NetBSD/sys/dev/ic/aic7xxx.c

5755 lines
151 KiB
C

/* $NetBSD: aic7xxx.c,v 1.55 2000/06/04 11:42:55 fvdl Exp $ */
/*
* Generic driver for the aic7xxx based adaptec SCSI controllers
* Product specific probe and attach routines can be found in:
* i386/eisa/ahc_eisa.c 27/284X and aic7770 motherboard controllers
* pci/ahc_pci.c 3985, 3980, 3940, 2940, aic7895, aic7890,
* aic7880, aic7870, aic7860, and aic7850 controllers
*
* Copyright (c) 1994, 1995, 1996, 1997, 1998, 1999, 2000 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* the GNU Public License ("GPL").
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/sys/dev/aic7xxx/aic7xxx.c,v 1.42 2000/03/18 22:28:18 gibbs Exp $
*/
/*
* A few notes on features of the driver.
*
* SCB paging takes advantage of the fact that devices stay disconnected
* from the bus a relatively long time and that while they're disconnected,
* having the SCBs for these transactions down on the host adapter is of
* little use. Instead of leaving this idle SCB down on the card we copy
* it back up into kernel memory and reuse the SCB slot on the card to
* schedule another transaction. This can be a real payoff when doing random
* I/O to tagged queueing devices since there are more transactions active at
* once for the device to sort for optimal seek reduction. The algorithm goes
* like this...
*
* The sequencer maintains two lists of its hardware SCBs. The first is the
* singly linked free list which tracks all SCBs that are not currently in
* use. The second is the doubly linked disconnected list which holds the
* SCBs of transactions that are in the disconnected state sorted most
* recently disconnected first. When the kernel queues a transaction to
* the card, a hardware SCB to "house" this transaction is retrieved from
* either of these two lists. If the SCB came from the disconnected list,
* a check is made to see if any data transfer or SCB linking (more on linking
* in a bit) information has been changed since it was copied from the host
* and if so, DMAs the SCB back up before it can be used. Once a hardware
* SCB has been obtained, the SCB is DMAed from the host. Before any work
* can begin on this SCB, the sequencer must ensure that either the SCB is
* for a tagged transaction or the target is not already working on another
* non-tagged transaction. If a conflict arises in the non-tagged case, the
* sequencer finds the SCB for the active transactions and sets the SCB_LINKED
* field in that SCB to this next SCB to execute. To facilitate finding
* active non-tagged SCBs, the last four bytes of up to the first four hardware
* SCBs serve as a storage area for the currently active SCB ID for each
* target.
*
* When a device reconnects, a search is made of the hardware SCBs to find
* the SCB for this transaction. If the search fails, a hardware SCB is
* pulled from either the free or disconnected SCB list and the proper
* SCB is DMAed from the host. If the MK_MESSAGE control bit is set
* in the control byte of the SCB while it was disconnected, the sequencer
* will assert ATN and attempt to issue a message to the host.
*
* When a command completes, a check for non-zero status and residuals is
* made. If either of these conditions exists, the SCB is DMAed back up to
* the host so that it can interpret this information. Additionally, in the
* case of bad status, the sequencer generates a special interrupt and pauses
* itself. This allows the host to setup a request sense command if it
* chooses for this target synchronously with the error so that sense
* information isn't lost.
*
*/
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/scsiio.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsi_message.h>
#include <dev/scsipi/scsipi_debug.h>
#include <dev/scsipi/scsiconf.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <dev/ic/aic7xxxvar.h>
#include <dev/microcode/aic7xxx/sequencer.h>
#include <dev/microcode/aic7xxx/aic7xxx_reg.h>
#include <dev/microcode/aic7xxx/aic7xxx_seq.h>
#define XS_STS_DEBUG 0x00000002
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#define ALL_CHANNELS '\0'
#define ALL_TARGETS_MASK 0xFFFF
#define INITIATOR_WILDCARD (~0)
#define SIM_IS_SCSIBUS_B(ahc, sc_link) \
((sc_link)->scsipi_scsi.scsibus == (ahc)->sc_link_b.scsipi_scsi.scsibus)
#define SIM_CHANNEL(ahc, sc_link) \
(SIM_IS_SCSIBUS_B(ahc, sc_link) ? 'B' : 'A')
#define SIM_SCSI_ID(ahc, sc_link) \
(SIM_IS_SCSIBUS_B(ahc, sc_link) ? ahc->our_id_b : ahc->our_id)
#define SCB_IS_SCSIBUS_B(scb) \
(((scb)->hscb->tcl & SELBUSB) != 0)
#define SCB_TARGET(scb) \
(((scb)->hscb->tcl & TID) >> 4)
#define SCB_CHANNEL(scb) \
(SCB_IS_SCSIBUS_B(scb) ? 'B' : 'A')
#define SCB_LUN(scb) \
((scb)->hscb->tcl & LID)
#define SCB_TARGET_OFFSET(scb) \
(SCB_TARGET(scb) + (SCB_IS_SCSIBUS_B(scb) ? 8 : 0))
#define SCB_TARGET_MASK(scb) \
(0x01 << (SCB_TARGET_OFFSET(scb)))
#define TCL_CHANNEL(ahc, tcl) \
((((ahc)->features & AHC_TWIN) && ((tcl) & SELBUSB)) ? 'B' : 'A')
#define TCL_SCSI_ID(ahc, tcl) \
(TCL_CHANNEL((ahc), (tcl)) == 'B' ? (ahc)->our_id_b : (ahc)->our_id)
#define TCL_TARGET(tcl) (((tcl) & TID) >> TCL_TARGET_SHIFT)
#define TCL_LUN(tcl) ((tcl) & LID)
#define XS_TCL(ahc, xs) \
((((xs)->sc_link->scsipi_scsi.target << 4) & 0xF0) \
| (SIM_IS_SCSIBUS_B((ahc), (xs)->sc_link) ? SELBUSB : 0) \
| ((xs)->sc_link->scsipi_scsi.lun & 0x07))
char *ahc_chip_names[] =
{
"NONE",
"aic7770",
"aic7850",
"aic7855",
"aic7859",
"aic7860",
"aic7870",
"aic7880",
"aic7890/91",
"aic7892",
"aic7895",
"aic7896/97",
"aic7899"
};
typedef enum {
ROLE_UNKNOWN,
ROLE_INITIATOR,
ROLE_TARGET
} role_t;
struct ahc_devinfo {
int our_scsiid;
int target_offset;
u_int16_t target_mask;
u_int8_t target;
u_int8_t lun;
char channel;
role_t role; /*
* Only guaranteed to be correct if not
* in the busfree state.
*/
};
typedef enum {
SEARCH_COMPLETE,
SEARCH_COUNT,
SEARCH_REMOVE
} ahc_search_action;
#ifdef AHC_DEBUG
static int ahc_debug = AHC_DEBUG;
#endif
static int ahcinitscbdata(struct ahc_softc *);
static void ahcfiniscbdata(struct ahc_softc *);
#if UNUSED
static void ahc_dump_targcmd(struct target_cmd *);
#endif
static void ahc_shutdown(void *arg);
static int32_t ahc_action(struct scsipi_xfer *);
static int ahc_ioctl(struct scsipi_link *, u_long, caddr_t, int,
struct proc *);
static int ahc_execute_scb(void *, bus_dma_segment_t *, int);
static int ahc_poll(struct ahc_softc *, int);
static int ahc_setup_data(struct ahc_softc *, struct scsipi_xfer *,
struct scb *);
static void ahc_freeze_devq(struct ahc_softc *, struct scsipi_link *);
static void ahcallocscbs(struct ahc_softc *);
#if UNUSED
static void ahc_scb_devinfo(struct ahc_softc *, struct ahc_devinfo *,
struct scb *);
#endif
static void ahc_fetch_devinfo(struct ahc_softc *, struct ahc_devinfo *);
static void ahc_compile_devinfo(struct ahc_devinfo *, u_int, u_int, u_int,
char, role_t);
static u_int ahc_abort_wscb(struct ahc_softc *, u_int, u_int);
static void ahc_done(struct ahc_softc *, struct scb *);
static struct tmode_tstate *
ahc_alloc_tstate(struct ahc_softc *, u_int, char);
#if UNUSED
static void ahc_free_tstate(struct ahc_softc *, u_int, char, int);
#endif
static void ahc_handle_seqint(struct ahc_softc *, u_int);
static void ahc_handle_scsiint(struct ahc_softc *, u_int);
static void ahc_build_transfer_msg(struct ahc_softc *,
struct ahc_devinfo *);
static void ahc_setup_initiator_msgout(struct ahc_softc *,
struct ahc_devinfo *,
struct scb *);
static void ahc_setup_target_msgin(struct ahc_softc *,
struct ahc_devinfo *);
static void ahc_clear_msg_state(struct ahc_softc *);
static void ahc_handle_message_phase(struct ahc_softc *,
struct scsipi_link *);
static int ahc_sent_msg(struct ahc_softc *, u_int, int);
static int ahc_parse_msg(struct ahc_softc *, struct scsipi_link *,
struct ahc_devinfo *);
static void ahc_handle_ign_wide_residue(struct ahc_softc *,
struct ahc_devinfo *);
static void ahc_handle_devreset(struct ahc_softc *, struct ahc_devinfo *,
int, char *, int);
#ifdef AHC_DUMP_SEQ
static void ahc_dumpseq(struct ahc_softc *);
#endif
static void ahc_loadseq(struct ahc_softc *);
static int ahc_check_patch(struct ahc_softc *, struct patch **,
int, int *);
static void ahc_download_instr(struct ahc_softc *, int, u_int8_t *);
static int ahc_match_scb(struct scb *, int, char, int, u_int, role_t);
#if defined(AHC_DEBUG)
static void ahc_print_scb(struct scb *);
#endif
static int ahc_search_qinfifo(struct ahc_softc *, int, char, int, u_int,
role_t, scb_flag, ahc_search_action);
static int ahc_reset_channel(struct ahc_softc *, char, int);
static int ahc_abort_scbs(struct ahc_softc *, int, char, int, u_int,
role_t, int);
static int ahc_search_disc_list(struct ahc_softc *, int,
char, int, u_int, int, int, int);
static u_int ahc_rem_scb_from_disc_list(struct ahc_softc *, u_int, u_int);
static void ahc_add_curscb_to_free_list(struct ahc_softc *);
static void ahc_clear_intstat(struct ahc_softc *);
static void ahc_reset_current_bus(struct ahc_softc *);
static struct ahc_syncrate *
ahc_devlimited_syncrate(struct ahc_softc *, u_int *);
static struct ahc_syncrate *
ahc_find_syncrate(struct ahc_softc *, u_int *, u_int);
static u_int ahc_find_period(struct ahc_softc *, u_int, u_int);
static void ahc_validate_offset(struct ahc_softc *, struct ahc_syncrate *,
u_int *, int);
static void ahc_update_target_msg_request(struct ahc_softc *,
struct ahc_devinfo *,
struct ahc_initiator_tinfo *,
int, int);
static void ahc_set_syncrate(struct ahc_softc *, struct ahc_devinfo *,
struct ahc_syncrate *, u_int, u_int, u_int,
int, int);
static void ahc_set_width(struct ahc_softc *, struct ahc_devinfo *,
u_int, u_int, int, int);
static void ahc_set_tags(struct ahc_softc *, struct ahc_devinfo *,
int);
static void ahc_construct_sdtr(struct ahc_softc *, u_int, u_int);
static void ahc_construct_wdtr(struct ahc_softc *, u_int);
static void ahc_calc_residual(struct scb *);
static void ahc_update_pending_syncrates(struct ahc_softc *);
static void ahc_set_recoveryscb(struct ahc_softc *, struct scb *);
static void ahc_timeout (void *);
static __inline int sequencer_paused(struct ahc_softc *);
static __inline void pause_sequencer(struct ahc_softc *);
static __inline void unpause_sequencer(struct ahc_softc *);
static void restart_sequencer(struct ahc_softc *);
static __inline u_int ahc_index_busy_tcl(struct ahc_softc *, u_int, int);
static __inline void ahc_busy_tcl(struct ahc_softc *, struct scb *);
static __inline int ahc_isbusy_tcl(struct ahc_softc *, struct scb *);
static __inline void ahc_freeze_ccb(struct scb *);
static __inline void ahcsetccbstatus(struct scsipi_xfer *, int);
static void ahc_run_qoutfifo(struct ahc_softc *);
static __inline struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *,
char, u_int, u_int,
struct tmode_tstate **);
static void ahcfreescb(struct ahc_softc *, struct scb *);
static __inline struct scb *ahcgetscb(struct ahc_softc *);
static int ahc_createdmamem(bus_dma_tag_t, int, int, bus_dmamap_t *,
caddr_t *, bus_addr_t *, bus_dma_segment_t *,
int *, const char *, const char *);
static void ahc_freedmamem(bus_dma_tag_t, int, bus_dmamap_t,
caddr_t, bus_dma_segment_t *, int);
static void ahcminphys(struct buf *);
static __inline struct scsipi_xfer *ahc_first_xs(struct ahc_softc *);
static __inline void ahc_swap_hscb(struct hardware_scb *);
static __inline void ahc_swap_sg(struct ahc_dma_seg *);
static void ahc_check_tags(struct ahc_softc *, struct scsipi_xfer *);
static int ahc_istagged_device(struct ahc_softc *, struct scsipi_xfer *, int);
#if defined(AHC_DEBUG) && 0
static void ahc_dumptinfo(struct ahc_softc *, struct ahc_initiator_tinfo *);
#endif
static struct scsipi_device ahc_dev =
{
NULL, /* Use default error handler */
NULL, /* have a queue, served by this */
NULL, /* have no async handler */
NULL, /* Use default 'done' routine */
};
/*
* Pick the first xs for a non-blocked target.
*/
static __inline struct scsipi_xfer *
ahc_first_xs(struct ahc_softc *ahc)
{
int target;
struct scsipi_xfer *xs = TAILQ_FIRST(&ahc->sc_q);
if (ahc->queue_blocked)
return NULL;
while (xs != NULL) {
target = xs->sc_link->scsipi_scsi.target;
if (ahc->devqueue_blocked[target] == 0 &&
(ahc_istagged_device(ahc, xs, 0) ||
ahc_index_busy_tcl(ahc, XS_TCL(ahc, xs), FALSE) ==
SCB_LIST_NULL))
break;
xs = TAILQ_NEXT(xs, adapter_q);
}
return xs;
}
static __inline void
ahc_swap_hscb(struct hardware_scb *hscb)
{
hscb->SG_pointer = htole32(hscb->SG_pointer);
hscb->data = htole32(hscb->data);
hscb->datalen = htole32(hscb->datalen);
/*
* No need to swap cmdpointer; it's either 0 or set to
* cmdstore_busaddr, which is already swapped.
*/
}
static __inline void
ahc_swap_sg(struct ahc_dma_seg *sg)
{
sg->addr = htole32(sg->addr);
sg->len = htole32(sg->len);
}
static void
ahcminphys(bp)
struct buf *bp;
{
/*
* Even though the card can transfer up to 16megs per command
* we are limited by the number of segments in the dma segment
* list that we can hold. The worst case is that all pages are
* discontinuous physically, hense the "page per segment" limit
* enforced here.
*/
if (bp->b_bcount > AHC_MAXTRANSFER_SIZE) {
bp->b_bcount = AHC_MAXTRANSFER_SIZE;
}
minphys(bp);
}
static __inline u_int32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
{
return (ahc->scb_data->hscb_busaddr
+ (sizeof(struct hardware_scb) * index));
}
#define AHC_BUSRESET_DELAY 25 /* Reset delay in us */
static __inline int
sequencer_paused(struct ahc_softc *ahc)
{
return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0);
}
static __inline void
pause_sequencer(struct ahc_softc *ahc)
{
ahc_outb(ahc, HCNTRL, ahc->pause);
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
*/
while (sequencer_paused(ahc) == 0)
;
}
static __inline void
unpause_sequencer(struct ahc_softc *ahc)
{
if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0)
ahc_outb(ahc, HCNTRL, ahc->unpause);
}
/*
* Restart the sequencer program from address zero
*/
static void
restart_sequencer(struct ahc_softc *ahc)
{
u_int i;
pause_sequencer(ahc);
/*
* Everytime we restart the sequencer, there
* is the possiblitity that we have restarted
* within a three instruction window where an
* SCB has been marked free but has not made it
* onto the free list. Since SCSI events(bus reset,
* unexpected bus free) will always freeze the
* sequencer, we cannot close this window. To
* avoid losing an SCB, we reconsitute the free
* list every time we restart the sequencer.
*/
ahc_outb(ahc, FREE_SCBH, SCB_LIST_NULL);
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
ahc_outb(ahc, SCBPTR, i);
if (ahc_inb(ahc, SCB_TAG) == SCB_LIST_NULL)
ahc_add_curscb_to_free_list(ahc);
}
ahc_outb(ahc, SEQCTL, FASTMODE|SEQRESET);
unpause_sequencer(ahc);
}
static __inline u_int
ahc_index_busy_tcl(struct ahc_softc *ahc, u_int tcl, int unbusy)
{
u_int scbid;
scbid = ahc->untagged_scbs[tcl];
if (unbusy) {
ahc->untagged_scbs[tcl] = SCB_LIST_NULL;
bus_dmamap_sync(ahc->parent_dmat, ahc->shared_data_dmamap,
UNTAGGEDSCB_OFFSET * 256, 256, BUS_DMASYNC_PREWRITE);
}
return (scbid);
}
static __inline void
ahc_busy_tcl(struct ahc_softc *ahc, struct scb *scb)
{
ahc->untagged_scbs[scb->hscb->tcl] = scb->hscb->tag;
bus_dmamap_sync(ahc->parent_dmat, ahc->shared_data_dmamap,
UNTAGGEDSCB_OFFSET * 256, 256, BUS_DMASYNC_PREWRITE);
}
static __inline int
ahc_isbusy_tcl(struct ahc_softc *ahc, struct scb *scb)
{
return ahc->untagged_scbs[scb->hscb->tcl] != SCB_LIST_NULL;
}
static __inline void
ahc_freeze_ccb(struct scb *scb)
{
struct scsipi_xfer *xs = scb->xs;
struct ahc_softc *ahc = (struct ahc_softc *)xs->sc_link->adapter_softc;
int target;
target = xs->sc_link->scsipi_scsi.target;
if (!(scb->flags & SCB_FREEZE_QUEUE)) {
ahc->devqueue_blocked[target]++;
scb->flags |= SCB_FREEZE_QUEUE;
}
}
static __inline void
ahcsetccbstatus(struct scsipi_xfer *xs, int status)
{
xs->error = status;
}
static __inline struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id,
u_int remote_id, struct tmode_tstate **tstate)
{
/*
* Transfer data structures are stored from the perspective
* of the target role. Since the parameters for a connection
* in the initiator role to a given target are the same as
* when the roles are reversed, we pretend we are the target.
*/
if (channel == 'B')
our_id += 8;
*tstate = ahc->enabled_targets[our_id];
return (&(*tstate)->transinfo[remote_id]);
}
static void
ahc_run_qoutfifo(struct ahc_softc *ahc)
{
struct scb *scb;
u_int scb_index;
bus_dmamap_sync(ahc->parent_dmat, ahc->shared_data_dmamap, 0,
256, BUS_DMASYNC_POSTREAD);
while (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL) {
scb_index = ahc->qoutfifo[ahc->qoutfifonext];
ahc->qoutfifo[ahc->qoutfifonext++] = SCB_LIST_NULL;
scb = &ahc->scb_data->scbarray[scb_index];
if (scb_index >= ahc->scb_data->numscbs
|| (scb->flags & SCB_ACTIVE) == 0) {
printf("%s: WARNING no command for scb %d "
"(cmdcmplt)\nQOUTPOS = %d\n",
ahc_name(ahc), scb_index,
ahc->qoutfifonext - 1);
continue;
}
/*
* Save off the residual
* if there is one.
*/
if (scb->hscb->residual_SG_count != 0)
ahc_calc_residual(scb);
else
scb->xs->resid = 0;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWSCBS) {
scsi_print_addr(scb->xs->sc_link);
printf("run_qoutfifo: SCB %x complete\n",
scb->hscb->tag);
}
#endif
ahc_done(ahc, scb);
}
}
/*
* An scb (and hence an scb entry on the board) is put onto the
* free list.
*/
static void
ahcfreescb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *hscb;
int opri;
hscb = scb->hscb;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWSCBALLOC)
printf("%s: free SCB tag %x\n", ahc_name(ahc), hscb->tag);
#endif
opri = splbio();
if ((ahc->flags & AHC_RESOURCE_SHORTAGE) != 0 ||
(scb->flags & SCB_RECOVERY_SCB) != 0) {
ahc->flags &= ~AHC_RESOURCE_SHORTAGE;
ahc->queue_blocked = 0;
}
/* Clean up for the next user */
scb->flags = SCB_FREE;
hscb->control = 0;
hscb->status = 0;
SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links);
splx(opri);
}
/*
* Get a free scb, either one already assigned to a hardware slot
* on the adapter or one that will require an SCB to be paged out before
* use. If there are none, see if we can allocate a new SCB. Otherwise
* either return an error or sleep.
*/
static __inline struct scb *
ahcgetscb(struct ahc_softc *ahc)
{
struct scb *scbp;
int opri;;
opri = splbio();
if ((scbp = SLIST_FIRST(&ahc->scb_data->free_scbs))) {
SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links);
} else {
ahcallocscbs(ahc);
scbp = SLIST_FIRST(&ahc->scb_data->free_scbs);
if (scbp != NULL)
SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links);
}
splx(opri);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWSCBALLOC) {
if (scbp != NULL)
printf("%s: new SCB, tag %x\n", ahc_name(ahc),
scbp->hscb->tag);
else
printf("%s: failed to allocate new SCB\n",
ahc_name(ahc));
}
#endif
return (scbp);
}
static int
ahc_createdmamem(tag, size, flags, mapp, vaddr, baddr, seg, nseg, myname, what)
bus_dma_tag_t tag;
int size;
int flags;
bus_dmamap_t *mapp;
caddr_t *vaddr;
bus_addr_t *baddr;
bus_dma_segment_t *seg;
int *nseg;
const char *myname, *what;
{
int error, level = 0;
if ((error = bus_dmamem_alloc(tag, size, NBPG, 0,
seg, 1, nseg, BUS_DMA_NOWAIT)) != 0) {
printf("%s: failed to allocate DMA mem for %s, error = %d\n",
myname, what, error);
goto out;
}
level++;
if ((error = bus_dmamem_map(tag, seg, *nseg, size, vaddr,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
printf("%s: failed to map DMA mem for %s, error = %d\n",
myname, what, error);
goto out;
}
level++;
if ((error = bus_dmamap_create(tag, size, 1, size, 0,
BUS_DMA_NOWAIT | flags, mapp)) != 0) {
printf("%s: failed to create DMA map for %s, error = %d\n",
myname, what, error);
goto out;
}
level++;
if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: failed to load DMA map for %s, error = %d\n",
myname, what, error);
goto out;
}
*baddr = (*mapp)->dm_segs[0].ds_addr;
#ifdef AHC_DEBUG
printf("%s: dmamem for %s at busaddr %lx virt %lx nseg %d size %d\n",
myname, what, (unsigned long)*baddr, (unsigned long)*vaddr,
*nseg, size);
#endif
return 0;
out:
switch (level) {
case 3:
bus_dmamap_destroy(tag, *mapp);
/* FALLTHROUGH */
case 2:
bus_dmamem_unmap(tag, *vaddr, size);
/* FALLTHROUGH */
case 1:
bus_dmamem_free(tag, seg, *nseg);
break;
default:
break;
}
return error;
}
static void
ahc_freedmamem(tag, size, map, vaddr, seg, nseg)
bus_dma_tag_t tag;
int size;
bus_dmamap_t map;
caddr_t vaddr;
bus_dma_segment_t *seg;
int nseg;
{
bus_dmamap_unload(tag, map);
bus_dmamap_destroy(tag, map);
bus_dmamem_unmap(tag, vaddr, size);
bus_dmamem_free(tag, seg, nseg);
}
char *
ahc_name(struct ahc_softc *ahc)
{
return (ahc->sc_dev.dv_xname);
}
#ifdef AHC_DEBUG
static void
ahc_print_scb(struct scb *scb)
{
struct hardware_scb *hscb = scb->hscb;
printf("scb:%p tag %x control:0x%x tcl:0x%x cmdlen:%d cmdpointer:0x%lx\n",
scb,
hscb->tag,
hscb->control,
hscb->tcl,
hscb->cmdlen,
(unsigned long)le32toh(hscb->cmdpointer));
printf(" datlen:%u data:0x%lx segs:0x%x segp:0x%lx\n",
le32toh(hscb->datalen),
(unsigned long)(le32toh(hscb->data)),
hscb->SG_count,
(unsigned long)(le32toh(hscb->SG_pointer)));
printf(" sg_addr:%lx sg_len:%lu\n",
(unsigned long)(le32toh(scb->sg_list[0].addr)),
(unsigned long)(le32toh(scb->sg_list[0].len)));
printf(" cdb:%x %x %x %x %x %x %x %x %x %x %x %x\n",
hscb->cmdstore[0], hscb->cmdstore[1], hscb->cmdstore[2],
hscb->cmdstore[3], hscb->cmdstore[4], hscb->cmdstore[5],
hscb->cmdstore[6], hscb->cmdstore[7], hscb->cmdstore[8],
hscb->cmdstore[9], hscb->cmdstore[10], hscb->cmdstore[11]);
}
#endif
static struct {
u_int8_t errno;
char *errmesg;
} hard_error[] = {
{ ILLHADDR, "Illegal Host Access" },
{ ILLSADDR, "Illegal Sequencer Address referrenced" },
{ ILLOPCODE, "Illegal Opcode in sequencer program" },
{ SQPARERR, "Sequencer Parity Error" },
{ DPARERR, "Data-path Parity Error" },
{ MPARERR, "Scratch or SCB Memory Parity Error" },
{ PCIERRSTAT, "PCI Error detected" },
{ CIOPARERR, "CIOBUS Parity Error" },
};
static const int num_errors = sizeof(hard_error)/sizeof(hard_error[0]);
static struct {
u_int8_t phase;
u_int8_t mesg_out; /* Message response to parity errors */
char *phasemsg;
} phase_table[] = {
{ P_DATAOUT, MSG_NOOP, "in Data-out phase" },
{ P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" },
{ P_COMMAND, MSG_NOOP, "in Command phase" },
{ P_MESGOUT, MSG_NOOP, "in Message-out phase" },
{ P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" },
{ P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
{ P_BUSFREE, MSG_NOOP, "while idle" },
{ 0, MSG_NOOP, "in unknown phase" }
};
static const int num_phases = (sizeof(phase_table)/sizeof(phase_table[0])) - 1;
/*
* Valid SCSIRATE values. (p. 3-17)
* Provides a mapping of tranfer periods in ns to the proper value to
* stick in the scsiscfr reg to use that transfer rate.
*/
#define AHC_SYNCRATE_DT 0
#define AHC_SYNCRATE_ULTRA2 1
#define AHC_SYNCRATE_ULTRA 3
#define AHC_SYNCRATE_FAST 6
static struct ahc_syncrate ahc_syncrates[] = {
/* ultra2 fast/ultra period rate */
{ 0x42, 0x000, 9, "80.0" },
{ 0x03, 0x000, 10, "40.0" },
{ 0x04, 0x000, 11, "33.0" },
{ 0x05, 0x100, 12, "20.0" },
{ 0x06, 0x110, 15, "16.0" },
{ 0x07, 0x120, 18, "13.4" },
{ 0x08, 0x000, 25, "10.0" },
{ 0x19, 0x010, 31, "8.0" },
{ 0x1a, 0x020, 37, "6.67" },
{ 0x1b, 0x030, 43, "5.7" },
{ 0x1c, 0x040, 50, "5.0" },
{ 0x00, 0x050, 56, "4.4" },
{ 0x00, 0x060, 62, "4.0" },
{ 0x00, 0x070, 68, "3.6" },
{ 0x00, 0x000, 0, NULL }
};
/*
* Allocate a controller structure for a new device and initialize it.
*/
int
ahc_alloc(struct ahc_softc *ahc, bus_space_handle_t sh, bus_space_tag_t st,
bus_dma_tag_t parent_dmat, ahc_chip chip, ahc_feature features,
ahc_flag flags)
{
struct scb_data *scb_data;
scb_data = malloc(sizeof (struct scb_data), M_DEVBUF, M_NOWAIT);
if (scb_data == NULL) {
printf("%s: cannot malloc softc!\n", ahc_name(ahc));
return -1;
}
bzero(scb_data, sizeof (struct scb_data));
LIST_INIT(&ahc->pending_ccbs);
ahc->tag = st;
ahc->bsh = sh;
ahc->parent_dmat = parent_dmat;
ahc->chip = chip;
ahc->features = features;
ahc->flags = flags;
ahc->scb_data = scb_data;
ahc->unpause = (ahc_inb(ahc, HCNTRL) & IRQMS) | INTEN;
/* The IRQMS bit is only valid on VL and EISA chips */
if ((ahc->chip & AHC_PCI) != 0)
ahc->unpause &= ~IRQMS;
ahc->pause = ahc->unpause | PAUSE;
return (0);
}
void
ahc_free(ahc)
struct ahc_softc *ahc;
{
ahcfiniscbdata(ahc);
if (ahc->init_level != 0)
ahc_freedmamem(ahc->parent_dmat, ahc->shared_data_size,
ahc->shared_data_dmamap, ahc->qoutfifo,
&ahc->shared_data_seg, ahc->shared_data_nseg);
if (ahc->scb_data != NULL)
free(ahc->scb_data, M_DEVBUF);
if (ahc->bus_data != NULL)
free(ahc->bus_data, M_DEVBUF);
return;
}
static int
ahcinitscbdata(struct ahc_softc *ahc)
{
struct scb_data *scb_data;
int i;
scb_data = ahc->scb_data;
SLIST_INIT(&scb_data->free_scbs);
SLIST_INIT(&scb_data->sg_maps);
/* Allocate SCB resources */
scb_data->scbarray =
(struct scb *)malloc(sizeof(struct scb) * AHC_SCB_MAX,
M_DEVBUF, M_NOWAIT);
if (scb_data->scbarray == NULL)
return (ENOMEM);
bzero(scb_data->scbarray, sizeof(struct scb) * AHC_SCB_MAX);
/* Determine the number of hardware SCBs and initialize them */
scb_data->maxhscbs = ahc_probe_scbs(ahc);
/* SCB 0 heads the free list */
ahc_outb(ahc, FREE_SCBH, 0);
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
ahc_outb(ahc, SCBPTR, i);
/* Clear the control byte. */
ahc_outb(ahc, SCB_CONTROL, 0);
/* Set the next pointer */
ahc_outb(ahc, SCB_NEXT, i+1);
/* Make the tag number invalid */
ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL);
}
/* Make sure that the last SCB terminates the free list */
ahc_outb(ahc, SCBPTR, i-1);
ahc_outb(ahc, SCB_NEXT, SCB_LIST_NULL);
/* Ensure we clear the 0 SCB's control byte. */
ahc_outb(ahc, SCBPTR, 0);
ahc_outb(ahc, SCB_CONTROL, 0);
scb_data->maxhscbs = i;
if (ahc->scb_data->maxhscbs == 0)
panic("%s: No SCB space found", ahc_name(ahc));
/*
* Create our DMA tags. These tags define the kinds of device
* accessable memory allocations and memory mappings we will
* need to perform during normal operation.
*
* Unless we need to further restrict the allocation, we rely
* on the restrictions of the parent dmat, hence the common
* use of MAXADDR and MAXSIZE.
*/
if (ahc_createdmamem(ahc->parent_dmat,
AHC_SCB_MAX * sizeof(struct hardware_scb), ahc->sc_dmaflags,
&scb_data->hscb_dmamap,
(caddr_t *)&scb_data->hscbs, &scb_data->hscb_busaddr,
&scb_data->hscb_seg, &scb_data->hscb_nseg, ahc_name(ahc),
"hardware SCB structures") < 0)
goto error_exit;
scb_data->init_level++;
if (ahc_createdmamem(ahc->parent_dmat,
AHC_SCB_MAX * sizeof(struct scsipi_sense_data), ahc->sc_dmaflags,
&scb_data->sense_dmamap, (caddr_t *)&scb_data->sense,
&scb_data->sense_busaddr, &scb_data->sense_seg,
&scb_data->sense_nseg, ahc_name(ahc), "sense buffers") < 0)
goto error_exit;
scb_data->init_level++;
/* Perform initial CCB allocation */
bzero(scb_data->hscbs, AHC_SCB_MAX * sizeof(struct hardware_scb));
ahcallocscbs(ahc);
if (scb_data->numscbs == 0) {
printf("%s: ahc_init_scb_data - "
"Unable to allocate initial scbs\n",
ahc_name(ahc));
goto error_exit;
}
scb_data->init_level++;
/*
* Note that we were successfull
*/
return 0;
error_exit:
return ENOMEM;
}
static void
ahcfiniscbdata(struct ahc_softc *ahc)
{
struct scb_data *scb_data;
scb_data = ahc->scb_data;
switch (scb_data->init_level) {
default:
case 3:
{
struct sg_map_node *sg_map;
while ((sg_map = SLIST_FIRST(&scb_data->sg_maps))!= NULL) {
SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
ahc_freedmamem(ahc->parent_dmat, PAGE_SIZE,
sg_map->sg_dmamap, (caddr_t)sg_map->sg_vaddr,
&sg_map->sg_dmasegs, sg_map->sg_nseg);
free(sg_map, M_DEVBUF);
}
}
/*FALLTHROUGH*/
case 2:
ahc_freedmamem(ahc->parent_dmat,
AHC_SCB_MAX * sizeof(struct scsipi_sense_data),
scb_data->sense_dmamap, (caddr_t)scb_data->sense,
&scb_data->sense_seg, scb_data->sense_nseg);
/*FALLTHROUGH*/
case 1:
ahc_freedmamem(ahc->parent_dmat,
AHC_SCB_MAX * sizeof(struct hardware_scb),
scb_data->hscb_dmamap, (caddr_t)scb_data->hscbs,
&scb_data->hscb_seg, scb_data->hscb_nseg);
/*FALLTHROUGH*/
}
if (scb_data->scbarray != NULL)
free(scb_data->scbarray, M_DEVBUF);
}
int
ahc_reset(struct ahc_softc *ahc)
{
u_int sblkctl;
int wait;
#ifdef AHC_DUMP_SEQ
if (ahc->init_level == 0)
ahc_dumpseq(ahc);
#endif
ahc_outb(ahc, HCNTRL, CHIPRST | ahc->pause);
/*
* Ensure that the reset has finished
*/
wait = 1000;
do {
DELAY(1000);
} while (--wait && !(ahc_inb(ahc, HCNTRL) & CHIPRSTACK));
if (wait == 0) {
printf("%s: WARNING - Failed chip reset! "
"Trying to initialize anyway.\n", ahc_name(ahc));
}
ahc_outb(ahc, HCNTRL, ahc->pause);
/* Determine channel configuration */
sblkctl = ahc_inb(ahc, SBLKCTL) & (SELBUSB|SELWIDE);
/* No Twin Channel PCI cards */
if ((ahc->chip & AHC_PCI) != 0)
sblkctl &= ~SELBUSB;
switch (sblkctl) {
case 0:
/* Single Narrow Channel */
break;
case 2:
/* Wide Channel */
ahc->features |= AHC_WIDE;
break;
case 8:
/* Twin Channel */
ahc->features |= AHC_TWIN;
break;
default:
printf(" Unsupported adapter type. Ignoring\n");
return(-1);
}
return (0);
}
/*
* Called when we have an active connection to a target on the bus,
* this function finds the nearest syncrate to the input period limited
* by the capabilities of the bus connectivity of the target.
*/
static struct ahc_syncrate *
ahc_devlimited_syncrate(struct ahc_softc *ahc, u_int *period) {
u_int maxsync;
if ((ahc->features & AHC_ULTRA2) != 0) {
if ((ahc_inb(ahc, SBLKCTL) & ENAB40) != 0
&& (ahc_inb(ahc, SSTAT2) & EXP_ACTIVE) == 0) {
maxsync = AHC_SYNCRATE_ULTRA2;
} else {
maxsync = AHC_SYNCRATE_ULTRA;
}
} else if ((ahc->features & AHC_ULTRA) != 0) {
maxsync = AHC_SYNCRATE_ULTRA;
} else {
maxsync = AHC_SYNCRATE_FAST;
}
return (ahc_find_syncrate(ahc, period, maxsync));
}
/*
* Look up the valid period to SCSIRATE conversion in our table.
* Return the period and offset that should be sent to the target
* if this was the beginning of an SDTR.
*/
static struct ahc_syncrate *
ahc_find_syncrate(struct ahc_softc *ahc, u_int *period, u_int maxsync)
{
struct ahc_syncrate *syncrate;
syncrate = &ahc_syncrates[maxsync];
while ((syncrate->rate != NULL)
&& ((ahc->features & AHC_ULTRA2) == 0
|| (syncrate->sxfr_u2 != 0))) {
if (*period <= syncrate->period) {
/*
* When responding to a target that requests
* sync, the requested rate may fall between
* two rates that we can output, but still be
* a rate that we can receive. Because of this,
* we want to respond to the target with
* the same rate that it sent to us even
* if the period we use to send data to it
* is lower. Only lower the response period
* if we must.
*/
if (syncrate == &ahc_syncrates[maxsync])
*period = syncrate->period;
break;
}
syncrate++;
}
if ((*period == 0)
|| (syncrate->rate == NULL)
|| ((ahc->features & AHC_ULTRA2) != 0
&& (syncrate->sxfr_u2 == 0))) {
/* Use asynchronous transfers. */
*period = 0;
syncrate = NULL;
}
return (syncrate);
}
static u_int
ahc_find_period(struct ahc_softc *ahc, u_int scsirate, u_int maxsync)
{
struct ahc_syncrate *syncrate;
if ((ahc->features & AHC_ULTRA2) != 0)
scsirate &= SXFR_ULTRA2;
else
scsirate &= SXFR;
syncrate = &ahc_syncrates[maxsync];
while (syncrate->rate != NULL) {
if ((ahc->features & AHC_ULTRA2) != 0) {
if (syncrate->sxfr_u2 == 0)
break;
else if (scsirate == (syncrate->sxfr_u2 & SXFR_ULTRA2))
return (syncrate->period);
} else if (scsirate == (syncrate->sxfr & SXFR)) {
return (syncrate->period);
}
syncrate++;
}
return (0); /* async */
}
static void
ahc_validate_offset(struct ahc_softc *ahc, struct ahc_syncrate *syncrate,
u_int *offset, int wide)
{
u_int maxoffset;
/* Limit offset to what we can do */
if (syncrate == NULL) {
maxoffset = 0;
} else if ((ahc->features & AHC_ULTRA2) != 0) {
maxoffset = MAX_OFFSET_ULTRA2;
} else {
if (wide)
maxoffset = MAX_OFFSET_16BIT;
else
maxoffset = MAX_OFFSET_8BIT;
}
*offset = MIN(*offset, maxoffset);
}
static void
ahc_update_target_msg_request(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
struct ahc_initiator_tinfo *tinfo,
int force, int paused)
{
u_int targ_msg_req_orig;
targ_msg_req_orig = ahc->targ_msg_req;
if (tinfo->current.period != tinfo->goal.period
|| tinfo->current.width != tinfo->goal.width
|| tinfo->current.offset != tinfo->goal.offset
|| (force
&& (tinfo->goal.period != 0
|| tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT))) {
ahc->targ_msg_req |= devinfo->target_mask;
} else {
ahc->targ_msg_req &= ~devinfo->target_mask;
}
if (ahc->targ_msg_req != targ_msg_req_orig) {
/* Update the message request bit for this target */
if ((ahc->features & AHC_HS_MAILBOX) != 0) {
if (paused) {
ahc_outb(ahc, TARGET_MSG_REQUEST,
ahc->targ_msg_req & 0xFF);
ahc_outb(ahc, TARGET_MSG_REQUEST + 1,
(ahc->targ_msg_req >> 8) & 0xFF);
} else {
ahc_outb(ahc, HS_MAILBOX,
0x01 << HOST_MAILBOX_SHIFT);
}
} else {
if (!paused)
pause_sequencer(ahc);
ahc_outb(ahc, TARGET_MSG_REQUEST,
ahc->targ_msg_req & 0xFF);
ahc_outb(ahc, TARGET_MSG_REQUEST + 1,
(ahc->targ_msg_req >> 8) & 0xFF);
if (!paused)
unpause_sequencer(ahc);
}
}
}
static void
ahc_set_syncrate(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
struct ahc_syncrate *syncrate,
u_int period, u_int offset, u_int type, int paused, int done)
{
struct ahc_initiator_tinfo *tinfo;
struct tmode_tstate *tstate;
u_int old_period;
u_int old_offset;
int active = (type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE;
if (syncrate == NULL) {
period = 0;
offset = 0;
}
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
old_period = tinfo->current.period;
old_offset = tinfo->current.offset;
if ((type & AHC_TRANS_CUR) != 0
&& (old_period != period || old_offset != offset)) {
u_int scsirate;
scsirate = tinfo->scsirate;
if ((ahc->features & AHC_ULTRA2) != 0) {
/* XXX */
/* Force single edge until DT is fully implemented */
scsirate &= ~(SXFR_ULTRA2|SINGLE_EDGE|ENABLE_CRC);
if (syncrate != NULL)
scsirate |= syncrate->sxfr_u2|SINGLE_EDGE;
if (active)
ahc_outb(ahc, SCSIOFFSET, offset);
} else {
scsirate &= ~(SXFR|SOFS);
/*
* Ensure Ultra mode is set properly for
* this target.
*/
tstate->ultraenb &= ~devinfo->target_mask;
if (syncrate != NULL) {
if (syncrate->sxfr & ULTRA_SXFR) {
tstate->ultraenb |=
devinfo->target_mask;
}
scsirate |= syncrate->sxfr & SXFR;
scsirate |= offset & SOFS;
}
if (active) {
u_int sxfrctl0;
sxfrctl0 = ahc_inb(ahc, SXFRCTL0);
sxfrctl0 &= ~FAST20;
if (tstate->ultraenb & devinfo->target_mask)
sxfrctl0 |= FAST20;
ahc_outb(ahc, SXFRCTL0, sxfrctl0);
}
}
if (active)
ahc_outb(ahc, SCSIRATE, scsirate);
tinfo->scsirate = scsirate;
tinfo->current.period = period;
tinfo->current.offset = offset;
/* Update the syncrates in any pending scbs */
ahc_update_pending_syncrates(ahc);
}
/*
* Print messages if we're verbose and at the end of a negotiation
* cycle.
*/
if (done) {
if (offset != 0) {
printf("%s: target %d synchronous at %sMHz, "
"offset = 0x%x\n", ahc_name(ahc),
devinfo->target, syncrate->rate, offset);
} else {
printf("%s: target %d using "
"asynchronous transfers\n",
ahc_name(ahc), devinfo->target);
}
}
if ((type & AHC_TRANS_GOAL) != 0) {
tinfo->goal.period = period;
tinfo->goal.offset = offset;
}
if ((type & AHC_TRANS_USER) != 0) {
tinfo->user.period = period;
tinfo->user.offset = offset;
}
ahc_update_target_msg_request(ahc, devinfo, tinfo,
/*force*/FALSE,
paused);
}
static void
ahc_set_width(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
u_int width, u_int type, int paused, int done)
{
struct ahc_initiator_tinfo *tinfo;
struct tmode_tstate *tstate;
u_int oldwidth;
int active = (type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE;
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
oldwidth = tinfo->current.width;
if ((type & AHC_TRANS_CUR) != 0 && oldwidth != width) {
u_int scsirate;
scsirate = tinfo->scsirate;
scsirate &= ~WIDEXFER;
if (width == MSG_EXT_WDTR_BUS_16_BIT)
scsirate |= WIDEXFER;
tinfo->scsirate = scsirate;
if (active)
ahc_outb(ahc, SCSIRATE, scsirate);
tinfo->current.width = width;
}
if (done) {
printf("%s: target %d using %dbit transfers\n",
ahc_name(ahc), devinfo->target,
8 * (0x01 << width));
}
if ((type & AHC_TRANS_GOAL) != 0)
tinfo->goal.width = width;
if ((type & AHC_TRANS_USER) != 0)
tinfo->user.width = width;
ahc_update_target_msg_request(ahc, devinfo, tinfo,
/*force*/FALSE, paused);
}
static void
ahc_set_tags(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, int enable)
{
struct ahc_initiator_tinfo *tinfo;
struct tmode_tstate *tstate;
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
if (enable)
tstate->tagenable |= devinfo->target_mask;
else {
tstate->tagenable &= ~devinfo->target_mask;
tstate->tagdisable |= devinfo->target_mask;
}
}
/*
* Attach all the sub-devices we can find
*/
int
ahc_attach(struct ahc_softc *ahc)
{
TAILQ_INIT(&ahc->sc_q);
ahc->sc_adapter.scsipi_cmd = ahc_action;
ahc->sc_adapter.scsipi_minphys = ahcminphys;
ahc->sc_adapter.scsipi_ioctl = ahc_ioctl;
ahc->sc_link.type = BUS_SCSI;
ahc->sc_link.scsipi_scsi.adapter_target = ahc->our_id;
ahc->sc_link.scsipi_scsi.channel = 0;
ahc->sc_link.scsipi_scsi.max_target =
(ahc->features & AHC_WIDE) ? 15 : 7;
ahc->sc_link.scsipi_scsi.max_lun = 7;
ahc->sc_link.adapter_softc = ahc;
ahc->sc_link.adapter = &ahc->sc_adapter;
ahc->sc_link.openings = 2;
ahc->sc_link.device = &ahc_dev;
if (ahc->features & AHC_TWIN) {
ahc->sc_link_b = ahc->sc_link;
ahc->sc_link_b.scsipi_scsi.adapter_target = ahc->our_id_b;
ahc->sc_link_b.scsipi_scsi.channel = 1;
}
if ((ahc->flags & AHC_CHANNEL_B_PRIMARY) == 0) {
ahc->sc_link_b.scsipi_scsi.scsibus = 0xff;
config_found((void *)ahc, &ahc->sc_link, scsiprint);
if (ahc->features & AHC_TWIN)
config_found((void *)ahc, &ahc->sc_link_b, scsiprint);
} else {
config_found((void *)ahc, &ahc->sc_link_b, scsiprint);
config_found((void *)ahc, &ahc->sc_link, scsiprint);
}
return 1;
}
static void
ahc_fetch_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
u_int saved_tcl;
role_t role;
int our_id;
if (ahc_inb(ahc, SSTAT0) & TARGET)
role = ROLE_TARGET;
else
role = ROLE_INITIATOR;
if (role == ROLE_TARGET
&& (ahc->features & AHC_MULTI_TID) != 0
&& (ahc_inb(ahc, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
/* We were selected, so pull our id from TARGIDIN */
our_id = ahc_inb(ahc, TARGIDIN) & OID;
} else if ((ahc->features & AHC_ULTRA2) != 0)
our_id = ahc_inb(ahc, SCSIID_ULTRA2) & OID;
else
our_id = ahc_inb(ahc, SCSIID) & OID;
saved_tcl = ahc_inb(ahc, SAVED_TCL);
ahc_compile_devinfo(devinfo, our_id, TCL_TARGET(saved_tcl),
TCL_LUN(saved_tcl), TCL_CHANNEL(ahc, saved_tcl),
role);
}
static void
ahc_compile_devinfo(struct ahc_devinfo *devinfo, u_int our_id, u_int target,
u_int lun, char channel, role_t role)
{
devinfo->our_scsiid = our_id;
devinfo->target = target;
devinfo->lun = lun;
devinfo->target_offset = target;
devinfo->channel = channel;
devinfo->role = role;
if (channel == 'B')
devinfo->target_offset += 8;
devinfo->target_mask = (0x01 << devinfo->target_offset);
}
/*
* Catch an interrupt from the adapter
*/
int
ahc_intr(void *arg)
{
struct ahc_softc *ahc;
u_int intstat;
ahc = (struct ahc_softc *)arg;
intstat = ahc_inb(ahc, INTSTAT);
/*
* Any interrupts to process?
*/
if ((intstat & INT_PEND) == 0) {
if (ahc->bus_intr && ahc->bus_intr(ahc)) {
#ifdef AHC_DEBUG
printf("%s: bus intr: CCHADDR %x HADDR %x SEQADDR %x\n",
ahc_name(ahc),
ahc_inb(ahc, CCHADDR) |
(ahc_inb(ahc, CCHADDR+1) << 8)
| (ahc_inb(ahc, CCHADDR+2) << 16)
| (ahc_inb(ahc, CCHADDR+3) << 24),
ahc_inb(ahc, HADDR) | (ahc_inb(ahc, HADDR+1) << 8)
| (ahc_inb(ahc, HADDR+2) << 16)
| (ahc_inb(ahc, HADDR+3) << 24),
ahc_inb(ahc, SEQADDR0) |
(ahc_inb(ahc, SEQADDR1) << 8));
#endif
return 1;
}
return 0;
}
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWINTR) {
printf("%s: intstat %x\n", ahc_name(ahc), intstat);
}
#endif
if (intstat & CMDCMPLT) {
ahc_outb(ahc, CLRINT, CLRCMDINT);
ahc_run_qoutfifo(ahc);
}
if (intstat & BRKADRINT) {
/*
* We upset the sequencer :-(
* Lookup the error message
*/
int i, error, num_errors;
error = ahc_inb(ahc, ERROR);
num_errors = sizeof(hard_error)/sizeof(hard_error[0]);
for (i = 0; error != 1 && i < num_errors; i++)
error >>= 1;
panic("%s: brkadrint, %s at seqaddr = 0x%x\n",
ahc_name(ahc), hard_error[i].errmesg,
ahc_inb(ahc, SEQADDR0) |
(ahc_inb(ahc, SEQADDR1) << 8));
/* Tell everyone that this HBA is no longer availible */
ahc_abort_scbs(ahc, AHC_TARGET_WILDCARD, ALL_CHANNELS,
AHC_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
XS_DRIVER_STUFFUP);
}
if (intstat & SEQINT)
ahc_handle_seqint(ahc, intstat);
if (intstat & SCSIINT)
ahc_handle_scsiint(ahc, intstat);
return 1;
}
static struct tmode_tstate *
ahc_alloc_tstate(struct ahc_softc *ahc, u_int scsi_id, char channel)
{
struct tmode_tstate *master_tstate;
struct tmode_tstate *tstate;
int i, s;
master_tstate = ahc->enabled_targets[ahc->our_id];
if (channel == 'B') {
scsi_id += 8;
master_tstate = ahc->enabled_targets[ahc->our_id_b + 8];
}
if (ahc->enabled_targets[scsi_id] != NULL
&& ahc->enabled_targets[scsi_id] != master_tstate)
panic("%s: ahc_alloc_tstate - Target already allocated",
ahc_name(ahc));
tstate = malloc(sizeof(*tstate), M_DEVBUF, M_NOWAIT);
if (tstate == NULL)
return (NULL);
/*
* If we have allocated a master tstate, copy user settings from
* the master tstate (taken from SRAM or the EEPROM) for this
* channel, but reset our current and goal settings to async/narrow
* until an initiator talks to us.
*/
if (master_tstate != NULL) {
bcopy(master_tstate, tstate, sizeof(*tstate));
tstate->ultraenb = 0;
for (i = 0; i < 16; i++) {
bzero(&tstate->transinfo[i].current,
sizeof(tstate->transinfo[i].current));
bzero(&tstate->transinfo[i].goal,
sizeof(tstate->transinfo[i].goal));
}
} else
bzero(tstate, sizeof(*tstate));
s = splbio();
ahc->enabled_targets[scsi_id] = tstate;
splx(s);
return (tstate);
}
#if UNUSED
static void
ahc_free_tstate(struct ahc_softc *ahc, u_int scsi_id, char channel, int force)
{
struct tmode_tstate *tstate;
/* Don't clean up the entry for our initiator role */
if ((ahc->flags & AHC_INITIATORMODE) != 0
&& ((channel == 'B' && scsi_id == ahc->our_id_b)
|| (channel == 'A' && scsi_id == ahc->our_id))
&& force == FALSE)
return;
if (channel == 'B')
scsi_id += 8;
tstate = ahc->enabled_targets[scsi_id];
if (tstate != NULL)
free(tstate, M_DEVBUF);
ahc->enabled_targets[scsi_id] = NULL;
}
#endif
static void
ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat)
{
struct scb *scb;
struct ahc_devinfo devinfo;
ahc_fetch_devinfo(ahc, &devinfo);
/*
* Clear the upper byte that holds SEQINT status
* codes and clear the SEQINT bit. We will unpause
* the sequencer, if appropriate, after servicing
* the request.
*/
ahc_outb(ahc, CLRINT, CLRSEQINT);
switch (intstat & SEQINT_MASK) {
case NO_MATCH:
{
/* Ensure we don't leave the selection hardware on */
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
printf("%s:%c:%d: no active SCB for reconnecting "
"target - issuing BUS DEVICE RESET\n",
ahc_name(ahc), devinfo.channel, devinfo.target);
printf("SAVED_TCL == 0x%x, ARG_1 == 0x%x, SEQ_FLAGS == 0x%x\n",
ahc_inb(ahc, SAVED_TCL), ahc_inb(ahc, ARG_1),
ahc_inb(ahc, SEQ_FLAGS));
ahc->msgout_buf[0] = MSG_BUS_DEV_RESET;
ahc->msgout_len = 1;
ahc->msgout_index = 0;
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
ahc_outb(ahc, MSG_OUT, HOST_MSG);
ahc_outb(ahc, SCSISIGO, ahc_inb(ahc, LASTPHASE) | ATNO);
break;
}
case UPDATE_TMSG_REQ:
ahc_outb(ahc, TARGET_MSG_REQUEST, ahc->targ_msg_req & 0xFF);
ahc_outb(ahc, TARGET_MSG_REQUEST + 1,
(ahc->targ_msg_req >> 8) & 0xFF);
ahc_outb(ahc, HS_MAILBOX, 0);
break;
case SEND_REJECT:
{
u_int rejbyte = ahc_inb(ahc, ACCUM);
printf("%s:%c:%d: Warning - unknown message received from "
"target (0x%x). Rejecting\n",
ahc_name(ahc), devinfo.channel, devinfo.target, rejbyte);
break;
}
case NO_IDENT:
{
/*
* The reconnecting target either did not send an identify
* message, or did, but we didn't find and SCB to match and
* before it could respond to our ATN/abort, it hit a dataphase.
* The only safe thing to do is to blow it away with a bus
* reset.
*/
int found;
printf("%s:%c:%d: Target did not send an IDENTIFY message. "
"LASTPHASE = 0x%x, SAVED_TCL == 0x%x\n",
ahc_name(ahc), devinfo.channel, devinfo.target,
ahc_inb(ahc, LASTPHASE), ahc_inb(ahc, SAVED_TCL));
found = ahc_reset_channel(ahc, devinfo.channel,
/*initiate reset*/TRUE);
printf("%s: Issued Channel %c Bus Reset. "
"%d SCBs aborted\n", ahc_name(ahc), devinfo.channel,
found);
return;
}
case BAD_PHASE:
{
u_int lastphase;
lastphase = ahc_inb(ahc, LASTPHASE);
if (lastphase == P_BUSFREE) {
printf("%s:%c:%d: Missed busfree. Curphase = 0x%x\n",
ahc_name(ahc), devinfo.channel, devinfo.target,
ahc_inb(ahc, SCSISIGI));
restart_sequencer(ahc);
return;
} else {
printf("%s:%c:%d: unknown scsi bus phase %x. "
"Attempting to continue\n",
ahc_name(ahc), devinfo.channel, devinfo.target,
ahc_inb(ahc, SCSISIGI));
}
break;
}
case BAD_STATUS:
{
u_int scb_index;
struct hardware_scb *hscb;
struct scsipi_xfer *xs;
struct scb *scbp;
int todo, inqueue;
/*
* The sequencer will notify us when a command
* has an error that would be of interest to
* the kernel. This allows us to leave the sequencer
* running in the common case of command completes
* without error. The sequencer will already have
* dma'd the SCB back up to us, so we can reference
* the in kernel copy directly.
*/
scb_index = ahc_inb(ahc, SCB_TAG);
scb = &ahc->scb_data->scbarray[scb_index];
/* ahc_print_scb(scb); */
/*
* Set the default return value to 0 (don't
* send sense). The sense code will change
* this if needed.
*/
ahc_outb(ahc, RETURN_1, 0);
if (!(scb_index < ahc->scb_data->numscbs
&& (scb->flags & SCB_ACTIVE) != 0)) {
printf("%s:%c:%d: ahc_intr - referenced scb "
"not valid during seqint 0x%x scb(%d)\n",
ahc_name(ahc), devinfo.channel,
devinfo.target, intstat, scb_index);
goto unpause;
}
hscb = scb->hscb;
xs = scb->xs;
/* Don't want to clobber the original sense code */
if ((scb->flags & SCB_SENSE) != 0) {
/*
* Clear the SCB_SENSE Flag and have
* the sequencer do a normal command
* complete.
*/
scb->flags &= ~SCB_SENSE;
ahcsetccbstatus(xs, XS_DRIVER_STUFFUP);
break;
}
/* Freeze the queue unit the client sees the error. */
ahc_freeze_devq(ahc, xs->sc_link);
ahc_freeze_ccb(scb);
xs->status = hscb->status;
switch (hscb->status) {
case SCSI_STATUS_OK:
printf("%s: Interrupted for status of 0???\n",
ahc_name(ahc));
break;
case SCSI_STATUS_CMD_TERMINATED:
case SCSI_STATUS_CHECK_COND:
#if defined(AHC_DEBUG)
if (ahc_debug & AHC_SHOWSENSE) {
scsi_print_addr(xs->sc_link);
printf("Check Status, resid %d datalen %d\n",
xs->resid, xs->datalen);
}
#endif
if (xs->error == XS_NOERROR &&
!(scb->flags & SCB_SENSE)) {
struct ahc_dma_seg *sg;
struct scsipi_sense *sc;
struct ahc_initiator_tinfo *tinfo;
struct tmode_tstate *tstate;
sg = scb->sg_list;
sc = (struct scsipi_sense *)(&hscb->cmdstore);
/*
* Save off the residual if there is one.
*/
if (hscb->residual_SG_count != 0)
ahc_calc_residual(scb);
else
xs->resid = 0;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWSENSE) {
scsi_print_addr(xs->sc_link);
printf("Sending Sense\n");
}
#endif
sg->addr = ahc->scb_data->sense_busaddr +
(hscb->tag*sizeof(struct scsipi_sense_data));
sg->len = sizeof (struct scsipi_sense_data);
sc->opcode = REQUEST_SENSE;
sc->byte2 = SCB_LUN(scb) << 5;
sc->unused[0] = 0;
sc->unused[1] = 0;
sc->length = sg->len;
sc->control = 0;
/*
* Would be nice to preserve DISCENB here,
* but due to the way we page SCBs, we can't.
*/
hscb->control = 0;
/*
* This request sense could be because the
* the device lost power or in some other
* way has lost our transfer negotiations.
* Renegotiate if appropriate. Unit attention
* errors will be reported before any data
* phases occur.
*/
ahc_calc_residual(scb);
#if defined(AHC_DEBUG)
if (ahc_debug & AHC_SHOWSENSE) {
scsi_print_addr(xs->sc_link);
printf("Sense: datalen %d resid %d"
"chan %d id %d targ %d\n",
xs->datalen, xs->resid,
devinfo.channel, devinfo.our_scsiid,
devinfo.target);
}
#endif
if (xs->datalen > 0 &&
xs->resid == xs->datalen) {
tinfo = ahc_fetch_transinfo(ahc,
devinfo.channel,
devinfo.our_scsiid,
devinfo.target,
&tstate);
ahc_update_target_msg_request(ahc,
&devinfo,
tinfo,
/*force*/TRUE,
/*paused*/TRUE);
}
hscb->status = 0;
hscb->SG_count = 1;
hscb->SG_pointer = scb->sg_list_phys;
hscb->data = sg->addr;
hscb->datalen = sg->len;
hscb->cmdpointer = hscb->cmdstore_busaddr;
hscb->cmdlen = sizeof(*sc);
scb->sg_count = hscb->SG_count;
ahc_swap_hscb(hscb);
ahc_swap_sg(scb->sg_list);
scb->flags |= SCB_SENSE;
/*
* Ensure the target is busy since this
* will be an untagged request.
*/
ahc_busy_tcl(ahc, scb);
ahc_outb(ahc, RETURN_1, SEND_SENSE);
/*
* Ensure we have enough time to actually
* retrieve the sense.
*/
if (!(scb->xs->xs_control & XS_CTL_POLL)) {
callout_reset(&scb->xs->xs_callout,
5 * hz, ahc_timeout, scb);
}
}
break;
case SCSI_STATUS_QUEUE_FULL:
scsi_print_addr(xs->sc_link);
printf("queue full\n");
case SCSI_STATUS_BUSY:
/*
* XXX middle layer doesn't handle XS_BUSY well.
* So, requeue this ourselves internally. It will
* get its turn once all outstanding (tagged)
* commands have finished.
*/
xs->error = XS_BUSY;
xs->xs_status |= XS_STS_DEBUG;
scb->flags |= SCB_REQUEUE;
/*
* Walk through all pending SCBs for this target,
* incrementing the freeze count for the queue.
* When all of these have been completed, the
* queue will be available again.
*/
inqueue = todo = 0;
scbp = ahc->pending_ccbs.lh_first;
while (scbp != NULL) {
inqueue++;
if (ahc_match_scb(scbp, SCB_TARGET(scb),
SCB_CHANNEL(scb), SCB_LUN(scb),
SCB_LIST_NULL, ROLE_INITIATOR)) {
ahc_freeze_ccb(scbp);
todo++;
}
scbp = scbp->plinks.le_next;
}
scsi_print_addr(xs->sc_link);
printf("%d SCBs pending, %d to drain\n", inqueue, todo);
break;
}
break;
}
case TRACE_POINT:
{
printf("SSTAT2 = 0x%x DFCNTRL = 0x%x\n", ahc_inb(ahc, SSTAT2),
ahc_inb(ahc, DFCNTRL));
printf("SSTAT3 = 0x%x DSTATUS = 0x%x\n", ahc_inb(ahc, SSTAT3),
ahc_inb(ahc, DFSTATUS));
printf("SSTAT0 = 0x%x, SCB_DATACNT = 0x%x\n",
ahc_inb(ahc, SSTAT0),
ahc_inb(ahc, SCB_DATACNT));
break;
}
case HOST_MSG_LOOP:
{
/*
* The sequencer has encountered a message phase
* that requires host assistance for completion.
* While handling the message phase(s), we will be
* notified by the sequencer after each byte is
* transfered so we can track bus phases.
*
* If this is the first time we've seen a HOST_MSG_LOOP,
* initialize the state of the host message loop.
*/
if (ahc->msg_type == MSG_TYPE_NONE) {
u_int bus_phase;
bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
if (bus_phase != P_MESGIN
&& bus_phase != P_MESGOUT) {
printf("ahc_intr: HOST_MSG_LOOP bad "
"phase 0x%x\n",
bus_phase);
/*
* Probably transitioned to bus free before
* we got here. Just punt the message.
*/
ahc_clear_intstat(ahc);
restart_sequencer(ahc);
}
if (devinfo.role == ROLE_INITIATOR) {
struct scb *scb;
u_int scb_index;
scb_index = ahc_inb(ahc, SCB_TAG);
scb = &ahc->scb_data->scbarray[scb_index];
if (bus_phase == P_MESGOUT)
ahc_setup_initiator_msgout(ahc,
&devinfo,
scb);
else {
ahc->msg_type =
MSG_TYPE_INITIATOR_MSGIN;
ahc->msgin_index = 0;
}
} else {
if (bus_phase == P_MESGOUT) {
ahc->msg_type =
MSG_TYPE_TARGET_MSGOUT;
ahc->msgin_index = 0;
} else
/* XXX Ever executed??? */
ahc_setup_target_msgin(ahc, &devinfo);
}
}
/* Pass a NULL path so that handlers generate their own */
ahc_handle_message_phase(ahc, /*path*/NULL);
break;
}
case PERR_DETECTED:
{
/*
* If we've cleared the parity error interrupt
* but the sequencer still believes that SCSIPERR
* is true, it must be that the parity error is
* for the currently presented byte on the bus,
* and we are not in a phase (data-in) where we will
* eventually ack this byte. Ack the byte and
* throw it away in the hope that the target will
* take us to message out to deliver the appropriate
* error message.
*/
if ((intstat & SCSIINT) == 0
&& (ahc_inb(ahc, SSTAT1) & SCSIPERR) != 0) {
u_int curphase;
/*
* The hardware will only let you ack bytes
* if the expected phase in SCSISIGO matches
* the current phase. Make sure this is
* currently the case.
*/
curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
ahc_outb(ahc, LASTPHASE, curphase);
ahc_outb(ahc, SCSISIGO, curphase);
ahc_inb(ahc, SCSIDATL);
}
break;
}
case DATA_OVERRUN:
{
/*
* When the sequencer detects an overrun, it
* places the controller in "BITBUCKET" mode
* and allows the target to complete its transfer.
* Unfortunately, none of the counters get updated
* when the controller is in this mode, so we have
* no way of knowing how large the overrun was.
*/
u_int scbindex = ahc_inb(ahc, SCB_TAG);
u_int lastphase = ahc_inb(ahc, LASTPHASE);
int i;
scb = &ahc->scb_data->scbarray[scbindex];
for (i = 0; i < num_phases; i++) {
if (lastphase == phase_table[i].phase)
break;
}
scsi_print_addr(scb->xs->sc_link);
printf("data overrun detected %s."
" Tag == 0x%x.\n",
phase_table[i].phasemsg,
scb->hscb->tag);
scsi_print_addr(scb->xs->sc_link);
printf("%s seen Data Phase. Length = %d. NumSGs = %d.\n",
ahc_inb(ahc, SEQ_FLAGS) & DPHASE ? "Have" : "Haven't",
scb->xs->datalen, scb->sg_count);
if (scb->sg_count > 0) {
for (i = 0; i < scb->sg_count; i++) {
printf("sg[%d] - Addr 0x%x : Length %d\n",
i,
le32toh(scb->sg_list[i].addr),
le32toh(scb->sg_list[i].len));
}
}
/*
* Set this and it will take affect when the
* target does a command complete.
*/
ahc_freeze_devq(ahc, scb->xs->sc_link);
ahcsetccbstatus(scb->xs, XS_DRIVER_STUFFUP);
ahc_freeze_ccb(scb);
break;
}
case TRACEPOINT:
{
printf("TRACEPOINT: RETURN_1 = %d\n", ahc_inb(ahc, RETURN_1));
printf("TRACEPOINT: RETURN_2 = %d\n", ahc_inb(ahc, RETURN_2));
printf("TRACEPOINT: ARG_1 = %d\n", ahc_inb(ahc, ARG_1));
printf("TRACEPOINT: ARG_2 = %d\n", ahc_inb(ahc, ARG_2));
printf("TRACEPOINT: CCHADDR = %x\n",
ahc_inb(ahc, CCHADDR) | (ahc_inb(ahc, CCHADDR+1) << 8)
| (ahc_inb(ahc, CCHADDR+2) << 16)
| (ahc_inb(ahc, CCHADDR+3) << 24));
#if 0
printf("SSTAT1 == 0x%x\n", ahc_inb(ahc, SSTAT1));
printf("SSTAT0 == 0x%x\n", ahc_inb(ahc, SSTAT0));
printf(", SCSISIGI == 0x%x\n", ahc_inb(ahc, SCSISIGI));
printf("TRACEPOINT: CCHCNT = %d, SG_COUNT = %d\n",
ahc_inb(ahc, CCHCNT), ahc_inb(ahc, SG_COUNT));
printf("TRACEPOINT: SCB_TAG = %d\n", ahc_inb(ahc, SCB_TAG));
printf("TRACEPOINT1: CCHADDR = %d, CCHCNT = %d, SCBPTR = %d\n",
ahc_inb(ahc, CCHADDR)
| (ahc_inb(ahc, CCHADDR+1) << 8)
| (ahc_inb(ahc, CCHADDR+2) << 16)
| (ahc_inb(ahc, CCHADDR+3) << 24),
ahc_inb(ahc, CCHCNT)
| (ahc_inb(ahc, CCHCNT+1) << 8)
| (ahc_inb(ahc, CCHCNT+2) << 16),
ahc_inb(ahc, SCBPTR));
printf("TRACEPOINT: WAITING_SCBH = %d\n", ahc_inb(ahc, WAITING_SCBH));
printf("TRACEPOINT: SCB_TAG = %d\n", ahc_inb(ahc, SCB_TAG));
#if DDB > 0
cpu_Debugger();
#endif
#endif
break;
}
#if NOT_YET
/* XXX Fill these in later */
case MESG_BUFFER_BUSY:
break;
case MSGIN_PHASEMIS:
break;
#endif
default:
printf("ahc_intr: seqint, "
"intstat == 0x%x, scsisigi = 0x%x\n",
intstat, ahc_inb(ahc, SCSISIGI));
break;
}
unpause:
/*
* The sequencer is paused immediately on
* a SEQINT, so we should restart it when
* we're done.
*/
unpause_sequencer(ahc);
}
static void
ahc_handle_scsiint(struct ahc_softc *ahc, u_int intstat)
{
u_int scb_index;
u_int status;
struct scb *scb;
char cur_channel;
char intr_channel;
if ((ahc->features & AHC_TWIN) != 0
&& ((ahc_inb(ahc, SBLKCTL) & SELBUSB) != 0))
cur_channel = 'B';
else
cur_channel = 'A';
intr_channel = cur_channel;
status = ahc_inb(ahc, SSTAT1);
if (status == 0) {
if ((ahc->features & AHC_TWIN) != 0) {
/* Try the other channel */
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB);
status = ahc_inb(ahc, SSTAT1);
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB);
intr_channel = (cur_channel == 'A') ? 'B' : 'A';
}
if (status == 0) {
printf("%s: Spurious SCSI interrupt\n", ahc_name(ahc));
return;
}
}
scb_index = ahc_inb(ahc, SCB_TAG);
if (scb_index < ahc->scb_data->numscbs) {
scb = &ahc->scb_data->scbarray[scb_index];
if ((scb->flags & SCB_ACTIVE) == 0
|| (ahc_inb(ahc, SEQ_FLAGS) & IDENTIFY_SEEN) == 0)
scb = NULL;
} else
scb = NULL;
if ((status & SCSIRSTI) != 0) {
printf("%s: Someone reset channel %c\n",
ahc_name(ahc), intr_channel);
ahc_reset_channel(ahc, intr_channel, /* Initiate Reset */FALSE);
} else if ((status & SCSIPERR) != 0) {
/*
* Determine the bus phase and queue an appropriate message.
* SCSIPERR is latched true as soon as a parity error
* occurs. If the sequencer acked the transfer that
* caused the parity error and the currently presented
* transfer on the bus has correct parity, SCSIPERR will
* be cleared by CLRSCSIPERR. Use this to determine if
* we should look at the last phase the sequencer recorded,
* or the current phase presented on the bus.
*/
u_int mesg_out;
u_int curphase;
u_int errorphase;
u_int lastphase;
int i;
lastphase = ahc_inb(ahc, LASTPHASE);
curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
ahc_outb(ahc, CLRSINT1, CLRSCSIPERR);
/*
* For all phases save DATA, the sequencer won't
* automatically ack a byte that has a parity error
* in it. So the only way that the current phase
* could be 'data-in' is if the parity error is for
* an already acked byte in the data phase. During
* synchronous data-in transfers, we may actually
* ack bytes before latching the current phase in
* LASTPHASE, leading to the discrepancy between
* curphase and lastphase.
*/
if ((ahc_inb(ahc, SSTAT1) & SCSIPERR) != 0
|| curphase == P_DATAIN)
errorphase = curphase;
else
errorphase = lastphase;
for (i = 0; i < num_phases; i++) {
if (errorphase == phase_table[i].phase)
break;
}
mesg_out = phase_table[i].mesg_out;
if (scb != NULL)
scsi_print_addr(scb->xs->sc_link);
else
printf("%s:%c:%d: ", ahc_name(ahc),
intr_channel,
TCL_TARGET(ahc_inb(ahc, SAVED_TCL)));
printf("parity error detected %s. "
"SEQADDR(0x%x) SCSIRATE(0x%x)\n",
phase_table[i].phasemsg,
ahc_inb(ahc, SEQADDR0) | (ahc_inb(ahc, SEQADDR1) << 8),
ahc_inb(ahc, SCSIRATE));
/*
* We've set the hardware to assert ATN if we
* get a parity error on "in" phases, so all we
* need to do is stuff the message buffer with
* the appropriate message. "In" phases have set
* mesg_out to something other than MSG_NOP.
*/
if (mesg_out != MSG_NOOP) {
if (ahc->msg_type != MSG_TYPE_NONE)
ahc->send_msg_perror = TRUE;
else
ahc_outb(ahc, MSG_OUT, mesg_out);
}
ahc_outb(ahc, CLRINT, CLRSCSIINT);
unpause_sequencer(ahc);
} else if ((status & BUSFREE) != 0
&& (ahc_inb(ahc, SIMODE1) & ENBUSFREE) != 0) {
/*
* First look at what phase we were last in.
* If its message out, chances are pretty good
* that the busfree was in response to one of
* our abort requests.
*/
u_int lastphase = ahc_inb(ahc, LASTPHASE);
u_int saved_tcl = ahc_inb(ahc, SAVED_TCL);
u_int target = TCL_TARGET(saved_tcl);
u_int initiator_role_id = TCL_SCSI_ID(ahc, saved_tcl);
char channel = TCL_CHANNEL(ahc, saved_tcl);
int printerror = 1;
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
if (lastphase == P_MESGOUT) {
u_int message;
u_int tag;
message = ahc->msgout_buf[ahc->msgout_index - 1];
tag = SCB_LIST_NULL;
switch (message) {
case MSG_ABORT_TAG:
tag = scb->hscb->tag;
/* FALLTRHOUGH */
case MSG_ABORT:
scsi_print_addr(scb->xs->sc_link);
printf("SCB %x - Abort %s Completed.\n",
scb->hscb->tag, tag == SCB_LIST_NULL ?
"" : "Tag");
ahc_abort_scbs(ahc, target, channel,
TCL_LUN(saved_tcl), tag,
ROLE_INITIATOR,
XS_DRIVER_STUFFUP);
printerror = 0;
break;
case MSG_BUS_DEV_RESET:
{
struct ahc_devinfo devinfo;
if (scb != NULL &&
(scb->xs->xs_control & XS_CTL_RESET)
&& ahc_match_scb(scb, target, channel,
TCL_LUN(saved_tcl),
SCB_LIST_NULL,
ROLE_INITIATOR)) {
ahcsetccbstatus(scb->xs, XS_NOERROR);
}
ahc_compile_devinfo(&devinfo,
initiator_role_id,
target,
TCL_LUN(saved_tcl),
channel,
ROLE_INITIATOR);
ahc_handle_devreset(ahc, &devinfo,
XS_RESET,
"Bus Device Reset",
/*verbose_level*/0);
printerror = 0;
break;
}
default:
break;
}
}
if (printerror != 0) {
int i;
if (scb != NULL) {
u_int tag;
if ((scb->hscb->control & TAG_ENB) != 0)
tag = scb->hscb->tag;
else
tag = SCB_LIST_NULL;
ahc_abort_scbs(ahc, target, channel,
SCB_LUN(scb), tag,
ROLE_INITIATOR,
XS_DRIVER_STUFFUP);
scsi_print_addr(scb->xs->sc_link);
} else {
/*
* We had not fully identified this connection,
* so we cannot abort anything.
*/
printf("%s: ", ahc_name(ahc));
}
for (i = 0; i < num_phases; i++) {
if (lastphase == phase_table[i].phase)
break;
}
printf("Unexpected busfree %s\n"
"SEQADDR == 0x%x\n",
phase_table[i].phasemsg, ahc_inb(ahc, SEQADDR0)
| (ahc_inb(ahc, SEQADDR1) << 8));
}
ahc_clear_msg_state(ahc);
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE);
ahc_outb(ahc, CLRSINT1, CLRBUSFREE|CLRSCSIPERR);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
restart_sequencer(ahc);
} else if ((status & SELTO) != 0) {
u_int scbptr;
scbptr = ahc_inb(ahc, WAITING_SCBH);
ahc_outb(ahc, SCBPTR, scbptr);
scb_index = ahc_inb(ahc, SCB_TAG);
if (scb_index < ahc->scb_data->numscbs) {
scb = &ahc->scb_data->scbarray[scb_index];
if ((scb->flags & SCB_ACTIVE) == 0)
scb = NULL;
} else
scb = NULL;
if (scb == NULL) {
printf("%s: ahc_intr - referenced scb not "
"valid during SELTO scb(%d, %d)\n",
ahc_name(ahc), scbptr, scb_index);
} else {
u_int tag;
tag = SCB_LIST_NULL;
if ((scb->hscb->control & MSG_SIMPLE_Q_TAG) != 0)
tag = scb->hscb->tag;
ahc_abort_scbs(ahc, SCB_TARGET(scb), SCB_CHANNEL(scb),
SCB_LUN(scb), tag,
ROLE_INITIATOR, XS_SELTIMEOUT);
}
/* Stop the selection */
ahc_outb(ahc, SCSISEQ, 0);
/* No more pending messages */
ahc_clear_msg_state(ahc);
/*
* Although the driver does not care about the
* 'Selection in Progress' status bit, the busy
* LED does. SELINGO is only cleared by a sucessful
* selection, so we must manually clear it to ensure
* the LED turns off just incase no future successful
* selections occur (e.g. no devices on the bus).
*/
ahc_outb(ahc, CLRSINT0, CLRSELINGO);
/* Clear interrupt state */
ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
restart_sequencer(ahc);
} else {
scsi_print_addr(scb->xs->sc_link);
printf("Unknown SCSIINT. Status = 0x%x\n", status);
ahc_outb(ahc, CLRSINT1, status);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
unpause_sequencer(ahc);
}
}
static void
ahc_build_transfer_msg(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
/*
* We need to initiate transfer negotiations.
* If our current and goal settings are identical,
* we want to renegotiate due to a check condition.
*/
struct ahc_initiator_tinfo *tinfo;
struct tmode_tstate *tstate;
int dowide;
int dosync;
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
dowide = tinfo->current.width != tinfo->goal.width;
dosync = tinfo->current.period != tinfo->goal.period;
if (!dowide && !dosync) {
dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
dosync = tinfo->goal.period != 0;
}
if (dowide) {
ahc_construct_wdtr(ahc, tinfo->goal.width);
} else if (dosync) {
struct ahc_syncrate *rate;
u_int period;
u_int offset;
period = tinfo->goal.period;
rate = ahc_devlimited_syncrate(ahc, &period);
offset = tinfo->goal.offset;
ahc_validate_offset(ahc, rate, &offset,
tinfo->current.width);
ahc_construct_sdtr(ahc, period, offset);
} else {
panic("ahc_intr: AWAITING_MSG for negotiation, "
"but no negotiation needed\n");
}
}
static void
ahc_setup_initiator_msgout(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
struct scb *scb)
{
/*
* To facilitate adding multiple messages together,
* each routine should increment the index and len
* variables instead of setting them explicitly.
*/
ahc->msgout_index = 0;
ahc->msgout_len = 0;
if ((scb->flags & SCB_DEVICE_RESET) == 0
&& ahc_inb(ahc, MSG_OUT) == MSG_IDENTIFYFLAG) {
u_int identify_msg;
identify_msg = MSG_IDENTIFYFLAG | SCB_LUN(scb);
if ((scb->hscb->control & DISCENB) != 0)
identify_msg |= MSG_IDENTIFY_DISCFLAG;
ahc->msgout_buf[ahc->msgout_index++] = identify_msg;
ahc->msgout_len++;
if ((scb->hscb->control & TAG_ENB) != 0) {
/* XXX fvdl FreeBSD has tag action passed down */
ahc->msgout_buf[ahc->msgout_index++] = MSG_SIMPLE_Q_TAG;
ahc->msgout_buf[ahc->msgout_index++] = scb->hscb->tag;
ahc->msgout_len += 2;
}
}
if (scb->flags & SCB_DEVICE_RESET) {
ahc->msgout_buf[ahc->msgout_index++] = MSG_BUS_DEV_RESET;
ahc->msgout_len++;
scsi_print_addr(scb->xs->sc_link);
printf("Bus Device Reset Message Sent\n");
} else if (scb->flags & SCB_ABORT) {
if ((scb->hscb->control & TAG_ENB) != 0)
ahc->msgout_buf[ahc->msgout_index++] = MSG_ABORT_TAG;
else
ahc->msgout_buf[ahc->msgout_index++] = MSG_ABORT;
ahc->msgout_len++;
scsi_print_addr(scb->xs->sc_link);
printf("Abort Message Sent\n");
} else if ((ahc->targ_msg_req & devinfo->target_mask) != 0) {
ahc_build_transfer_msg(ahc, devinfo);
} else {
printf("ahc_intr: AWAITING_MSG for an SCB that "
"does not have a waiting message");
panic("SCB = %d, SCB Control = %x, MSG_OUT = %x "
"SCB flags = %x", scb->hscb->tag, scb->hscb->control,
ahc_inb(ahc, MSG_OUT), scb->flags);
}
/*
* Clear the MK_MESSAGE flag from the SCB so we aren't
* asked to send this message again.
*/
ahc_outb(ahc, SCB_CONTROL, ahc_inb(ahc, SCB_CONTROL) & ~MK_MESSAGE);
ahc->msgout_index = 0;
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
}
static void
ahc_setup_target_msgin(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
/*
* To facilitate adding multiple messages together,
* each routine should increment the index and len
* variables instead of setting them explicitly.
*/
ahc->msgout_index = 0;
ahc->msgout_len = 0;
if ((ahc->targ_msg_req & devinfo->target_mask) != 0)
ahc_build_transfer_msg(ahc, devinfo);
else
panic("ahc_intr: AWAITING target message with no message");
ahc->msgout_index = 0;
ahc->msg_type = MSG_TYPE_TARGET_MSGIN;
}
static int
ahc_handle_msg_reject(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
/*
* What we care about here is if we had an
* outstanding SDTR or WDTR message for this
* target. If we did, this is a signal that
* the target is refusing negotiation.
*/
struct scb *scb;
u_int scb_index;
u_int last_msg;
int response = 0;
scb_index = ahc_inb(ahc, SCB_TAG);
scb = &ahc->scb_data->scbarray[scb_index];
/* Might be necessary */
last_msg = ahc_inb(ahc, LAST_MSG);
if (ahc_sent_msg(ahc, MSG_EXT_WDTR, /*full*/FALSE)) {
struct ahc_initiator_tinfo *tinfo;
struct tmode_tstate *tstate;
#ifdef AHC_DEBUG_NEG
/* note 8bit xfers */
printf("%s:%c:%d: refuses WIDE negotiation. Using "
"8bit transfers\n", ahc_name(ahc),
devinfo->channel, devinfo->target);
#endif
ahc_set_width(ahc, devinfo,
MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
/*paused*/TRUE, /*done*/TRUE);
/*
* No need to clear the sync rate. If the target
* did not accept the command, our syncrate is
* unaffected. If the target started the negotiation,
* but rejected our response, we already cleared the
* sync rate before sending our WDTR.
*/
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel,
devinfo->our_scsiid,
devinfo->target, &tstate);
if (tinfo->goal.period) {
u_int period;
/* Start the sync negotiation */
period = tinfo->goal.period;
ahc_devlimited_syncrate(ahc, &period);
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_construct_sdtr(ahc, period, tinfo->goal.offset);
ahc->msgout_index = 0;
response = 1;
}
} else if (ahc_sent_msg(ahc, MSG_EXT_SDTR, /*full*/FALSE)) {
/* note asynch xfers and clear flag */
ahc_set_syncrate(ahc, devinfo, /*syncrate*/NULL, /*period*/0,
/*offset*/0, AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
/*paused*/TRUE, /*done*/TRUE);
#ifdef AHC_DEBUG_NEG
printf("%s:%c:%d: refuses synchronous negotiation. "
"Using asynchronous transfers\n",
ahc_name(ahc),
devinfo->channel, devinfo->target);
#endif
} else if ((scb->hscb->control & MSG_SIMPLE_Q_TAG) != 0) {
printf("%s:%c:%d: refuses tagged commands. Performing "
"non-tagged I/O\n", ahc_name(ahc),
devinfo->channel, devinfo->target);
ahc_set_tags(ahc, devinfo, FALSE);
/*
* Resend the identify for this CCB as the target
* may believe that the selection is invalid otherwise.
*/
ahc_outb(ahc, SCB_CONTROL, ahc_inb(ahc, SCB_CONTROL)
& ~MSG_SIMPLE_Q_TAG);
scb->hscb->control &= ~MSG_SIMPLE_Q_TAG;
ahc_outb(ahc, MSG_OUT, MSG_IDENTIFYFLAG);
ahc_outb(ahc, SCSISIGO, ahc_inb(ahc, SCSISIGO) | ATNO);
/*
* Requeue all tagged commands for this target
* currently in our posession so they can be
* converted to untagged commands.
*/
ahc_search_qinfifo(ahc, SCB_TARGET(scb), SCB_CHANNEL(scb),
SCB_LUN(scb), /*tag*/SCB_LIST_NULL,
ROLE_INITIATOR, SCB_REQUEUE,
SEARCH_COMPLETE);
} else {
/*
* Otherwise, we ignore it.
*/
printf("%s:%c:%d: Message reject for %x -- ignored\n",
ahc_name(ahc), devinfo->channel, devinfo->target,
last_msg);
}
return (response);
}
static void
ahc_clear_msg_state(struct ahc_softc *ahc)
{
ahc->msgout_len = 0;
ahc->msgin_index = 0;
ahc->msg_type = MSG_TYPE_NONE;
ahc_outb(ahc, MSG_OUT, MSG_NOOP);
}
static void
ahc_handle_message_phase(struct ahc_softc *ahc, struct scsipi_link *sc_link)
{
struct ahc_devinfo devinfo;
u_int bus_phase;
int end_session;
ahc_fetch_devinfo(ahc, &devinfo);
end_session = FALSE;
bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
reswitch:
switch (ahc->msg_type) {
case MSG_TYPE_INITIATOR_MSGOUT:
{
int lastbyte;
int phasemis;
int msgdone;
if (ahc->msgout_len == 0)
panic("REQINIT interrupt with no active message");
phasemis = bus_phase != P_MESGOUT;
if (phasemis) {
if (bus_phase == P_MESGIN) {
/*
* Change gears and see if
* this messages is of interest to
* us or should be passed back to
* the sequencer.
*/
ahc_outb(ahc, CLRSINT1, CLRATNO);
ahc->send_msg_perror = FALSE;
ahc->msg_type = MSG_TYPE_INITIATOR_MSGIN;
ahc->msgin_index = 0;
goto reswitch;
}
end_session = TRUE;
break;
}
if (ahc->send_msg_perror) {
ahc_outb(ahc, CLRSINT1, CLRATNO);
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
ahc_outb(ahc, SCSIDATL, MSG_PARITY_ERROR);
break;
}
msgdone = ahc->msgout_index == ahc->msgout_len;
if (msgdone) {
/*
* The target has requested a retry.
* Re-assert ATN, reset our message index to
* 0, and try again.
*/
ahc->msgout_index = 0;
ahc_outb(ahc, SCSISIGO, ahc_inb(ahc, SCSISIGO) | ATNO);
}
lastbyte = ahc->msgout_index == (ahc->msgout_len - 1);
if (lastbyte) {
/* Last byte is signified by dropping ATN */
ahc_outb(ahc, CLRSINT1, CLRATNO);
}
/*
* Clear our interrupt status and present
* the next byte on the bus.
*/
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
ahc_outb(ahc, SCSIDATL, ahc->msgout_buf[ahc->msgout_index++]);
break;
}
case MSG_TYPE_INITIATOR_MSGIN:
{
int phasemis;
int message_done;
phasemis = bus_phase != P_MESGIN;
if (phasemis) {
ahc->msgin_index = 0;
if (bus_phase == P_MESGOUT
&& (ahc->send_msg_perror == TRUE
|| (ahc->msgout_len != 0
&& ahc->msgout_index == 0))) {
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
goto reswitch;
}
end_session = TRUE;
break;
}
/* Pull the byte in without acking it */
ahc->msgin_buf[ahc->msgin_index] = ahc_inb(ahc, SCSIBUSL);
message_done = ahc_parse_msg(ahc, sc_link, &devinfo);
if (message_done) {
/*
* Clear our incoming message buffer in case there
* is another message following this one.
*/
ahc->msgin_index = 0;
/*
* If this message illicited a response,
* assert ATN so the target takes us to the
* message out phase.
*/
if (ahc->msgout_len != 0)
ahc_outb(ahc, SCSISIGO,
ahc_inb(ahc, SCSISIGO) | ATNO);
} else
ahc->msgin_index++;
/* Ack the byte */
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
ahc_inb(ahc, SCSIDATL);
break;
}
case MSG_TYPE_TARGET_MSGIN:
{
int msgdone;
int msgout_request;
if (ahc->msgout_len == 0)
panic("Target MSGIN with no active message");
/*
* If we interrupted a mesgout session, the initiator
* will not know this until our first REQ. So, we
* only honor mesgout requests after we've sent our
* first byte.
*/
if ((ahc_inb(ahc, SCSISIGI) & ATNI) != 0
&& ahc->msgout_index > 0)
msgout_request = TRUE;
else
msgout_request = FALSE;
if (msgout_request) {
/*
* Change gears and see if
* this messages is of interest to
* us or should be passed back to
* the sequencer.
*/
ahc->msg_type = MSG_TYPE_TARGET_MSGOUT;
ahc_outb(ahc, SCSISIGO, P_MESGOUT | BSYO);
ahc->msgin_index = 0;
/* Dummy read to REQ for first byte */
ahc_inb(ahc, SCSIDATL);
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
break;
}
msgdone = ahc->msgout_index == ahc->msgout_len;
if (msgdone) {
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) & ~SPIOEN);
end_session = TRUE;
break;
}
/*
* Present the next byte on the bus.
*/
ahc_outb(ahc, SXFRCTL0, ahc_inb(ahc, SXFRCTL0) | SPIOEN);
ahc_outb(ahc, SCSIDATL, ahc->msgout_buf[ahc->msgout_index++]);
break;
}
case MSG_TYPE_TARGET_MSGOUT:
{
int lastbyte;
int msgdone;
/*
* The initiator signals that this is
* the last byte by dropping ATN.
*/
lastbyte = (ahc_inb(ahc, SCSISIGI) & ATNI) == 0;
/*
* Read the latched byte, but turn off SPIOEN first
* so that we don't inadvertantly cause a REQ for the
* next byte.
*/
ahc_outb(ahc, SXFRCTL0, ahc_inb(ahc, SXFRCTL0) & ~SPIOEN);
ahc->msgin_buf[ahc->msgin_index] = ahc_inb(ahc, SCSIDATL);
msgdone = ahc_parse_msg(ahc, sc_link, &devinfo);
if (msgdone == MSGLOOP_TERMINATED) {
/*
* The message is *really* done in that it caused
* us to go to bus free. The sequencer has already
* been reset at this point, so pull the ejection
* handle.
*/
return;
}
ahc->msgin_index++;
/*
* XXX Read spec about initiator dropping ATN too soon
* and use msgdone to detect it.
*/
if (msgdone == MSGLOOP_MSGCOMPLETE) {
ahc->msgin_index = 0;
/*
* If this message illicited a response, transition
* to the Message in phase and send it.
*/
if (ahc->msgout_len != 0) {
ahc_outb(ahc, SCSISIGO, P_MESGIN | BSYO);
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
ahc->msg_type = MSG_TYPE_TARGET_MSGIN;
ahc->msgin_index = 0;
break;
}
}
if (lastbyte)
end_session = TRUE;
else {
/* Ask for the next byte. */
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
}
break;
}
default:
panic("Unknown REQINIT message type");
}
if (end_session) {
ahc_clear_msg_state(ahc);
ahc_outb(ahc, RETURN_1, EXIT_MSG_LOOP);
} else
ahc_outb(ahc, RETURN_1, CONT_MSG_LOOP);
}
/*
* See if we sent a particular extended message to the target.
* If "full" is true, the target saw the full message.
* If "full" is false, the target saw at least the first
* byte of the message.
*/
static int
ahc_sent_msg(struct ahc_softc *ahc, u_int msgtype, int full)
{
int found;
int index;
found = FALSE;
index = 0;
while (index < ahc->msgout_len) {
if (ahc->msgout_buf[index] == MSG_EXTENDED) {
/* Found a candidate */
if (ahc->msgout_buf[index+2] == msgtype) {
u_int end_index;
end_index = index + 1
+ ahc->msgout_buf[index + 1];
if (full) {
if (ahc->msgout_index > end_index)
found = TRUE;
} else if (ahc->msgout_index > index)
found = TRUE;
}
break;
} else if (ahc->msgout_buf[index] >= MSG_SIMPLE_Q_TAG
&& ahc->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
/* Skip tag type and tag id or residue param*/
index += 2;
} else {
/* Single byte message */
index++;
}
}
return (found);
}
static int
ahc_parse_msg(struct ahc_softc *ahc, struct scsipi_link *sc_link,
struct ahc_devinfo *devinfo)
{
struct ahc_initiator_tinfo *tinfo;
struct tmode_tstate *tstate;
int reject;
int done;
int response;
u_int targ_scsirate;
done = MSGLOOP_IN_PROG;
response = FALSE;
reject = FALSE;
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
targ_scsirate = tinfo->scsirate;
/*
* Parse as much of the message as is availible,
* rejecting it if we don't support it. When
* the entire message is availible and has been
* handled, return MSGLOOP_MSGCOMPLETE, indicating
* that we have parsed an entire message.
*
* In the case of extended messages, we accept the length
* byte outright and perform more checking once we know the
* extended message type.
*/
switch (ahc->msgin_buf[0]) {
case MSG_MESSAGE_REJECT:
response = ahc_handle_msg_reject(ahc, devinfo);
/* FALLTHROUGH */
case MSG_NOOP:
done = MSGLOOP_MSGCOMPLETE;
break;
case MSG_IGN_WIDE_RESIDUE:
{
/* Wait for the whole message */
if (ahc->msgin_index >= 1) {
if (ahc->msgin_buf[1] != 1
|| tinfo->current.width == MSG_EXT_WDTR_BUS_8_BIT) {
reject = TRUE;
done = MSGLOOP_MSGCOMPLETE;
} else
ahc_handle_ign_wide_residue(ahc, devinfo);
}
break;
}
case MSG_EXTENDED:
{
/* Wait for enough of the message to begin validation */
if (ahc->msgin_index < 2)
break;
switch (ahc->msgin_buf[2]) {
case MSG_EXT_SDTR:
{
struct ahc_syncrate *syncrate;
u_int period;
u_int offset;
u_int saved_offset;
if (ahc->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have both args before validating
* and acting on this message.
*
* Add one to MSG_EXT_SDTR_LEN to account for
* the extended message preamble.
*/
if (ahc->msgin_index < (MSG_EXT_SDTR_LEN + 1))
break;
period = ahc->msgin_buf[3];
saved_offset = offset = ahc->msgin_buf[4];
syncrate = ahc_devlimited_syncrate(ahc, &period);
ahc_validate_offset(ahc, syncrate, &offset,
targ_scsirate & WIDEXFER);
ahc_set_syncrate(ahc, devinfo,
syncrate, period, offset,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
/*paused*/TRUE, /*done*/TRUE);
/*
* See if we initiated Sync Negotiation
* and didn't have to fall down to async
* transfers.
*/
if (ahc_sent_msg(ahc, MSG_EXT_SDTR, /*full*/TRUE)) {
/* We started it */
if (saved_offset != offset) {
/* Went too low - force async */
reject = TRUE;
}
} else {
/*
* Send our own SDTR in reply
*/
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_construct_sdtr(ahc, period, offset);
ahc->msgout_index = 0;
response = TRUE;
}
done = MSGLOOP_MSGCOMPLETE;
break;
}
case MSG_EXT_WDTR:
{
u_int bus_width;
u_int sending_reply;
sending_reply = FALSE;
if (ahc->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have our arg before validating
* and acting on this message.
*
* Add one to MSG_EXT_WDTR_LEN to account for
* the extended message preamble.
*/
if (ahc->msgin_index < (MSG_EXT_WDTR_LEN + 1))
break;
bus_width = ahc->msgin_buf[3];
if (ahc_sent_msg(ahc, MSG_EXT_WDTR, /*full*/TRUE)) {
/*
* Don't send a WDTR back to the
* target, since we asked first.
*/
switch (bus_width){
default:
/*
* How can we do anything greater
* than 16bit transfers on a 16bit
* bus?
*/
reject = TRUE;
printf("%s: target %d requested %dBit "
"transfers. Rejecting...\n",
ahc_name(ahc), devinfo->target,
8 * (0x01 << bus_width));
/* FALLTHROUGH */
case MSG_EXT_WDTR_BUS_8_BIT:
bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
case MSG_EXT_WDTR_BUS_16_BIT:
break;
}
} else {
/*
* Send our own WDTR in reply
*/
switch (bus_width) {
default:
if (ahc->features & AHC_WIDE) {
/* Respond Wide */
bus_width =
MSG_EXT_WDTR_BUS_16_BIT;
break;
}
/* FALLTHROUGH */
case MSG_EXT_WDTR_BUS_8_BIT:
bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
}
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_construct_wdtr(ahc, bus_width);
ahc->msgout_index = 0;
response = TRUE;
sending_reply = TRUE;
}
ahc_set_width(ahc, devinfo, bus_width,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
/*paused*/TRUE, /*done*/TRUE);
/* After a wide message, we are async */
ahc_set_syncrate(ahc, devinfo,
/*syncrate*/NULL, /*period*/0,
/*offset*/0, AHC_TRANS_ACTIVE,
/*paused*/TRUE, /*done*/FALSE);
if (sending_reply == FALSE && reject == FALSE) {
if (tinfo->goal.period) {
struct ahc_syncrate *rate;
u_int period;
u_int offset;
/* Start the sync negotiation */
period = tinfo->goal.period;
rate = ahc_devlimited_syncrate(ahc,
&period);
offset = tinfo->goal.offset;
ahc_validate_offset(ahc, rate, &offset,
tinfo->current.width);
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_construct_sdtr(ahc, period, offset);
ahc->msgout_index = 0;
response = TRUE;
}
}
done = MSGLOOP_MSGCOMPLETE;
break;
}
default:
/* Unknown extended message. Reject it. */
reject = TRUE;
break;
}
break;
}
case MSG_BUS_DEV_RESET:
ahc_handle_devreset(ahc, devinfo,
XS_RESET, "Bus Device Reset Received",
/*verbose_level*/0);
restart_sequencer(ahc);
done = MSGLOOP_TERMINATED;
break;
case MSG_ABORT_TAG:
case MSG_ABORT:
case MSG_CLEAR_QUEUE:
/* Target mode messages */
if (devinfo->role != ROLE_TARGET) {
reject = TRUE;
break;
}
#if AHC_TARGET_MODE
ahc_abort_scbs(ahc, devinfo->target, devinfo->channel,
devinfo->lun,
ahc->msgin_buf[0] == MSG_ABORT_TAG
? SCB_LIST_NULL
: ahc_inb(ahc, INITIATOR_TAG),
ROLE_TARGET, XS_DRIVER_STUFFUP);
tstate = ahc->enabled_targets[devinfo->our_scsiid];
if (tstate != NULL) {
struct tmode_lstate* lstate;
lstate = tstate->enabled_luns[devinfo->lun];
if (lstate != NULL) {
ahc_queue_lstate_event(ahc, lstate,
devinfo->our_scsiid,
ahc->msgin_buf[0],
/*arg*/0);
ahc_send_lstate_events(ahc, lstate);
}
}
done = MSGLOOP_MSGCOMPLETE;
#else
panic("ahc: got target mode message");
#endif
break;
case MSG_TERM_IO_PROC:
default:
reject = TRUE;
break;
}
if (reject) {
/*
* Setup to reject the message.
*/
ahc->msgout_index = 0;
ahc->msgout_len = 1;
ahc->msgout_buf[0] = MSG_MESSAGE_REJECT;
done = MSGLOOP_MSGCOMPLETE;
response = TRUE;
}
if (done != MSGLOOP_IN_PROG && !response)
/* Clear the outgoing message buffer */
ahc->msgout_len = 0;
return (done);
}
static void
ahc_handle_ign_wide_residue(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
u_int scb_index;
struct scb *scb;
scb_index = ahc_inb(ahc, SCB_TAG);
scb = &ahc->scb_data->scbarray[scb_index];
if ((ahc_inb(ahc, SEQ_FLAGS) & DPHASE) == 0
|| !(scb->xs->xs_control & XS_CTL_DATA_IN)) {
/*
* Ignore the message if we haven't
* seen an appropriate data phase yet.
*/
} else {
/*
* If the residual occurred on the last
* transfer and the transfer request was
* expected to end on an odd count, do
* nothing. Otherwise, subtract a byte
* and update the residual count accordingly.
*/
u_int resid_sgcnt;
resid_sgcnt = ahc_inb(ahc, SCB_RESID_SGCNT);
if (resid_sgcnt == 0
&& ahc_inb(ahc, DATA_COUNT_ODD) == 1) {
/*
* If the residual occurred on the last
* transfer and the transfer request was
* expected to end on an odd count, do
* nothing.
*/
} else {
u_int data_cnt;
u_int32_t data_addr;
u_int sg_index;
data_cnt = (ahc_inb(ahc, SCB_RESID_DCNT + 2) << 16)
| (ahc_inb(ahc, SCB_RESID_DCNT + 1) << 8)
| (ahc_inb(ahc, SCB_RESID_DCNT));
data_addr = (ahc_inb(ahc, SHADDR + 3) << 24)
| (ahc_inb(ahc, SHADDR + 2) << 16)
| (ahc_inb(ahc, SHADDR + 1) << 8)
| (ahc_inb(ahc, SHADDR));
data_cnt += 1;
data_addr -= 1;
sg_index = scb->sg_count - resid_sgcnt;
if (sg_index != 0
&& (le32toh(scb->sg_list[sg_index].len) < data_cnt)) {
u_int32_t sg_addr;
sg_index--;
data_cnt = 1;
data_addr = le32toh(scb->sg_list[sg_index].addr)
+ le32toh(scb->sg_list[sg_index].len)
- 1;
/*
* The physical address base points to the
* second entry as it is always used for
* calculating the "next S/G pointer".
*/
sg_addr = scb->sg_list_phys
+ (sg_index* sizeof(*scb->sg_list));
ahc_outb(ahc, SG_NEXT + 3, sg_addr >> 24);
ahc_outb(ahc, SG_NEXT + 2, sg_addr >> 16);
ahc_outb(ahc, SG_NEXT + 1, sg_addr >> 8);
ahc_outb(ahc, SG_NEXT, sg_addr);
}
ahc_outb(ahc, SCB_RESID_DCNT + 2, data_cnt >> 16);
ahc_outb(ahc, SCB_RESID_DCNT + 1, data_cnt >> 8);
ahc_outb(ahc, SCB_RESID_DCNT, data_cnt);
ahc_outb(ahc, SHADDR + 3, data_addr >> 24);
ahc_outb(ahc, SHADDR + 2, data_addr >> 16);
ahc_outb(ahc, SHADDR + 1, data_addr >> 8);
ahc_outb(ahc, SHADDR, data_addr);
}
}
}
static void
ahc_handle_devreset(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
int status, char *message,
int verbose_level)
{
int found;
found = ahc_abort_scbs(ahc, devinfo->target, devinfo->channel,
AHC_LUN_WILDCARD, SCB_LIST_NULL, devinfo->role,
status);
/*
* Go back to async/narrow transfers and renegotiate.
* ahc_set_width and ahc_set_syncrate can cope with NULL
* paths.
*/
ahc_set_width(ahc, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_CUR, /*paused*/TRUE, /*done*/FALSE);
ahc_set_syncrate(ahc, devinfo, /*syncrate*/NULL,
/*period*/0, /*offset*/0, AHC_TRANS_CUR,
/*paused*/TRUE, /*done*/FALSE);
if (message != NULL && (verbose_level <= 0))
printf("%s: %s on %c:%d. %d SCBs aborted\n", ahc_name(ahc),
message, devinfo->channel, devinfo->target, found);
}
/*
* We have an scb which has been processed by the
* adaptor, now we look to see how the operation
* went.
*/
static void
ahc_done(struct ahc_softc *ahc, struct scb *scb)
{
struct scsipi_xfer *xs;
struct scsipi_link *sc_link;
int requeue = 0;
int target;
xs = scb->xs;
sc_link = xs->sc_link;
LIST_REMOVE(scb, plinks);
callout_stop(&scb->xs->xs_callout);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWCMDS) {
scsi_print_addr(sc_link);
printf("ahc_done opcode %d tag %x\n", xs->cmdstore.opcode,
scb->hscb->tag);
}
#endif
target = sc_link->scsipi_scsi.target;
if (xs->datalen) {
int op;
if (xs->xs_control & XS_CTL_DATA_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(ahc->parent_dmat, scb->dmamap, 0,
scb->dmamap->dm_mapsize, op);
bus_dmamap_unload(ahc->parent_dmat, scb->dmamap);
}
/*
* Unbusy this target/channel/lun.
* XXX if we are holding two commands per lun,
* send the next command.
*/
if (!(scb->hscb->control & TAG_ENB))
ahc_index_busy_tcl(ahc, scb->hscb->tcl, /*unbusy*/TRUE);
/*
* If the recovery SCB completes, we have to be
* out of our timeout.
*/
if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
struct scb *scbp;
/*
* We were able to complete the command successfully,
* so reinstate the timeouts for all other pending
* commands.
*/
scbp = ahc->pending_ccbs.lh_first;
while (scbp != NULL) {
struct scsipi_xfer *txs = scbp->xs;
if (!(txs->xs_control & XS_CTL_POLL)) {
callout_reset(&scbp->xs->xs_callout,
(scbp->xs->timeout * hz) / 1000,
ahc_timeout, scbp);
}
scbp = LIST_NEXT(scbp, plinks);
}
/*
* Ensure that we didn't put a second instance of this
* SCB into the QINFIFO.
*/
ahc_search_qinfifo(ahc, SCB_TARGET(scb), SCB_CHANNEL(scb),
SCB_LUN(scb), scb->hscb->tag,
ROLE_INITIATOR, /*status*/0,
SEARCH_REMOVE);
if (xs->error != XS_NOERROR)
ahcsetccbstatus(xs, XS_TIMEOUT);
scsi_print_addr(xs->sc_link);
printf("no longer in timeout, status = %x\n", xs->status);
}
if (xs->error != XS_NOERROR) {
/* Don't clobber any existing error state */
} else if ((scb->flags & SCB_SENSE) != 0) {
/*
* We performed autosense retrieval.
*
* bzero the sense data before having
* the drive fill it. The SCSI spec mandates
* that any untransfered data should be
* assumed to be zero. Complete the 'bounce'
* of sense information through buffers accessible
* via bus-space by copying it into the clients
* csio.
*/
bzero(&xs->sense.scsi_sense, sizeof(xs->sense.scsi_sense));
bcopy(&ahc->scb_data->sense[scb->hscb->tag],
&xs->sense.scsi_sense, le32toh(scb->sg_list->len));
xs->error = XS_SENSE;
}
if (scb->flags & SCB_FREEZE_QUEUE) {
ahc->devqueue_blocked[target]--;
scb->flags &= ~SCB_FREEZE_QUEUE;
}
requeue = scb->flags & SCB_REQUEUE;
ahcfreescb(ahc, scb);
if (requeue) {
/*
* Re-insert at the front of the private queue to
* preserve order.
*/
int s;
if (xs->xs_status & XS_STS_DEBUG) {
scsi_print_addr(xs->sc_link);
printf("putting SCB that caused queue full back"
" in queue\n");
}
s = splbio();
TAILQ_INSERT_HEAD(&ahc->sc_q, xs, adapter_q);
splx(s);
} else {
if (xs->xs_status & XS_STS_DEBUG) {
xs->xs_status &= ~XS_STS_DEBUG;
scsi_print_addr(xs->sc_link);
printf("completed SCB that caused queue full\n");
}
xs->xs_status |= XS_STS_DONE;
ahc_check_tags(ahc, xs);
scsipi_done(xs);
}
if ((xs = TAILQ_FIRST(&ahc->sc_q)) != NULL)
ahc_action(xs);
}
/*
* Determine the number of SCBs available on the controller
*/
int
ahc_probe_scbs(struct ahc_softc *ahc) {
int i;
for (i = 0; i < AHC_SCB_MAX; i++) {
ahc_outb(ahc, SCBPTR, i);
ahc_outb(ahc, SCB_CONTROL, i);
if (ahc_inb(ahc, SCB_CONTROL) != i)
break;
ahc_outb(ahc, SCBPTR, 0);
if (ahc_inb(ahc, SCB_CONTROL) != 0)
break;
}
return (i);
}
/*
* Start the board, ready for normal operation
*/
int
ahc_init(struct ahc_softc *ahc)
{
int max_targ = 15;
int i;
int term;
u_int scsi_conf;
u_int scsiseq_template;
u_int ultraenb;
u_int discenable;
u_int tagenable;
size_t driver_data_size;
u_int32_t physaddr;
#ifdef AHC_PRINT_SRAM
printf("Scratch Ram:");
for (i = 0x20; i < 0x5f; i++) {
if (((i % 8) == 0) && (i != 0)) {
printf ("\n ");
}
printf (" 0x%x", ahc_inb(ahc, i));
}
if ((ahc->features & AHC_MORE_SRAM) != 0) {
for (i = 0x70; i < 0x7f; i++) {
if (((i % 8) == 0) && (i != 0)) {
printf ("\n ");
}
printf (" 0x%x", ahc_inb(ahc, i));
}
}
printf ("\n");
#endif
/*
* Assume we have a board at this stage and it has been reset.
*/
if ((ahc->flags & AHC_USEDEFAULTS) != 0)
ahc->our_id = ahc->our_id_b = 7;
/*
* Default to allowing initiator operations.
*/
ahc->flags |= AHC_INITIATORMODE;
/*
* DMA tag for our command fifos and other data in system memory
* the card's sequencer must be able to access. For initiator
* roles, we need to allocate space for the qinfifo, qoutfifo,
* and untagged_scb arrays each of which are composed of 256
* 1 byte elements. When providing for the target mode role,
* we additionally must provide space for the incoming target
* command fifo.
*/
driver_data_size = 3 * 256 * sizeof(u_int8_t);
if (ahc_createdmamem(ahc->parent_dmat, driver_data_size,
ahc->sc_dmaflags,
&ahc->shared_data_dmamap, (caddr_t *)&ahc->qoutfifo,
&ahc->shared_data_busaddr, &ahc->shared_data_seg,
&ahc->shared_data_nseg, ahc_name(ahc), "shared data") < 0)
return (ENOMEM);
ahc->init_level++;
/* Allocate SCB data now that parent_dmat is initialized */
if (ahc->scb_data->maxhscbs == 0)
if (ahcinitscbdata(ahc) != 0)
return (ENOMEM);
ahc->qinfifo = &ahc->qoutfifo[256];
ahc->untagged_scbs = &ahc->qinfifo[256];
/* There are no untagged SCBs active yet. */
for (i = 0; i < 256; i++)
ahc->untagged_scbs[i] = SCB_LIST_NULL;
/* All of our queues are empty */
for (i = 0; i < 256; i++)
ahc->qoutfifo[i] = SCB_LIST_NULL;
bus_dmamap_sync(ahc->parent_dmat, ahc->shared_data_dmamap, 0,
driver_data_size, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Allocate a tstate to house information for our
* initiator presence on the bus as well as the user
* data for any target mode initiator.
*/
if (ahc_alloc_tstate(ahc, ahc->our_id, 'A') == NULL) {
printf("%s: unable to allocate tmode_tstate. "
"Failing attach\n", ahc_name(ahc));
return (-1);
}
if ((ahc->features & AHC_TWIN) != 0) {
if (ahc_alloc_tstate(ahc, ahc->our_id_b, 'B') == NULL) {
printf("%s: unable to allocate tmode_tstate. "
"Failing attach\n", ahc_name(ahc));
return (-1);
}
printf("Twin Channel, A SCSI Id=%d, B SCSI Id=%d, primary %c, ",
ahc->our_id, ahc->our_id_b,
ahc->flags & AHC_CHANNEL_B_PRIMARY? 'B': 'A');
} else {
if ((ahc->features & AHC_WIDE) != 0) {
printf("Wide ");
} else {
printf("Single ");
}
printf("Channel %c, SCSI Id=%d, ", ahc->channel, ahc->our_id);
}
ahc_outb(ahc, SEQ_FLAGS, 0);
if (ahc->scb_data->maxhscbs < AHC_SCB_MAX) {
ahc->flags |= AHC_PAGESCBS;
printf("%d/%d SCBs\n", ahc->scb_data->maxhscbs, AHC_SCB_MAX);
} else {
ahc->flags &= ~AHC_PAGESCBS;
printf("%d SCBs\n", ahc->scb_data->maxhscbs);
}
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWMISC) {
printf("%s: hardware scb %d bytes; kernel scb %d bytes; "
"ahc_dma %d bytes\n",
ahc_name(ahc),
sizeof(struct hardware_scb),
sizeof(struct scb),
sizeof(struct ahc_dma_seg));
}
#endif /* AHC_DEBUG */
/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels*/
if (ahc->features & AHC_TWIN) {
/*
* The device is gated to channel B after a chip reset,
* so set those values first
*/
term = (ahc->flags & AHC_TERM_ENB_B) != 0 ? STPWEN : 0;
if ((ahc->features & AHC_ULTRA2) != 0)
ahc_outb(ahc, SCSIID_ULTRA2, ahc->our_id_b);
else
ahc_outb(ahc, SCSIID, ahc->our_id_b);
scsi_conf = ahc_inb(ahc, SCSICONF + 1);
ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL))
|term|ENSTIMER|ACTNEGEN);
ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN);
if ((scsi_conf & RESET_SCSI) != 0
&& (ahc->flags & AHC_INITIATORMODE) != 0)
ahc->flags |= AHC_RESET_BUS_B;
/* Select Channel A */
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) & ~SELBUSB);
}
term = (ahc->flags & AHC_TERM_ENB_A) != 0 ? STPWEN : 0;
if ((ahc->features & AHC_ULTRA2) != 0)
ahc_outb(ahc, SCSIID_ULTRA2, ahc->our_id);
else
ahc_outb(ahc, SCSIID, ahc->our_id);
scsi_conf = ahc_inb(ahc, SCSICONF);
ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL))
|term
|ENSTIMER|ACTNEGEN);
ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN);
if ((scsi_conf & RESET_SCSI) != 0
&& (ahc->flags & AHC_INITIATORMODE) != 0)
ahc->flags |= AHC_RESET_BUS_A;
/*
* Look at the information that board initialization or
* the board bios has left us.
*/
ultraenb = 0;
tagenable = ALL_TARGETS_MASK;
/* Grab the disconnection disable table and invert it for our needs */
if (ahc->flags & AHC_USEDEFAULTS) {
printf("%s: Host Adapter Bios disabled. Using default SCSI "
"device parameters\n", ahc_name(ahc));
ahc->flags |= AHC_EXTENDED_TRANS_A|AHC_EXTENDED_TRANS_B|
AHC_TERM_ENB_A|AHC_TERM_ENB_B;
discenable = ALL_TARGETS_MASK;
if ((ahc->features & AHC_ULTRA) != 0)
ultraenb = ALL_TARGETS_MASK;
} else {
discenable = ~((ahc_inb(ahc, DISC_DSB + 1) << 8)
| ahc_inb(ahc, DISC_DSB));
if ((ahc->features & (AHC_ULTRA|AHC_ULTRA2)) != 0)
ultraenb = (ahc_inb(ahc, ULTRA_ENB + 1) << 8)
| ahc_inb(ahc, ULTRA_ENB);
}
if ((ahc->features & (AHC_WIDE|AHC_TWIN)) == 0)
max_targ = 7;
for (i = 0; i <= max_targ; i++) {
struct ahc_initiator_tinfo *tinfo;
struct tmode_tstate *tstate;
u_int our_id;
u_int target_id;
char channel;
channel = 'A';
our_id = ahc->our_id;
target_id = i;
if (i > 7 && (ahc->features & AHC_TWIN) != 0) {
channel = 'B';
our_id = ahc->our_id_b;
target_id = i % 8;
}
tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
target_id, &tstate);
/* Default to async narrow across the board */
bzero(tinfo, sizeof(*tinfo));
if (ahc->flags & AHC_USEDEFAULTS) {
if ((ahc->features & AHC_WIDE) != 0)
tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
/*
* These will be truncated when we determine the
* connection type we have with the target.
*/
tinfo->user.period = ahc_syncrates->period;
tinfo->user.offset = ~0;
} else {
u_int scsirate;
u_int16_t mask;
/* Take the settings leftover in scratch RAM. */
scsirate = ahc_inb(ahc, TARG_SCSIRATE + i);
mask = (0x01 << i);
if ((ahc->features & AHC_ULTRA2) != 0) {
u_int offset;
u_int maxsync;
if ((scsirate & SOFS) == 0x0F) {
/*
* Haven't negotiated yet,
* so the format is different.
*/
scsirate = (scsirate & SXFR) >> 4
| (ultraenb & mask)
? 0x08 : 0x0
| (scsirate & WIDEXFER);
offset = MAX_OFFSET_ULTRA2;
} else
offset = ahc_inb(ahc, TARG_OFFSET + i);
maxsync = AHC_SYNCRATE_ULTRA2;
if ((ahc->features & AHC_DT) != 0)
maxsync = AHC_SYNCRATE_DT;
tinfo->user.period =
ahc_find_period(ahc, scsirate, maxsync);
if (offset == 0)
tinfo->user.period = 0;
else
tinfo->user.offset = ~0;
} else if ((scsirate & SOFS) != 0) {
tinfo->user.period =
ahc_find_period(ahc, scsirate,
(ultraenb & mask)
? AHC_SYNCRATE_ULTRA
: AHC_SYNCRATE_FAST);
if (tinfo->user.period != 0)
tinfo->user.offset = ~0;
}
if ((scsirate & WIDEXFER) != 0
&& (ahc->features & AHC_WIDE) != 0)
tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
}
tinfo->goal = tinfo->user; /* force negotiation */
tstate->ultraenb = ultraenb;
tstate->discenable = discenable;
tstate->tagenable = 0; /* Wait until the XPT says its okay */
tstate->tagdisable = 0;
}
ahc->user_discenable = discenable;
ahc->user_tagenable = tagenable;
/*
* Tell the sequencer where it can find our arrays in memory.
*/
physaddr = ahc->scb_data->hscb_busaddr;
ahc_outb(ahc, HSCB_ADDR, physaddr & 0xFF);
ahc_outb(ahc, HSCB_ADDR + 1, (physaddr >> 8) & 0xFF);
ahc_outb(ahc, HSCB_ADDR + 2, (physaddr >> 16) & 0xFF);
ahc_outb(ahc, HSCB_ADDR + 3, (physaddr >> 24) & 0xFF);
physaddr = ahc->shared_data_busaddr;
ahc_outb(ahc, SCBID_ADDR, physaddr & 0xFF);
ahc_outb(ahc, SCBID_ADDR + 1, (physaddr >> 8) & 0xFF);
ahc_outb(ahc, SCBID_ADDR + 2, (physaddr >> 16) & 0xFF);
ahc_outb(ahc, SCBID_ADDR + 3, (physaddr >> 24) & 0xFF);
/* Target mode incomding command fifo */
physaddr += 3 * 256 * sizeof(u_int8_t);
ahc_outb(ahc, TMODE_CMDADDR, physaddr & 0xFF);
ahc_outb(ahc, TMODE_CMDADDR + 1, (physaddr >> 8) & 0xFF);
ahc_outb(ahc, TMODE_CMDADDR + 2, (physaddr >> 16) & 0xFF);
ahc_outb(ahc, TMODE_CMDADDR + 3, (physaddr >> 24) & 0xFF);
/*
* Initialize the group code to command length table.
* This overrides the values in TARG_SCSIRATE, so only
* setup the table after we have processed that information.
*/
ahc_outb(ahc, CMDSIZE_TABLE, 5);
ahc_outb(ahc, CMDSIZE_TABLE + 1, 9);
ahc_outb(ahc, CMDSIZE_TABLE + 2, 9);
ahc_outb(ahc, CMDSIZE_TABLE + 3, 0);
ahc_outb(ahc, CMDSIZE_TABLE + 4, 15);
ahc_outb(ahc, CMDSIZE_TABLE + 5, 11);
ahc_outb(ahc, CMDSIZE_TABLE + 6, 0);
ahc_outb(ahc, CMDSIZE_TABLE + 7, 0);
/* Tell the sequencer of our initial queue positions */
ahc_outb(ahc, KERNEL_QINPOS, 0);
ahc_outb(ahc, QINPOS, 0);
ahc_outb(ahc, QOUTPOS, 0);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWMISC)
printf("DISCENABLE == 0x%x\nULTRAENB == 0x%x\n",
discenable, ultraenb);
#endif
/* Don't have any special messages to send to targets */
ahc_outb(ahc, TARGET_MSG_REQUEST, 0);
ahc_outb(ahc, TARGET_MSG_REQUEST + 1, 0);
/*
* Use the built in queue management registers
* if they are available.
*/
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, QOFF_CTLSTA, SCB_QSIZE_256);
ahc_outb(ahc, SDSCB_QOFF, 0);
ahc_outb(ahc, SNSCB_QOFF, 0);
ahc_outb(ahc, HNSCB_QOFF, 0);
}
/* We don't have any waiting selections */
ahc_outb(ahc, WAITING_SCBH, SCB_LIST_NULL);
/* Our disconnection list is empty too */
ahc_outb(ahc, DISCONNECTED_SCBH, SCB_LIST_NULL);
/* Message out buffer starts empty */
ahc_outb(ahc, MSG_OUT, MSG_NOOP);
/*
* Setup the allowed SCSI Sequences based on operational mode.
* If we are a target, we'll enalbe select in operations once
* we've had a lun enabled.
*/
scsiseq_template = ENSELO|ENAUTOATNO|ENAUTOATNP;
if ((ahc->flags & AHC_INITIATORMODE) != 0)
scsiseq_template |= ENRSELI;
ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq_template);
/*
* Load the Sequencer program and Enable the adapter
* in "fast" mode.
*/
#ifdef AHC_DEBUG
printf("%s: Downloading Sequencer Program...",
ahc_name(ahc));
#endif
ahc_loadseq(ahc);
/* We have to wait until after any system dumps... */
shutdownhook_establish(ahc_shutdown, ahc);
return (0);
}
static int
ahc_ioctl(struct scsipi_link *sc_link, u_long cmd, caddr_t addr, int flag,
struct proc *p)
{
struct ahc_softc *ahc = sc_link->adapter_softc;
char channel;
int s, ret = ENOTTY;
switch (cmd) {
case SCBUSIORESET:
channel = SIM_CHANNEL(ahc, sc_link);
s = splbio();
ahc_reset_channel(ahc, channel, TRUE);
splx(s);
ret = 0;
break;
default:
}
return ret;
}
/*
* XXX fvdl the busy_tcl checks and settings should only be done
* for the non-tagged queueing case, but we don't do tagged queueing
* yet, so..
*/
static int32_t
ahc_action(struct scsipi_xfer *xs)
{
struct scsipi_xfer *first_xs, *next_xs = NULL;
struct ahc_softc *ahc;
struct scb *scb;
struct hardware_scb *hscb;
struct ahc_initiator_tinfo *tinfo;
struct tmode_tstate *tstate;
u_int target_id;
u_int our_id;
int s, tcl;
u_int16_t mask;
char channel;
int dontqueue = 0, fromqueue = 0;
SC_DEBUG(xs->sc_link, SDEV_DB3, ("ahc_action\n"));
ahc = (struct ahc_softc *)xs->sc_link->adapter_softc;
/* must protect the queue */
s = splbio();
if (xs == TAILQ_FIRST(&ahc->sc_q)) {
/*
* Called from ahc_done. Calling with the first entry in
* the queue is really just a way of seeing where we're
* called from. Now, find the first eligible SCB to send,
* e.g. one which will be accepted immediately.
*/
if (ahc->queue_blocked) {
splx(s);
return (TRY_AGAIN_LATER);
}
xs = ahc_first_xs(ahc);
if (xs == NULL) {
splx(s);
return (TRY_AGAIN_LATER);
}
next_xs = TAILQ_NEXT(xs, adapter_q);
TAILQ_REMOVE(&ahc->sc_q, xs, adapter_q);
fromqueue = 1;
goto get_scb;
}
/*
* If no new requests are accepted, just insert into the
* private queue to wait for our turn.
*/
tcl = XS_TCL(ahc, xs);
if (ahc->queue_blocked ||
ahc->devqueue_blocked[xs->sc_link->scsipi_scsi.target] ||
(!ahc_istagged_device(ahc, xs, 0) &&
ahc_index_busy_tcl(ahc, tcl, FALSE) != SCB_LIST_NULL)) {
if (dontqueue) {
splx(s);
xs->error = XS_DRIVER_STUFFUP;
return TRY_AGAIN_LATER;
}
TAILQ_INSERT_TAIL(&ahc->sc_q, xs, adapter_q);
splx(s);
return SUCCESSFULLY_QUEUED;
}
first_xs = ahc_first_xs(ahc);
/* determine safety of software queueing */
dontqueue = xs->xs_control & XS_CTL_POLL;
/*
* Handle situations where there's already entries in the
* queue.
*/
if (first_xs != NULL) {
/*
* If we can't queue, we have to abort, since
* we have to preserve order.
*/
if (dontqueue) {
splx(s);
xs->error = XS_DRIVER_STUFFUP;
return (TRY_AGAIN_LATER);
}
/*
* Swap with the first queue entry.
*/
TAILQ_INSERT_TAIL(&ahc->sc_q, xs, adapter_q);
xs = first_xs;
next_xs = TAILQ_NEXT(xs, adapter_q);
TAILQ_REMOVE(&ahc->sc_q, xs, adapter_q);
fromqueue = 1;
}
get_scb:
target_id = xs->sc_link->scsipi_scsi.target;
our_id = SIM_SCSI_ID(ahc, xs->sc_link);
/*
* get an scb to use.
*/
if ((scb = ahcgetscb(ahc)) == NULL) {
if (dontqueue) {
splx(s);
xs->error = XS_DRIVER_STUFFUP;
return (TRY_AGAIN_LATER);
}
/*
* If we were pulled off the queue, put ourselves
* back to where we came from, otherwise tack ourselves
* onto the end.
*/
if (fromqueue && next_xs != NULL)
TAILQ_INSERT_BEFORE(xs, next_xs, adapter_q);
else
TAILQ_INSERT_TAIL(&ahc->sc_q, xs, adapter_q);
splx(s);
return (SUCCESSFULLY_QUEUED);
}
tcl = XS_TCL(ahc, xs);
#ifdef DIAGNOSTIC
if (!ahc_istagged_device(ahc, xs, 0) &&
ahc_index_busy_tcl(ahc, tcl, FALSE) != SCB_LIST_NULL)
panic("ahc: queuing for busy target");
#endif
scb->xs = xs;
hscb = scb->hscb;
hscb->tcl = tcl;
if (ahc_istagged_device(ahc, xs, 0))
scb->hscb->control |= MSG_SIMPLE_Q_TAG;
else
ahc_busy_tcl(ahc, scb);
splx(s);
channel = SIM_CHANNEL(ahc, xs->sc_link);
if (ahc->inited_channels[channel - 'A'] == 0) {
if ((channel == 'A' && (ahc->flags & AHC_RESET_BUS_A)) ||
(channel == 'B' && (ahc->flags & AHC_RESET_BUS_B))) {
s = splbio();
ahc_reset_channel(ahc, channel, TRUE);
splx(s);
}
ahc->inited_channels[channel - 'A'] = 1;
}
/*
* Put all the arguments for the xfer in the scb
*/
mask = SCB_TARGET_MASK(scb);
tinfo = ahc_fetch_transinfo(ahc, SIM_CHANNEL(ahc, xs->sc_link), our_id,
target_id, &tstate);
if (ahc->inited_targets[target_id] == 0) {
struct ahc_devinfo devinfo;
s = splbio();
ahc_compile_devinfo(&devinfo, our_id, target_id,
xs->sc_link->scsipi_scsi.lun, SIM_CHANNEL(ahc, xs->sc_link),
ROLE_INITIATOR);
ahc_update_target_msg_request(ahc, &devinfo, tinfo, TRUE,
FALSE);
ahc->inited_targets[target_id] = 1;
splx(s);
}
hscb->scsirate = tinfo->scsirate;
hscb->scsioffset = tinfo->current.offset;
if ((tstate->ultraenb & mask) != 0)
hscb->control |= ULTRAENB;
if ((tstate->discenable & mask) != 0)
hscb->control |= DISCENB;
if (xs->xs_status & XS_STS_DEBUG) {
scsi_print_addr(xs->sc_link);
printf("redoing command that caused queue full\n");
}
if (xs->xs_control & XS_CTL_RESET) {
hscb->cmdpointer = 0;
scb->flags |= SCB_DEVICE_RESET;
hscb->control |= MK_MESSAGE;
return ahc_execute_scb(scb, NULL, 0);
}
return ahc_setup_data(ahc, xs, scb);
}
static int
ahc_execute_scb(void *arg, bus_dma_segment_t *dm_segs, int nsegments)
{
struct scb *scb;
struct scsipi_xfer *xs;
struct ahc_softc *ahc;
int s;
scb = (struct scb *)arg;
xs = scb->xs;
ahc = (struct ahc_softc *)xs->sc_link->adapter_softc;
if (nsegments != 0) {
struct ahc_dma_seg *sg;
bus_dma_segment_t *end_seg;
int op;
end_seg = dm_segs + nsegments;
/* Copy the first SG into the data pointer area */
scb->hscb->data = dm_segs->ds_addr;
scb->hscb->datalen = dm_segs->ds_len;
/* Copy the segments into our SG list */
sg = scb->sg_list;
while (dm_segs < end_seg) {
sg->addr = dm_segs->ds_addr;
sg->len = dm_segs->ds_len;
ahc_swap_sg(sg);
sg++;
dm_segs++;
}
/* Note where to find the SG entries in bus space */
scb->hscb->SG_pointer = scb->sg_list_phys;
if (xs->xs_control & XS_CTL_DATA_IN)
op = BUS_DMASYNC_PREREAD;
else
op = BUS_DMASYNC_PREWRITE;
bus_dmamap_sync(ahc->parent_dmat, scb->dmamap, 0,
scb->dmamap->dm_mapsize, op);
} else {
scb->hscb->SG_pointer = 0;
scb->hscb->data = 0;
scb->hscb->datalen = 0;
}
scb->sg_count = scb->hscb->SG_count = nsegments;
s = splbio();
/*
* Last time we need to check if this SCB needs to
* be aborted.
*/
if (xs->xs_status & XS_STS_DONE) {
if (!ahc_istagged_device(ahc, xs, 0))
ahc_index_busy_tcl(ahc, scb->hscb->tcl, TRUE);
if (nsegments != 0)
bus_dmamap_unload(ahc->parent_dmat, scb->dmamap);
ahcfreescb(ahc, scb);
splx(s);
return (COMPLETE);
}
#ifdef DIAGNOSTIC
if (scb->sg_count > 255)
panic("ahc bad sg_count");
#endif
ahc_swap_hscb(scb->hscb);
LIST_INSERT_HEAD(&ahc->pending_ccbs, scb, plinks);
scb->flags |= SCB_ACTIVE;
if (!(xs->xs_control & XS_CTL_POLL))
callout_reset(&scb->xs->xs_callout, (xs->timeout * hz) / 1000,
ahc_timeout, scb);
if ((scb->flags & SCB_TARGET_IMMEDIATE) != 0) {
#if 0
printf("Continueing Immediate Command %d:%d\n",
xs->sc_link->scsipi_scsi.target,
xs->sc_link->scsipi_scsi.lun);
#endif
pause_sequencer(ahc);
if ((ahc->flags & AHC_PAGESCBS) == 0)
ahc_outb(ahc, SCBPTR, scb->hscb->tag);
ahc_outb(ahc, SCB_TAG, scb->hscb->tag);
ahc_outb(ahc, RETURN_1, CONT_MSG_LOOP);
unpause_sequencer(ahc);
} else {
#if 0
printf("tag %x at qpos %u vaddr %p paddr 0x%lx\n",
scb->hscb->tag, ahc->qinfifonext,
&ahc->qinfifo[ahc->qinfifonext],
ahc->shared_data_busaddr + 1024 + ahc->qinfifonext);
#endif
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
bus_dmamap_sync(ahc->parent_dmat, ahc->shared_data_dmamap,
QINFIFO_OFFSET * 256, 256, BUS_DMASYNC_PREWRITE);
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
pause_sequencer(ahc);
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
unpause_sequencer(ahc);
}
}
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWCMDS) {
scsi_print_addr(xs->sc_link);
printf("opcode %d tag %x len %d flags %x control %x fpos %u"
" rate %x\n",
xs->cmdstore.opcode, scb->hscb->tag, scb->hscb->datalen,
scb->flags, scb->hscb->control, ahc->qinfifonext,
scb->hscb->scsirate);
}
#endif
if (!(xs->xs_control & XS_CTL_POLL)) {
splx(s);
return (SUCCESSFULLY_QUEUED);
}
/*
* If we can't use interrupts, poll for completion
*/
SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_poll\n"));
do {
if (ahc_poll(ahc, xs->timeout)) {
if (!(xs->xs_control & XS_CTL_SILENT))
printf("cmd fail\n");
ahc_timeout(scb);
break;
}
} while (!(xs->xs_status & XS_STS_DONE));
splx(s);
return (COMPLETE);
}
static int
ahc_poll(struct ahc_softc *ahc, int wait)
{
while (--wait) {
DELAY(1000);
if (ahc_inb(ahc, INTSTAT) & INT_PEND)
break;
}
if (wait == 0) {
printf("%s: board is not responding\n", ahc_name(ahc));
return (EIO);
}
ahc_intr((void *)ahc);
return (0);
}
static int
ahc_setup_data(struct ahc_softc *ahc, struct scsipi_xfer *xs,
struct scb *scb)
{
struct hardware_scb *hscb;
hscb = scb->hscb;
xs->resid = xs->status = 0;
hscb->cmdlen = xs->cmdlen;
memcpy(hscb->cmdstore, xs->cmd, xs->cmdlen);
hscb->cmdpointer = hscb->cmdstore_busaddr;
/* Only use S/G if there is a transfer */
if (xs->datalen) {
int error;
error = bus_dmamap_load(ahc->parent_dmat,
scb->dmamap, xs->data,
xs->datalen, NULL,
(xs->xs_control & XS_CTL_NOSLEEP) ?
BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
if (error) {
if (!ahc_istagged_device(ahc, xs, 0))
ahc_index_busy_tcl(ahc, hscb->tcl, TRUE);
return (TRY_AGAIN_LATER); /* XXX fvdl */
}
error = ahc_execute_scb(scb,
scb->dmamap->dm_segs,
scb->dmamap->dm_nsegs);
return error;
} else {
return ahc_execute_scb(scb, NULL, 0);
}
}
static void
ahc_freeze_devq(struct ahc_softc *ahc, struct scsipi_link *sc_link)
{
int target;
char channel;
int lun;
target = sc_link->scsipi_scsi.target;
lun = sc_link->scsipi_scsi.lun;
channel = sc_link->scsipi_scsi.channel;
ahc_search_qinfifo(ahc, target, channel, lun,
/*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
SCB_REQUEUE, SEARCH_COMPLETE);
}
static void
ahcallocscbs(struct ahc_softc *ahc)
{
struct scb_data *scb_data;
struct scb *next_scb;
struct sg_map_node *sg_map;
bus_addr_t physaddr;
struct ahc_dma_seg *segs;
int newcount;
int i;
scb_data = ahc->scb_data;
if (scb_data->numscbs >= AHC_SCB_MAX)
/* Can't allocate any more */
return;
next_scb = &scb_data->scbarray[scb_data->numscbs];
sg_map = malloc(sizeof(*sg_map), M_DEVBUF, M_NOWAIT);
if (sg_map == NULL)
return;
if (ahc_createdmamem(ahc->parent_dmat, PAGE_SIZE, ahc->sc_dmaflags,
&sg_map->sg_dmamap,
(caddr_t *)&sg_map->sg_vaddr, &sg_map->sg_physaddr,
&sg_map->sg_dmasegs, &sg_map->sg_nseg, ahc_name(ahc),
"SG space") < 0) {
free(sg_map, M_DEVBUF);
return;
}
SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
segs = sg_map->sg_vaddr;
physaddr = sg_map->sg_physaddr;
newcount = (PAGE_SIZE / (AHC_NSEG * sizeof(struct ahc_dma_seg)));
for (i = 0; scb_data->numscbs < AHC_SCB_MAX && i < newcount; i++) {
int error;
next_scb->sg_list = segs;
/*
* The sequencer always starts with the second entry.
* The first entry is embedded in the scb.
*/
next_scb->sg_list_phys = physaddr + sizeof(struct ahc_dma_seg);
next_scb->flags = SCB_FREE;
error = bus_dmamap_create(ahc->parent_dmat,
AHC_MAXTRANSFER_SIZE, AHC_NSEG, MAXBSIZE, 0,
BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW|ahc->sc_dmaflags,
&next_scb->dmamap);
if (error != 0)
break;
next_scb->hscb = &scb_data->hscbs[scb_data->numscbs];
next_scb->hscb->tag = ahc->scb_data->numscbs;
next_scb->hscb->cmdstore_busaddr =
ahc_hscb_busaddr(ahc, next_scb->hscb->tag)
+ offsetof(struct hardware_scb, cmdstore);
next_scb->hscb->cmdstore_busaddr =
htole32(next_scb->hscb->cmdstore_busaddr);
SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, next_scb, links);
segs += AHC_NSEG;
physaddr += (AHC_NSEG * sizeof(struct ahc_dma_seg));
next_scb++;
ahc->scb_data->numscbs++;
}
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWSCBALLOC)
printf("%s: allocated %d new SCBs count now %d\n",
ahc_name(ahc), i - 1, ahc->scb_data->numscbs);
#endif
}
#ifdef AHC_DUMP_SEQ
static void
ahc_dumpseq(struct ahc_softc* ahc)
{
int i;
int max_prog;
if ((ahc->chip & AHC_BUS_MASK) < AHC_PCI)
max_prog = 448;
else if ((ahc->features & AHC_ULTRA2) != 0)
max_prog = 768;
else
max_prog = 512;
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
ahc_outb(ahc, SEQADDR0, 0);
ahc_outb(ahc, SEQADDR1, 0);
for (i = 0; i < max_prog; i++) {
u_int8_t ins_bytes[4];
ahc_insb(ahc, SEQRAM, ins_bytes, 4);
printf("0x%08x\n", ins_bytes[0] << 24
| ins_bytes[1] << 16
| ins_bytes[2] << 8
| ins_bytes[3]);
}
}
#endif
static void
ahc_loadseq(struct ahc_softc *ahc)
{
struct patch *cur_patch;
int i;
int downloaded;
int skip_addr;
u_int8_t download_consts[4];
/* Setup downloadable constant table */
#if 0
/* No downloaded constants are currently defined. */
download_consts[TMODE_NUMCMDS] = ahc->num_targetcmds;
#endif
cur_patch = patches;
downloaded = 0;
skip_addr = 0;
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
ahc_outb(ahc, SEQADDR0, 0);
ahc_outb(ahc, SEQADDR1, 0);
for (i = 0; i < sizeof(seqprog)/4; i++) {
if (ahc_check_patch(ahc, &cur_patch, i, &skip_addr) == 0) {
/*
* Don't download this instruction as it
* is in a patch that was removed.
*/
continue;
}
ahc_download_instr(ahc, i, download_consts);
downloaded++;
}
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE);
restart_sequencer(ahc);
#ifdef AHC_DEBUG
printf(" %d instructions downloaded\n", downloaded);
#endif
}
static int
ahc_check_patch(struct ahc_softc *ahc, struct patch **start_patch,
int start_instr, int *skip_addr)
{
struct patch *cur_patch;
struct patch *last_patch;
int num_patches;
num_patches = sizeof(patches)/sizeof(struct patch);
last_patch = &patches[num_patches];
cur_patch = *start_patch;
while (cur_patch < last_patch && start_instr == cur_patch->begin) {
if (cur_patch->patch_func(ahc) == 0) {
/* Start rejecting code */
*skip_addr = start_instr + cur_patch->skip_instr;
cur_patch += cur_patch->skip_patch;
} else {
/* Accepted this patch. Advance to the next
* one and wait for our intruction pointer to
* hit this point.
*/
cur_patch++;
}
}
*start_patch = cur_patch;
if (start_instr < *skip_addr)
/* Still skipping */
return (0);
return (1);
}
static void
ahc_download_instr(struct ahc_softc *ahc, int instrptr, u_int8_t *dconsts)
{
union ins_formats instr;
struct ins_format1 *fmt1_ins;
struct ins_format3 *fmt3_ins;
u_int opcode;
/* Structure copy */
instr = *(union ins_formats*)&seqprog[instrptr * 4];
instr.integer = le32toh(instr.integer);
fmt1_ins = &instr.format1;
fmt3_ins = NULL;
/* Pull the opcode */
opcode = instr.format1.opcode;
switch (opcode) {
case AIC_OP_JMP:
case AIC_OP_JC:
case AIC_OP_JNC:
case AIC_OP_CALL:
case AIC_OP_JNE:
case AIC_OP_JNZ:
case AIC_OP_JE:
case AIC_OP_JZ:
{
struct patch *cur_patch;
int address_offset;
u_int address;
int skip_addr;
int i;
fmt3_ins = &instr.format3;
address_offset = 0;
address = fmt3_ins->address;
cur_patch = patches;
skip_addr = 0;
for (i = 0; i < address;) {
ahc_check_patch(ahc, &cur_patch, i, &skip_addr);
if (skip_addr > i) {
int end_addr;
end_addr = MIN(address, skip_addr);
address_offset += end_addr - i;
i = skip_addr;
} else {
i++;
}
}
address -= address_offset;
fmt3_ins->address = address;
/* FALLTHROUGH */
}
case AIC_OP_OR:
case AIC_OP_AND:
case AIC_OP_XOR:
case AIC_OP_ADD:
case AIC_OP_ADC:
case AIC_OP_BMOV:
if (fmt1_ins->parity != 0) {
fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
}
fmt1_ins->parity = 0;
/* FALLTHROUGH */
case AIC_OP_ROL:
if ((ahc->features & AHC_ULTRA2) != 0) {
int i, count;
/* Calculate odd parity for the instruction */
for (i = 0, count = 0; i < 31; i++) {
u_int32_t mask;
mask = 0x01 << i;
if ((instr.integer & mask) != 0)
count++;
}
if ((count & 0x01) == 0)
instr.format1.parity = 1;
} else {
/* Compress the instruction for older sequencers */
if (fmt3_ins != NULL) {
instr.integer =
fmt3_ins->immediate
| (fmt3_ins->source << 8)
| (fmt3_ins->address << 16)
| (fmt3_ins->opcode << 25);
} else {
instr.integer =
fmt1_ins->immediate
| (fmt1_ins->source << 8)
| (fmt1_ins->destination << 16)
| (fmt1_ins->ret << 24)
| (fmt1_ins->opcode << 25);
}
}
instr.integer = htole32(instr.integer);
ahc_outsb(ahc, SEQRAM, instr.bytes, 4);
break;
default:
panic("Unknown opcode encountered in seq program");
break;
}
}
static void
ahc_set_recoveryscb(struct ahc_softc *ahc, struct scb *scb)
{
if ((scb->flags & SCB_RECOVERY_SCB) == 0) {
struct scb *scbp;
scb->flags |= SCB_RECOVERY_SCB;
/*
* Take all queued, but not sent SCBs out of the equation.
* Also ensure that no new CCBs are queued to us while we
* try to fix this problem.
*/
ahc->queue_blocked = 1;
/*
* Go through all of our pending SCBs and remove
* any scheduled timeouts for them. We will reschedule
* them after we've successfully fixed this problem.
*/
scbp = ahc->pending_ccbs.lh_first;
while (scbp != NULL) {
callout_stop(&scbp->xs->xs_callout);
scbp = scbp->plinks.le_next;
}
}
}
static void
ahc_timeout(void *arg)
{
struct scb *scb;
struct ahc_softc *ahc;
int s, found;
u_int last_phase;
int target;
int lun;
int i;
char channel;
scb = (struct scb *)arg;
ahc = (struct ahc_softc *)scb->xs->sc_link->adapter_softc;
s = splbio();
/*
* Ensure that the card doesn't do anything
* behind our back. Also make sure that we
* didn't "just" miss an interrupt that would
* affect this timeout.
*/
do {
ahc_intr(ahc);
pause_sequencer(ahc);
} while (ahc_inb(ahc, INTSTAT) & INT_PEND);
if ((scb->flags & SCB_ACTIVE) == 0) {
/* Previous timeout took care of me already */
printf("Timedout SCB handled by another timeout\n");
unpause_sequencer(ahc);
splx(s);
return;
}
target = SCB_TARGET(scb);
channel = SCB_CHANNEL(scb);
lun = SCB_LUN(scb);
scsi_print_addr(scb->xs->sc_link);
printf("SCB %x - timed out ", scb->hscb->tag);
/*
* Take a snapshot of the bus state and print out
* some information so we can track down driver bugs.
*/
last_phase = ahc_inb(ahc, LASTPHASE);
for (i = 0; i < num_phases; i++) {
if (last_phase == phase_table[i].phase)
break;
}
printf("%s", phase_table[i].phasemsg);
printf(", SEQADDR == 0x%x\n",
ahc_inb(ahc, SEQADDR0) | (ahc_inb(ahc, SEQADDR1) << 8));
printf("SCSIRATE == 0x%x\n", ahc_inb(ahc, SCSIRATE));
#ifdef AHC_DEBUG
ahc_print_scb(scb);
#endif
#if 0
printf("SSTAT1 == 0x%x\n", ahc_inb(ahc, SSTAT1));
printf("SSTAT3 == 0x%x\n", ahc_inb(ahc, SSTAT3));
printf("SCSIPHASE == 0x%x\n", ahc_inb(ahc, SCSIPHASE));
printf("SCSIOFFSET == 0x%x\n", ahc_inb(ahc, SCSIOFFSET));
printf("SEQ_FLAGS == 0x%x\n", ahc_inb(ahc, SEQ_FLAGS));
printf("SCB_DATAPTR == 0x%x\n", ahc_inb(ahc, SCB_DATAPTR)
| ahc_inb(ahc, SCB_DATAPTR + 1) << 8
| ahc_inb(ahc, SCB_DATAPTR + 2) << 16
| ahc_inb(ahc, SCB_DATAPTR + 3) << 24);
printf("SCB_DATACNT == 0x%x\n", ahc_inb(ahc, SCB_DATACNT)
| ahc_inb(ahc, SCB_DATACNT + 1) << 8
| ahc_inb(ahc, SCB_DATACNT + 2) << 16);
printf("SCB_SGCOUNT == 0x%x\n", ahc_inb(ahc, SCB_SGCOUNT));
printf("CCSCBCTL == 0x%x\n", ahc_inb(ahc, CCSCBCTL));
printf("CCSCBCNT == 0x%x\n", ahc_inb(ahc, CCSCBCNT));
printf("DFCNTRL == 0x%x\n", ahc_inb(ahc, DFCNTRL));
printf("DFSTATUS == 0x%x\n", ahc_inb(ahc, DFSTATUS));
printf("CCHCNT == 0x%x\n", ahc_inb(ahc, CCHCNT));
if (scb->sg_count > 0) {
for (i = 0; i < scb->sg_count; i++) {
printf("sg[%d] - Addr 0x%x : Length %d\n",
i,
le32toh(scb->sg_list[i].addr),
le32toh(scb->sg_list[i].len));
}
}
#endif
if (scb->flags & (SCB_DEVICE_RESET|SCB_ABORT)) {
/*
* Been down this road before.
* Do a full bus reset.
*/
bus_reset:
ahcsetccbstatus(scb->xs, XS_TIMEOUT);
found = ahc_reset_channel(ahc, channel, /*Initiate Reset*/TRUE);
printf("%s: Issued Channel %c Bus Reset. "
"%d SCBs aborted\n", ahc_name(ahc), channel, found);
} else {
/*
* If we are a target, transition to bus free and report
* the timeout.
*
* The target/initiator that is holding up the bus may not
* be the same as the one that triggered this timeout
* (different commands have different timeout lengths).
* If the bus is idle and we are actiing as the initiator
* for this request, queue a BDR message to the timed out
* target. Otherwise, if the timed out transaction is
* active:
* Initiator transaction:
* Stuff the message buffer with a BDR message and assert
* ATN in the hopes that the target will let go of the bus
* and go to the mesgout phase. If this fails, we'll
* get another timeout 2 seconds later which will attempt
* a bus reset.
*
* Target transaction:
* Transition to BUS FREE and report the error.
* It's good to be the target!
*/
u_int active_scb_index;
active_scb_index = ahc_inb(ahc, SCB_TAG);
if (last_phase != P_BUSFREE
&& (active_scb_index < ahc->scb_data->numscbs)) {
struct scb *active_scb;
/*
* If the active SCB is not from our device,
* assume that another device is hogging the bus
* and wait for it's timeout to expire before
* taking additional action.
*/
active_scb = &ahc->scb_data->scbarray[active_scb_index];
if (active_scb->hscb->tcl != scb->hscb->tcl) {
u_int newtimeout;
scsi_print_addr(scb->xs->sc_link);
printf("Other SCB Timeout%s",
(scb->flags & SCB_OTHERTCL_TIMEOUT) != 0
? " again\n" : "\n");
scb->flags |= SCB_OTHERTCL_TIMEOUT;
newtimeout = MAX(active_scb->xs->timeout,
scb->xs->timeout);
callout_reset(&scb->xs->xs_callout,
(newtimeout * hz) / 1000,
ahc_timeout, scb);
splx(s);
return;
}
/* It's us */
if ((scb->hscb->control & TARGET_SCB) != 0) {
/*
* Send back any queued up transactions
* and properly record the error condition.
*/
ahc_freeze_devq(ahc, scb->xs->sc_link);
ahcsetccbstatus(scb->xs, XS_TIMEOUT);
ahc_freeze_ccb(scb);
ahc_done(ahc, scb);
/* Will clear us from the bus */
restart_sequencer(ahc);
return;
}
ahc_set_recoveryscb(ahc, active_scb);
ahc_outb(ahc, MSG_OUT, MSG_BUS_DEV_RESET);
ahc_outb(ahc, SCSISIGO, last_phase|ATNO);
scsi_print_addr(active_scb->xs->sc_link);
printf("BDR message in message buffer\n");
active_scb->flags |= SCB_DEVICE_RESET;
callout_reset(&active_scb->xs->xs_callout,
2 * hz, ahc_timeout, active_scb);
unpause_sequencer(ahc);
} else {
int disconnected;
/* XXX Shouldn't panic. Just punt instead */
if ((scb->hscb->control & TARGET_SCB) != 0)
panic("Timed-out target SCB but bus idle");
if (last_phase != P_BUSFREE
&& (ahc_inb(ahc, SSTAT0) & TARGET) != 0) {
/* XXX What happened to the SCB? */
/* Hung target selection. Goto busfree */
printf("%s: Hung target selection\n",
ahc_name(ahc));
restart_sequencer(ahc);
return;
}
if (ahc_search_qinfifo(ahc, target, channel, lun,
scb->hscb->tag, ROLE_INITIATOR,
/*status*/0, SEARCH_COUNT) > 0) {
disconnected = FALSE;
} else {
disconnected = TRUE;
}
if (disconnected) {
u_int active_scb;
ahc_set_recoveryscb(ahc, scb);
/*
* Simply set the MK_MESSAGE control bit.
*/
scb->hscb->control |= MK_MESSAGE;
scb->flags |= SCB_QUEUED_MSG
| SCB_DEVICE_RESET;
/*
* Mark the cached copy of this SCB in the
* disconnected list too, so that a reconnect
* at this point causes a BDR or abort.
*/
active_scb = ahc_inb(ahc, SCBPTR);
if (ahc_search_disc_list(ahc, target,
channel, lun,
scb->hscb->tag,
/*stop_on_first*/TRUE,
/*remove*/FALSE,
/*save_state*/FALSE)) {
u_int scb_control;
scb_control = ahc_inb(ahc, SCB_CONTROL);
scb_control |= MK_MESSAGE;
ahc_outb(ahc, SCB_CONTROL, scb_control);
}
ahc_outb(ahc, SCBPTR, active_scb);
ahc_index_busy_tcl(ahc, scb->hscb->tcl,
/*unbusy*/TRUE);
/*
* Actually re-queue this SCB in case we can
* select the device before it reconnects.
* Clear out any entries in the QINFIFO first
* so we are the next SCB for this target
* to run.
*/
ahc_search_qinfifo(ahc, SCB_TARGET(scb),
channel, SCB_LUN(scb),
SCB_LIST_NULL,
ROLE_INITIATOR,
SCB_REQUEUE,
SEARCH_COMPLETE);
scsi_print_addr(scb->xs->sc_link);
printf("Queuing a BDR SCB\n");
ahc->qinfifo[ahc->qinfifonext++] =
scb->hscb->tag;
bus_dmamap_sync(ahc->parent_dmat,
ahc->shared_data_dmamap,
QINFIFO_OFFSET * 256, 256,
BUS_DMASYNC_PREWRITE);
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF,
ahc->qinfifonext);
} else {
ahc_outb(ahc, KERNEL_QINPOS,
ahc->qinfifonext);
}
callout_reset(&scb->xs->xs_callout, 2 * hz,
ahc_timeout, scb);
unpause_sequencer(ahc);
} else {
/* Go "immediatly" to the bus reset */
/* This shouldn't happen */
ahc_set_recoveryscb(ahc, scb);
scsi_print_addr(scb->xs->sc_link);
printf("SCB %x: Immediate reset. "
"Flags = 0x%x\n", scb->hscb->tag,
scb->flags);
goto bus_reset;
}
}
}
splx(s);
}
static int
ahc_search_qinfifo(struct ahc_softc *ahc, int target, char channel,
int lun, u_int tag, role_t role, scb_flag status,
ahc_search_action action)
{
struct scb *scbp;
u_int8_t qinpos;
u_int8_t qintail;
int found;
qinpos = ahc_inb(ahc, QINPOS);
qintail = ahc->qinfifonext;
found = 0;
/*
* Start with an empty queue. Entries that are not chosen
* for removal will be re-added to the queue as we go.
*/
ahc->qinfifonext = qinpos;
bus_dmamap_sync(ahc->parent_dmat, ahc->shared_data_dmamap,
QINFIFO_OFFSET * 256, 256, BUS_DMASYNC_POSTREAD);
while (qinpos != qintail) {
scbp = &ahc->scb_data->scbarray[ahc->qinfifo[qinpos]];
if (ahc_match_scb(scbp, target, channel, lun, tag, role)) {
/*
* We found an scb that needs to be removed.
*/
switch (action) {
case SEARCH_COMPLETE:
if (!(scbp->xs->xs_status & XS_STS_DONE)) {
scbp->flags |= status;
scbp->xs->error = XS_NOERROR;
}
ahc_freeze_ccb(scbp);
ahc_done(ahc, scbp);
break;
case SEARCH_COUNT:
ahc->qinfifo[ahc->qinfifonext++] =
scbp->hscb->tag;
break;
case SEARCH_REMOVE:
break;
}
found++;
} else {
ahc->qinfifo[ahc->qinfifonext++] = scbp->hscb->tag;
}
qinpos++;
}
bus_dmamap_sync(ahc->parent_dmat, ahc->shared_data_dmamap,
QINFIFO_OFFSET * 256, 256, BUS_DMASYNC_PREWRITE);
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
}
return (found);
}
/*
* Abort all SCBs that match the given description (target/channel/lun/tag),
* setting their status to the passed in status if the status has not already
* been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
* is paused before it is called.
*/
static int
ahc_abort_scbs(struct ahc_softc *ahc, int target, char channel,
int lun, u_int tag, role_t role, int status)
{
struct scb *scbp;
u_int active_scb;
int i;
int found;
/* restore this when we're done */
active_scb = ahc_inb(ahc, SCBPTR);
found = ahc_search_qinfifo(ahc, target, channel, lun, SCB_LIST_NULL,
role, SCB_REQUEUE, SEARCH_COMPLETE);
/*
* Search waiting for selection list.
*/
{
u_int8_t next, prev;
next = ahc_inb(ahc, WAITING_SCBH); /* Start at head of list. */
prev = SCB_LIST_NULL;
while (next != SCB_LIST_NULL) {
u_int8_t scb_index;
ahc_outb(ahc, SCBPTR, next);
scb_index = ahc_inb(ahc, SCB_TAG);
if (scb_index >= ahc->scb_data->numscbs) {
panic("Waiting List inconsistency. "
"SCB index == %d, yet numscbs == %d.",
scb_index, ahc->scb_data->numscbs);
}
scbp = &ahc->scb_data->scbarray[scb_index];
if (ahc_match_scb(scbp, target, channel,
lun, SCB_LIST_NULL, role)) {
next = ahc_abort_wscb(ahc, next, prev);
} else {
prev = next;
next = ahc_inb(ahc, SCB_NEXT);
}
}
}
/*
* Go through the disconnected list and remove any entries we
* have queued for completion, 0'ing their control byte too.
* We save the active SCB and restore it ourselves, so there
* is no reason for this search to restore it too.
*/
ahc_search_disc_list(ahc, target, channel, lun, tag,
/*stop_on_first*/FALSE, /*remove*/TRUE,
/*save_state*/FALSE);
/*
* Go through the hardware SCB array looking for commands that
* were active but not on any list.
*/
for(i = 0; i < ahc->scb_data->maxhscbs; i++) {
u_int scbid;
ahc_outb(ahc, SCBPTR, i);
scbid = ahc_inb(ahc, SCB_TAG);
scbp = &ahc->scb_data->scbarray[scbid];
if (scbid < ahc->scb_data->numscbs
&& ahc_match_scb(scbp, target, channel, lun, tag, role))
ahc_add_curscb_to_free_list(ahc);
}
/*
* Go through the pending CCB list and look for
* commands for this target that are still active.
* These are other tagged commands that were
* disconnected when the reset occured.
*/
{
struct scb *scb;
scb = ahc->pending_ccbs.lh_first;
while (scb != NULL) {
scbp = scb;
scb = scb->plinks.le_next;
if (ahc_match_scb(scbp, target, channel,
lun, tag, role)) {
if (!(scbp->xs->xs_status & XS_STS_DONE))
ahcsetccbstatus(scbp->xs, status);
ahc_freeze_ccb(scbp);
ahc_done(ahc, scbp);
found++;
}
}
}
ahc_outb(ahc, SCBPTR, active_scb);
return found;
}
static int
ahc_search_disc_list(struct ahc_softc *ahc, int target, char channel,
int lun, u_int tag, int stop_on_first, int remove,
int save_state)
{
struct scb *scbp;
u_int next;
u_int prev;
u_int count;
u_int active_scb;
count = 0;
next = ahc_inb(ahc, DISCONNECTED_SCBH);
prev = SCB_LIST_NULL;
if (save_state) {
/* restore this when we're done */
active_scb = ahc_inb(ahc, SCBPTR);
} else
/* Silence compiler */
active_scb = SCB_LIST_NULL;
while (next != SCB_LIST_NULL) {
u_int scb_index;
ahc_outb(ahc, SCBPTR, next);
scb_index = ahc_inb(ahc, SCB_TAG);
if (scb_index >= ahc->scb_data->numscbs) {
panic("Disconnected List inconsistency. "
"SCB index == %d, yet numscbs == %d.",
scb_index, ahc->scb_data->numscbs);
}
scbp = &ahc->scb_data->scbarray[scb_index];
if (ahc_match_scb(scbp, target, channel, lun,
tag, ROLE_INITIATOR)) {
count++;
if (remove) {
next =
ahc_rem_scb_from_disc_list(ahc, prev, next);
} else {
prev = next;
next = ahc_inb(ahc, SCB_NEXT);
}
if (stop_on_first)
break;
} else {
prev = next;
next = ahc_inb(ahc, SCB_NEXT);
}
}
if (save_state)
ahc_outb(ahc, SCBPTR, active_scb);
return (count);
}
static u_int
ahc_rem_scb_from_disc_list(struct ahc_softc *ahc, u_int prev, u_int scbptr)
{
u_int next;
ahc_outb(ahc, SCBPTR, scbptr);
next = ahc_inb(ahc, SCB_NEXT);
ahc_outb(ahc, SCB_CONTROL, 0);
ahc_add_curscb_to_free_list(ahc);
if (prev != SCB_LIST_NULL) {
ahc_outb(ahc, SCBPTR, prev);
ahc_outb(ahc, SCB_NEXT, next);
} else
ahc_outb(ahc, DISCONNECTED_SCBH, next);
return (next);
}
static void
ahc_add_curscb_to_free_list(struct ahc_softc *ahc)
{
/* Invalidate the tag so that ahc_find_scb doesn't think it's active */
ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL);
ahc_outb(ahc, SCB_NEXT, ahc_inb(ahc, FREE_SCBH));
ahc_outb(ahc, FREE_SCBH, ahc_inb(ahc, SCBPTR));
}
/*
* Manipulate the waiting for selection list and return the
* scb that follows the one that we remove.
*/
static u_int
ahc_abort_wscb(struct ahc_softc *ahc, u_int scbpos, u_int prev)
{
u_int curscb, next;
/*
* Select the SCB we want to abort and
* pull the next pointer out of it.
*/
curscb = ahc_inb(ahc, SCBPTR);
ahc_outb(ahc, SCBPTR, scbpos);
next = ahc_inb(ahc, SCB_NEXT);
/* Clear the necessary fields */
ahc_outb(ahc, SCB_CONTROL, 0);
ahc_add_curscb_to_free_list(ahc);
/* update the waiting list */
if (prev == SCB_LIST_NULL) {
/* First in the list */
ahc_outb(ahc, WAITING_SCBH, next);
/*
* Ensure we aren't attempting to perform
* selection for this entry.
*/
ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO));
} else {
/*
* Select the scb that pointed to us
* and update its next pointer.
*/
ahc_outb(ahc, SCBPTR, prev);
ahc_outb(ahc, SCB_NEXT, next);
}
/*
* Point us back at the original scb position.
*/
ahc_outb(ahc, SCBPTR, curscb);
return next;
}
static void
ahc_clear_intstat(struct ahc_softc *ahc)
{
/* Clear any interrupt conditions this may have caused */
ahc_outb(ahc, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO);
ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
|CLRBUSFREE|CLRSCSIPERR|CLRPHASECHG|
CLRREQINIT);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
}
static void
ahc_reset_current_bus(struct ahc_softc *ahc)
{
u_int8_t scsiseq;
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENSCSIRST);
scsiseq = ahc_inb(ahc, SCSISEQ);
ahc_outb(ahc, SCSISEQ, scsiseq | SCSIRSTO);
DELAY(AHC_BUSRESET_DELAY);
/* Turn off the bus reset */
ahc_outb(ahc, SCSISEQ, scsiseq & ~SCSIRSTO);
ahc_clear_intstat(ahc);
/* Re-enable reset interrupts */
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) | ENSCSIRST);
}
static int
ahc_reset_channel(struct ahc_softc *ahc, char channel, int initiate_reset)
{
u_int initiator, target, max_scsiid;
u_int sblkctl;
u_int our_id;
int found;
int restart_needed;
char cur_channel;
ahc->pending_device = NULL;
pause_sequencer(ahc);
/*
* Run our command complete fifos to ensure that we perform
* completion processing on any commands that 'completed'
* before the reset occurred.
*/
ahc_run_qoutfifo(ahc);
/*
* Reset the bus if we are initiating this reset
*/
sblkctl = ahc_inb(ahc, SBLKCTL);
cur_channel = 'A';
if ((ahc->features & AHC_TWIN) != 0
&& ((sblkctl & SELBUSB) != 0))
cur_channel = 'B';
if (cur_channel != channel) {
/* Case 1: Command for another bus is active
* Stealthily reset the other bus without
* upsetting the current bus.
*/
ahc_outb(ahc, SBLKCTL, sblkctl ^ SELBUSB);
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE);
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
if (initiate_reset)
ahc_reset_current_bus(ahc);
ahc_clear_intstat(ahc);
ahc_outb(ahc, SBLKCTL, sblkctl);
restart_needed = FALSE;
} else {
/* Case 2: A command from this bus is active or we're idle */
ahc_clear_msg_state(ahc);
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE);
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
if (initiate_reset)
ahc_reset_current_bus(ahc);
ahc_clear_intstat(ahc);
/*
* Since we are going to restart the sequencer, avoid
* a race in the sequencer that could cause corruption
* of our Q pointers by starting over from index 0.
*/
ahc->qoutfifonext = 0;
if ((ahc->features & AHC_QUEUE_REGS) != 0)
ahc_outb(ahc, SDSCB_QOFF, 0);
else
ahc_outb(ahc, QOUTPOS, 0);
restart_needed = TRUE;
}
/*
* Clean up all the state information for the
* pending transactions on this bus.
*/
found = ahc_abort_scbs(ahc, AHC_TARGET_WILDCARD, channel,
AHC_LUN_WILDCARD, SCB_LIST_NULL,
ROLE_UNKNOWN, XS_RESET);
if (channel == 'B') {
our_id = ahc->our_id_b;
} else {
our_id = ahc->our_id;
}
max_scsiid = (ahc->features & AHC_WIDE) ? 15 : 7;
/*
* Revert to async/narrow transfers until we renegotiate.
*/
for (target = 0; target <= max_scsiid; target++) {
if (ahc->enabled_targets[target] == NULL)
continue;
for (initiator = 0; initiator <= max_scsiid; initiator++) {
struct ahc_devinfo devinfo;
ahc_compile_devinfo(&devinfo, target, initiator,
AHC_LUN_WILDCARD,
channel, ROLE_UNKNOWN);
ahc_set_width(ahc, &devinfo,
MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_CUR, /*paused*/TRUE, FALSE);
ahc_set_syncrate(ahc, &devinfo,
/*syncrate*/NULL, /*period*/0,
/*offset*/0, AHC_TRANS_CUR,
/*paused*/TRUE, FALSE);
}
}
if (restart_needed)
restart_sequencer(ahc);
else
unpause_sequencer(ahc);
return found;
}
static int
ahc_match_scb(struct scb *scb, int target, char channel,
int lun, u_int tag, role_t role)
{
int targ = SCB_TARGET(scb);
char chan = SCB_CHANNEL(scb);
int slun = SCB_LUN(scb);
int match;
match = ((chan == channel) || (channel == ALL_CHANNELS));
if (match != 0)
match = ((targ == target) || (target == AHC_TARGET_WILDCARD));
if (match != 0)
match = ((lun == slun) || (lun == AHC_LUN_WILDCARD));
return match;
}
static void
ahc_construct_sdtr(struct ahc_softc *ahc, u_int period, u_int offset)
{
ahc->msgout_buf[ahc->msgout_index++] = MSG_EXTENDED;
ahc->msgout_buf[ahc->msgout_index++] = MSG_EXT_SDTR_LEN;
ahc->msgout_buf[ahc->msgout_index++] = MSG_EXT_SDTR;
ahc->msgout_buf[ahc->msgout_index++] = period;
ahc->msgout_buf[ahc->msgout_index++] = offset;
ahc->msgout_len += 5;
}
static void
ahc_construct_wdtr(struct ahc_softc *ahc, u_int bus_width)
{
ahc->msgout_buf[ahc->msgout_index++] = MSG_EXTENDED;
ahc->msgout_buf[ahc->msgout_index++] = MSG_EXT_WDTR_LEN;
ahc->msgout_buf[ahc->msgout_index++] = MSG_EXT_WDTR;
ahc->msgout_buf[ahc->msgout_index++] = bus_width;
ahc->msgout_len += 4;
}
static void
ahc_calc_residual(struct scb *scb)
{
struct hardware_scb *hscb;
hscb = scb->hscb;
/*
* If the disconnected flag is still set, this is bogus
* residual information left over from a sequencer
* pagin/pageout, so ignore this case.
*/
if ((scb->hscb->control & DISCONNECTED) == 0) {
u_int32_t resid;
int resid_sgs;
int sg;
/*
* Remainder of the SG where the transfer
* stopped.
*/
resid = (hscb->residual_data_count[2] << 16)
| (hscb->residual_data_count[1] <<8)
| (hscb->residual_data_count[0]);
/*
* Add up the contents of all residual
* SG segments that are after the SG where
* the transfer stopped.
*/
resid_sgs = scb->hscb->residual_SG_count - 1/*current*/;
sg = scb->sg_count - resid_sgs;
while (resid_sgs > 0) {
resid += le32toh(scb->sg_list[sg].len);
sg++;
resid_sgs--;
}
scb->xs->resid = resid;
}
/*
* Clean out the residual information in this SCB for its
* next consumer.
*/
hscb->residual_SG_count = 0;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWMISC) {
scsi_print_addr(scb->xs->sc_link);
printf("Handled Residual of %ld bytes\n" ,(long)scb->xs->resid);
}
#endif
}
static void
ahc_update_pending_syncrates(struct ahc_softc *ahc)
{
struct scb *scb;
int pending_ccb_count;
int i;
u_int saved_scbptr;
/*
* Traverse the pending SCB list and ensure that all of the
* SCBs there have the proper settings.
*/
scb = LIST_FIRST(&ahc->pending_ccbs);
pending_ccb_count = 0;
while (scb != NULL) {
struct ahc_devinfo devinfo;
struct scsipi_xfer *xs;
struct scb *pending_scb;
struct hardware_scb *pending_hscb;
struct ahc_initiator_tinfo *tinfo;
struct tmode_tstate *tstate;
u_int our_id, remote_id;
xs = scb->xs;
pending_scb = scb;
pending_hscb = pending_scb->hscb;
our_id = SCB_IS_SCSIBUS_B(pending_scb)
? ahc->our_id_b : ahc->our_id;
remote_id = xs->sc_link->scsipi_scsi.target;
ahc_compile_devinfo(&devinfo, our_id, remote_id,
SCB_LUN(pending_scb),
SCB_CHANNEL(pending_scb),
ROLE_UNKNOWN);
tinfo = ahc_fetch_transinfo(ahc, devinfo.channel,
our_id, remote_id, &tstate);
pending_hscb->control &= ~ULTRAENB;
if ((tstate->ultraenb & devinfo.target_mask) != 0)
pending_hscb->control |= ULTRAENB;
pending_hscb->scsirate = tinfo->scsirate;
pending_hscb->scsioffset = tinfo->current.offset;
pending_ccb_count++;
scb = LIST_NEXT(scb, plinks);
}
if (pending_ccb_count == 0)
return;
saved_scbptr = ahc_inb(ahc, SCBPTR);
/* Ensure that the hscbs down on the card match the new information */
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
u_int scb_tag;
ahc_outb(ahc, SCBPTR, i);
scb_tag = ahc_inb(ahc, SCB_TAG);
if (scb_tag != SCB_LIST_NULL) {
struct ahc_devinfo devinfo;
struct scb *pending_scb;
struct scsipi_xfer *xs;
struct hardware_scb *pending_hscb;
struct ahc_initiator_tinfo *tinfo;
struct tmode_tstate *tstate;
u_int our_id, remote_id;
u_int control;
pending_scb = &ahc->scb_data->scbarray[scb_tag];
if (pending_scb->flags == SCB_FREE)
continue;
pending_hscb = pending_scb->hscb;
xs = pending_scb->xs;
our_id = SCB_IS_SCSIBUS_B(pending_scb)
? ahc->our_id_b : ahc->our_id;
remote_id = xs->sc_link->scsipi_scsi.target;
ahc_compile_devinfo(&devinfo, our_id, remote_id,
SCB_LUN(pending_scb),
SCB_CHANNEL(pending_scb),
ROLE_UNKNOWN);
tinfo = ahc_fetch_transinfo(ahc, devinfo.channel,
our_id, remote_id, &tstate);
control = ahc_inb(ahc, SCB_CONTROL);
control &= ~ULTRAENB;
if ((tstate->ultraenb & devinfo.target_mask) != 0)
control |= ULTRAENB;
ahc_outb(ahc, SCB_CONTROL, control);
ahc_outb(ahc, SCB_SCSIRATE, tinfo->scsirate);
ahc_outb(ahc, SCB_SCSIOFFSET, tinfo->current.offset);
}
}
ahc_outb(ahc, SCBPTR, saved_scbptr);
}
#if UNUSED
static void
ahc_dump_targcmd(struct target_cmd *cmd)
{
u_int8_t *byte;
u_int8_t *last_byte;
int i;
byte = &cmd->initiator_channel;
/* Debugging info for received commands */
last_byte = &cmd[1].initiator_channel;
i = 0;
while (byte < last_byte) {
if (i == 0)
printf("\t");
printf("%#x", *byte++);
i++;
if (i == 8) {
printf("\n");
i = 0;
} else {
printf(", ");
}
}
}
#endif
static void
ahc_shutdown(void *arg)
{
struct ahc_softc *ahc;
int i;
u_int sxfrctl1_a, sxfrctl1_b;
ahc = (struct ahc_softc *)arg;
pause_sequencer(ahc);
/*
* Preserve the value of the SXFRCTL1 register for all channels.
* It contains settings that affect termination and we don't want
* to disturb the integrity of the bus during shutdown in case
* we are in a multi-initiator setup.
*/
sxfrctl1_b = 0;
if ((ahc->features & AHC_TWIN) != 0) {
u_int sblkctl;
sblkctl = ahc_inb(ahc, SBLKCTL);
ahc_outb(ahc, SBLKCTL, sblkctl | SELBUSB);
sxfrctl1_b = ahc_inb(ahc, SXFRCTL1);
ahc_outb(ahc, SBLKCTL, sblkctl & ~SELBUSB);
}
sxfrctl1_a = ahc_inb(ahc, SXFRCTL1);
/* This will reset most registers to 0, but not all */
ahc_reset(ahc);
if ((ahc->features & AHC_TWIN) != 0) {
u_int sblkctl;
sblkctl = ahc_inb(ahc, SBLKCTL);
ahc_outb(ahc, SBLKCTL, sblkctl | SELBUSB);
ahc_outb(ahc, SXFRCTL1, sxfrctl1_b);
ahc_outb(ahc, SBLKCTL, sblkctl & ~SELBUSB);
}
ahc_outb(ahc, SXFRCTL1, sxfrctl1_a);
ahc_outb(ahc, SCSISEQ, 0);
ahc_outb(ahc, SXFRCTL0, 0);
ahc_outb(ahc, DSPCISTATUS, 0);
for (i = TARG_SCSIRATE; i < HA_274_BIOSCTRL; i++)
ahc_outb(ahc, i, 0);
}
#if defined(AHC_DEBUG) && 0
static void
ahc_dumptinfo(struct ahc_softc *ahc, struct ahc_initiator_tinfo *tinfo)
{
printf("%s: tinfo: rate %u\n", ahc_name(ahc), tinfo->scsirate);
printf("\tcurrent:\n");
printf("\t\twidth %u period %u offset %u flags %x\n",
tinfo->current.width, tinfo->current.period,
tinfo->current.offset, tinfo->current.ppr_flags);
printf("\tgoal:\n");
printf("\t\twidth %u period %u offset %u flags %x\n",
tinfo->goal.width, tinfo->goal.period,
tinfo->goal.offset, tinfo->goal.ppr_flags);
printf("\tuser:\n");
printf("\t\twidth %u period %u offset %u flags %x\n",
tinfo->user.width, tinfo->user.period,
tinfo->user.offset, tinfo->user.ppr_flags);
}
#endif
static void
ahc_check_tags(struct ahc_softc *ahc, struct scsipi_xfer *xs)
{
struct scsipi_inquiry_data *inq;
struct ahc_devinfo devinfo;
struct tmode_tstate *tstate;
int target_id, our_id;
char channel;
if (xs->cmd->opcode != INQUIRY || xs->error != XS_NOERROR)
return;
if (xs->sc_link->quirks & SDEV_NOTAG)
return;
target_id = xs->sc_link->scsipi_scsi.target;
our_id = SIM_SCSI_ID(ahc, xs->sc_link);
channel = SIM_CHANNEL(ahc, xs->sc_link);
(void)ahc_fetch_transinfo(ahc, channel, our_id, target_id, &tstate);
ahc_compile_devinfo(&devinfo, our_id, target_id,
xs->sc_link->scsipi_scsi.lun, channel, ROLE_INITIATOR);
if (tstate->tagdisable & devinfo.target_mask)
return;
/*
* Sneak a look at the results of the SCSI Inquiry
* command and see if we can do Tagged queing. This
* should really be done by the higher level drivers.
*/
inq = (struct scsipi_inquiry_data *)xs->data;
if ((inq->flags3 & SID_CmdQue) && !(ahc_istagged_device(ahc, xs, 1))) {
printf("%s: target %d using tagged queuing\n",
ahc_name(ahc), xs->sc_link->scsipi_scsi.target);
ahc_set_tags(ahc, &devinfo, TRUE);
if (ahc->scb_data->maxhscbs >= 16 ||
(ahc->flags & AHC_PAGESCBS)) {
/* Default to 16 tags */
xs->sc_link->openings = 16;
} else {
/*
* Default to 4 tags on whimpy
* cards that don't have much SCB
* space and can't page. This prevents
* a single device from hogging all
* slots. We should really have a better
* way of providing fairness.
*/
xs->sc_link->openings = 4;
}
}
}
static int
ahc_istagged_device(struct ahc_softc *ahc, struct scsipi_xfer *xs,
int nocmdcheck)
{
char channel;
u_int our_id, target;
struct tmode_tstate *tstate;
struct ahc_devinfo devinfo;
if (xs->sc_link->quirks & SDEV_NOTAG)
return 0;
/*
* XXX never do these commands with tags. Should really be
* in a higher layer.
*/
if (!nocmdcheck && (xs->cmd->opcode == INQUIRY ||
xs->cmd->opcode == TEST_UNIT_READY ||
xs->cmd->opcode == REQUEST_SENSE))
return 0;
channel = SIM_CHANNEL(ahc, xs->sc_link);
our_id = SIM_SCSI_ID(ahc, xs->sc_link);
target = xs->sc_link->scsipi_scsi.target;
(void)ahc_fetch_transinfo(ahc, channel, our_id, target, &tstate);
ahc_compile_devinfo(&devinfo, our_id, target,
xs->sc_link->scsipi_scsi.lun, channel, ROLE_INITIATOR);
return (tstate->tagenable & devinfo.target_mask);
}