPUSTATES, cpu_states, cp_new, cp_old, cp_diff);
si->cpustates = cpu_states;
si->memory = memory_stats;
numcpus = sysmp(MP_NPROCS);
/* add a slash to the "run" state abbreviation */
if (numcpus > 1) {
state_abbrev[SRUN][3] = '/';
}
return;
}
caddr_t get_process_info(si, sel, x)
struct system_info *si;
struct process_select *sel;
int x;
{
register int i;
register int total_procs;
register int active_procs;
register struct prpsinfo **prefp;
register struct prpsinfo *pp;
/* these are copied out of sel for speed */
int show_idle;
int show_system;
int show_uid;
/* read all the proc structures */
getptable (pbase);
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_system = sel->system;
show_uid = sel->uid != -1;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
(void) memset (process_states, 0, sizeof (process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++) {
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field. Processes with SSYS set are system
* processes---these get ignored unless show_system is set.
*/
if (pp->pr_state != 0 &&
(show_system || ((pp->pr_flag & SSYS) == 0))) {
total_procs++;
process_states[pp->pr_state]++;
if ((!pp->pr_zomb) &&
(show_idle || (pp->pr_state == SRUN)) &&
(!show_uid || pp->pr_uid == (uid_t) sel->uid)) {
*prefp++ = pp;
active_procs++;
}
}
}
/* if requested, sort the "interesting" processes */
if (compare != NULL)
qsort ((char *) pref, active_procs, sizeof (struct prpsinfo *), proc_compare);
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return((caddr_t)&handle);
}
char *format_next_process(handle, get_userid)
caddr_t handle;
char *(*get_userid)();
{
register struct prpsinfo *pp;
struct handle *hp;
register long cputime;
register double pctcpu;
/* find and remember the next proc structure */
hp = (struct handle *) handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* get the cpu usage and calculate the cpu percentages */
cputime = pp->pr_time.tv_sec;
pctcpu = percent_cpu (pp);
if (numcpus > 1) {
if (pp->pr_sonproc < 0)
state_abbrev[SRUN][4] = '*';
else
state_abbrev[SRUN][4] = pp->pr_sonproc + '0';
}
/* format this entry */
sprintf (fmt,
Proc_format,
pp->pr_pid,
(*get_userid) (pp->pr_uid),
pp->pr_pri - PZERO,
pp->pr_nice - NZERO,
format_k(pagetok(pp->pr_size)),
format_k(pagetok(pp->pr_rssize)),
state_abbrev[pp->pr_state],
format_time(cputime),
weighted_cpu (pp),
pctcpu,
pp->pr_fname);
/* return the result */
return(fmt);
}
/*
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
* "offset" is the byte offset into the kernel for the desired value,
* "ptr" points to a buffer into which the value is retrieved,
* "size" is the size of the buffer (and the object to retrieve),
* "refstr" is a reference string used when printing error meessages,
* if "refstr" starts with a '!', then a failure on read will not
* be fatal (this may seem like a silly way to do things, but I
* really didn't want the overhead of another argument).
*
*/
int getkval(offset, ptr, size, refstr)
off_t offset;
int *ptr;
int size;
char *refstr;
{
if (lseek(kmem, offset, SEEK_SET) == -1) {
if (*refstr == '!')
refstr++;
(void) fprintf(stderr, "%s: lseek to %s: %s\n", KMEM,
refstr, strerror(errno));
quit(0);
}
if (read(kmem, (char *) ptr, size) == -1) {
if (*refstr == '!')
return(0);
else {
(void) fprintf(stderr, "%s: reading %s: %s\n", KMEM,
refstr, strerror(errno));
quit(0);
}
}
return(1);
}
/*
* proc_compare - comparison function for "qsort"
* Compares the resource consumption of two processes using five
* distinct keys. The keys (in descending order of importance) are:
* percent cpu, cpu ticks, state, resident set size, total virtual
* memory usage. The process states are ordered as follows (from least
* to most important): WAIT, zombie, sleep, stop, idle, run. The
* array declaration below maps a process state index into a number
* that reflects this ordering.
*/
unsigned char sorted_state[] =
{
0, /* not used */
3, /* sleep */
6, /* run */
2, /* zombie */
4, /* stop */
5, /* idle */
0, /* not used */
1 /* being swapped (WAIT) */
};
int proc_compare (pp1, pp2)
void *pp1;
void *pp2;
{
register struct prpsinfo *p1;
register struct prpsinfo *p2;
register long result;
/* remove one level of indirection */
p1 = *(struct prpsinfo **)pp1;
p2 = *(struct prpsinfo **)pp2;
/* compare percent cpu (pctcpu) */
if ((result = (long) (p2->pr_cpu - p1->pr_cpu)) == 0) {
/* use cpticks to break the tie */
if ((result = p2->pr_time.tv_sec - p1->pr_time.tv_sec) == 0) {
/* use process state to break the tie */
if ((result = (long) (sorted_state[p2->pr_state] -
sorted_state[p1->pr_state])) == 0) {
/* use priority to break the tie */
if ((result = p2->pr_oldpri - p1->pr_oldpri) == 0) {
/* use resident set size (rssize) to break the tie */
if ((result = p2->pr_rssize - p1->pr_rssize) == 0) {
/* use total memory to break the tie */
result = (p2->pr_size - p1->pr_size);
}
}
}
}
}
return (result);
}
/* return the owner of the specified process. */
int proc_owner (pid)
int pid;
{
register struct prpsinfo *p;
int i;
for (i = 0, p = pbase; i < nproc; i++, p++)
if (p->pr_pid == (oid_t)pid)
return ((int)p->pr_uid);
return (-1);
}
/*
* check_nlist(nlst) - checks the nlist to see if any symbols were not
* found. For every symbol that was not found, a one-line
* message is printed to stderr. The routine returns the
* number of symbols NOT found.
*/
int check_nlist(nlst)
register struct nlist *nlst;
{
register int i;
/* check to see if we got ALL the symbols we requested */
/* this will write one line to stderr for every symbol not found */
i = 0;
while (nlst->n_name != NULL) {
if (nlst->n_type == 0) {
/* this one wasn't found */
fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name);
i = 1;
}
nlst++;
}
return(i);
}
/* get process table */
void getptable (baseptr)
struct prpsinfo *baseptr;
{
struct prpsinfo *currproc; /* pointer to current proc structure */
int numprocs = 0;
int i;
struct dirent *directp;
struct oldproc *op;
static struct timeval lasttime =
{0L, 0L};
struct timeval thistime;
struct timezone thiszone;
double timediff;
double alpha, beta;
struct oldproc *endbase;
gettimeofday (&thistime, &thiszone);
/*
* To avoid divides, we keep times in nanoseconds. This is
* scaled by 1e7 rather than 1e9 so that when we divide we
* get percent.
*/
if (lasttime.tv_sec)
timediff = ((double) thistime.tv_sec * 1.0e7 +
((double) thistime.tv_usec * 10.0)) -
((double) lasttime.tv_sec * 1.0e7 +
((double) lasttime.tv_usec * 10.0));
else
timediff = 1.0e7;
/*
* constants for exponential average. avg = alpha * new + beta * avg
* The goal is 50% decay in 30 sec. However if the sample period
* is greater than 30 sec, there's not a lot we can do.
*/
if (timediff < 30.0e7)
{
alpha = 0.5 * (timediff / 30.0e7);
beta = 1.0 - alpha;
}
else
{
alpha = 0.5;
beta = 0.5;
}
endbase = oldbase + oldprocs;
currproc = baseptr;
for (rewinddir (procdir); directp = readdir (procdir);)
{
int fd;
if ((fd = open (directp->d_name, O_RDONLY)) < 0)
continue;
currproc = &baseptr[numprocs];
if (ioctl (fd, PIOCPSINFO, currproc) < 0)
{
(void) close (fd);
continue;
}
/*
* SVr4 doesn't keep track of CPU% in the kernel, so we have
* to do our own. See if we've heard of this process before.
* If so, compute % based on CPU since last time.
*/
op = oldbase + HASH (currproc->pr_pid);
while (1)
{
if (op->oldpid == -1) /* not there */
break;
if (op->oldpid == currproc->pr_pid)
{ /* found old data */
percent_cpu (currproc) =
((currproc->pr_time.tv_sec * 1.0e9 +
currproc->pr_time.tv_nsec)
- op->oldtime) / timediff;
weighted_cpu (currproc) =
op->oldpct * beta + percent_cpu (currproc) * alpha;
break;
}
op++; /* try next entry in hash table */
if (op == endbase) /* table wrapped around */
op = oldbase;
}
/* Otherwise, it's new, so use all of its CPU time */
if (op->oldpid == -1)
{
if (lasttime.tv_sec)
{
percent_cpu (currproc) =
(currproc->pr_time.tv_sec * 1.0e9 +
currproc->pr_time.tv_nsec) / timediff;
weighted_cpu (currproc) =
percent_cpu (currproc);
}
else
{ /* first screen -- no difference is possible */
percent_cpu (currproc) = 0.0;
weighted_cpu (currproc) = 0.0;
}
}
numprocs++;
(void) close (fd);
}
if (nproc != numprocs)
nproc = numprocs;
/*
* Save current CPU time for next time around
* For the moment recreate the hash table each time, as the code
* is easier that way.
*/
oldprocs = 2 * nproc;
endbase = oldbase + oldprocs;
for (op = oldbase; op < endbase; op++)
op->oldpid = -1;
for (i = 0, currproc = baseptr;
i < nproc;
i++, currproc = (struct prpsinfo *) ((char *) currproc + PRPSINFOSIZE))
{
/* find an empty spot */
op = oldbase + HASH (currproc->pr_pid);
while (1)
{
if (op->oldpid == -1)
break;
op++;
if (op == endbase)
op = oldbase;
}
op->oldpid = currproc->pr_pid;
op->oldtime = (currproc->pr_time.tv_sec * 1.0e9 +
currproc->pr_time.tv_nsec);
op->oldpct = weighted_cpu (currproc);
}
lasttime = thistime;
}