dad92086a4
where the PROM can see it. (Bug found by Jeremy -- Thanks!)
1183 lines
30 KiB
C
1183 lines
30 KiB
C
/* $NetBSD: machdep.c,v 1.2 1997/01/16 22:08:31 gwr Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1988 University of Utah.
|
|
* Copyright (c) 1982, 1986, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: Utah Hdr: machdep.c 1.74 92/12/20
|
|
* from: @(#)machdep.c 8.10 (Berkeley) 4/20/94
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/map.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/file.h>
|
|
#include <sys/clist.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/user.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/core.h>
|
|
#include <sys/kcore.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/syscallargs.h>
|
|
#ifdef SYSVMSG
|
|
#include <sys/msg.h>
|
|
#endif
|
|
#ifdef SYSVSEM
|
|
#include <sys/sem.h>
|
|
#endif
|
|
#ifdef SYSVSHM
|
|
#include <sys/shm.h>
|
|
#endif
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
|
|
#include <dev/cons.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/reg.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/pte.h>
|
|
#include <machine/mon.h>
|
|
#include <machine/dvma.h>
|
|
#include <machine/db_machdep.h>
|
|
|
|
#include "machdep.h"
|
|
|
|
extern char *cpu_string;
|
|
extern char version[];
|
|
extern short exframesize[];
|
|
|
|
/* Defined in locore.s */
|
|
extern char kernel_text[];
|
|
/* Defined by the linker */
|
|
extern char etext[];
|
|
|
|
int physmem;
|
|
int fpu_type;
|
|
int msgbufmapped;
|
|
|
|
vm_offset_t vmmap;
|
|
|
|
/*
|
|
* safepri is a safe priority for sleep to set for a spin-wait
|
|
* during autoconfiguration or after a panic.
|
|
*/
|
|
int safepri = PSL_LOWIPL;
|
|
|
|
/*
|
|
* Declare these as initialized data so we can patch them.
|
|
*/
|
|
int nswbuf = 0;
|
|
#ifdef NBUF
|
|
int nbuf = NBUF;
|
|
#else
|
|
int nbuf = 0;
|
|
#endif
|
|
#ifdef BUFPAGES
|
|
int bufpages = BUFPAGES;
|
|
#else
|
|
int bufpages = 0;
|
|
#endif
|
|
label_t *nofault;
|
|
|
|
static void identifycpu __P((void));
|
|
static void initcpu __P((void));
|
|
|
|
/*
|
|
* Console initialization: called early on from main,
|
|
* before vm init or startup. Do enough configuration
|
|
* to choose and initialize a console.
|
|
*/
|
|
void consinit()
|
|
{
|
|
cninit();
|
|
|
|
#ifdef KGDB
|
|
/* XXX - Ask on console for kgdb_dev? */
|
|
zs_kgdb_init(); /* XXX */
|
|
/* Note: kgdb_connect() will just return if kgdb_dev<0 */
|
|
if (boothowto & RB_KDB)
|
|
kgdb_connect(1);
|
|
#endif
|
|
#ifdef DDB
|
|
/* Now that we have a console, we can stop in DDB. */
|
|
db_machine_init();
|
|
ddb_init();
|
|
if (boothowto & RB_KDB)
|
|
Debugger();
|
|
#endif DDB
|
|
}
|
|
|
|
/*
|
|
* allocsys() - Private routine used by cpu_startup() below.
|
|
*
|
|
* Allocate space for system data structures. We are given
|
|
* a starting virtual address and we return a final virtual
|
|
* address; along the way we set each data structure pointer.
|
|
*
|
|
* We call allocsys() with 0 to find out how much space we want,
|
|
* allocate that much and fill it with zeroes, and then call
|
|
* allocsys() again with the correct base virtual address.
|
|
*/
|
|
#define valloc(name, type, num) \
|
|
v = (caddr_t)(((name) = (type *)v) + (num))
|
|
static caddr_t allocsys __P((caddr_t));
|
|
static caddr_t
|
|
allocsys(v)
|
|
register caddr_t v;
|
|
{
|
|
|
|
#ifdef REAL_CLISTS
|
|
valloc(cfree, struct cblock, nclist);
|
|
#endif
|
|
valloc(callout, struct callout, ncallout);
|
|
valloc(swapmap, struct map, nswapmap = maxproc * 2);
|
|
#ifdef SYSVSHM
|
|
valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
|
|
#endif
|
|
#ifdef SYSVSEM
|
|
valloc(sema, struct semid_ds, seminfo.semmni);
|
|
valloc(sem, struct sem, seminfo.semmns);
|
|
/* This is pretty disgusting! */
|
|
valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
|
|
#endif
|
|
#ifdef SYSVMSG
|
|
valloc(msgpool, char, msginfo.msgmax);
|
|
valloc(msgmaps, struct msgmap, msginfo.msgseg);
|
|
valloc(msghdrs, struct msg, msginfo.msgtql);
|
|
valloc(msqids, struct msqid_ds, msginfo.msgmni);
|
|
#endif
|
|
|
|
/*
|
|
* Determine how many buffers to allocate. We allocate
|
|
* the BSD standard of use 10% of memory for the first 2 Meg,
|
|
* 5% of remaining. Insure a minimum of 16 buffers.
|
|
* Allocate 1/2 as many swap buffer headers as file i/o buffers.
|
|
*/
|
|
if (bufpages == 0) {
|
|
/* We always have more than 2MB of memory. */
|
|
bufpages = ((btoc(2 * 1024 * 1024) + physmem) /
|
|
(20 * CLSIZE));
|
|
}
|
|
if (nbuf == 0) {
|
|
nbuf = bufpages;
|
|
if (nbuf < 16)
|
|
nbuf = 16;
|
|
}
|
|
if (nswbuf == 0) {
|
|
nswbuf = (nbuf / 2) &~ 1; /* force even */
|
|
if (nswbuf > 256)
|
|
nswbuf = 256; /* sanity */
|
|
}
|
|
valloc(swbuf, struct buf, nswbuf);
|
|
valloc(buf, struct buf, nbuf);
|
|
return v;
|
|
}
|
|
#undef valloc
|
|
|
|
/*
|
|
* cpu_startup: allocate memory for variable-sized tables,
|
|
* initialize cpu, and do autoconfiguration.
|
|
*
|
|
* This is called early in init_main.c:main(), after the
|
|
* kernel memory allocator is ready for use, but before
|
|
* the creation of processes 1,2, and mountroot, etc.
|
|
*/
|
|
void
|
|
cpu_startup()
|
|
{
|
|
caddr_t v;
|
|
int sz, i;
|
|
vm_size_t size;
|
|
int base, residual;
|
|
vm_offset_t minaddr, maxaddr;
|
|
|
|
/*
|
|
* Initialize message buffer (for kernel printf).
|
|
* This is put in physical page zero so it will
|
|
* always be in the same place after a reboot.
|
|
* Its mapping was prepared in pmap_bootstrap().
|
|
* Also, offset some to avoid PROM scribbles.
|
|
*/
|
|
v = (caddr_t) KERNBASE;
|
|
msgbufp = (struct msgbuf *)(v + 0x1000);
|
|
msgbufmapped = 1;
|
|
|
|
/*
|
|
* Good {morning,afternoon,evening,night}.
|
|
*/
|
|
printf(version);
|
|
identifycpu();
|
|
initfpu(); /* also prints FPU type */
|
|
|
|
printf("real mem = %d\n", ctob(physmem));
|
|
|
|
/*
|
|
* Find out how much space we need, allocate it,
|
|
* and then give everything true virtual addresses.
|
|
*/
|
|
sz = (int)allocsys((caddr_t)0);
|
|
if ((v = (caddr_t)kmem_alloc(kernel_map, round_page(sz))) == 0)
|
|
panic("startup: no room for tables");
|
|
if (allocsys(v) - v != sz)
|
|
panic("startup: table size inconsistency");
|
|
|
|
/*
|
|
* Now allocate buffers proper. They are different than the above
|
|
* in that they usually occupy more virtual memory than physical.
|
|
*/
|
|
size = MAXBSIZE * nbuf;
|
|
buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
|
|
&maxaddr, size, TRUE);
|
|
minaddr = (vm_offset_t)buffers;
|
|
if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
|
|
&minaddr, size, FALSE) != KERN_SUCCESS)
|
|
panic("startup: cannot allocate buffers");
|
|
if ((bufpages / nbuf) >= btoc(MAXBSIZE)) {
|
|
/* don't want to alloc more physical mem than needed */
|
|
bufpages = btoc(MAXBSIZE) * nbuf;
|
|
}
|
|
base = bufpages / nbuf;
|
|
residual = bufpages % nbuf;
|
|
for (i = 0; i < nbuf; i++) {
|
|
vm_size_t curbufsize;
|
|
vm_offset_t curbuf;
|
|
|
|
/*
|
|
* First <residual> buffers get (base+1) physical pages
|
|
* allocated for them. The rest get (base) physical pages.
|
|
*
|
|
* The rest of each buffer occupies virtual space,
|
|
* but has no physical memory allocated for it.
|
|
*/
|
|
curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
|
|
curbufsize = CLBYTES * (i < residual ? base+1 : base);
|
|
vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
|
|
vm_map_simplify(buffer_map, curbuf);
|
|
}
|
|
|
|
/*
|
|
* Allocate a submap for exec arguments. This map effectively
|
|
* limits the number of processes exec'ing at any time.
|
|
*/
|
|
exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
|
|
16*NCARGS, TRUE);
|
|
|
|
/*
|
|
* We don't use a submap for physio, and use a separate map
|
|
* for DVMA allocations. Our vmapbuf just maps pages into
|
|
* the kernel map (any kernel mapping is OK) and then the
|
|
* device drivers clone the kernel mappings into DVMA space.
|
|
*/
|
|
|
|
/*
|
|
* Finally, allocate mbuf pool. Since mclrefcnt is an off-size
|
|
* we use the more space efficient malloc in place of kmem_alloc.
|
|
*/
|
|
mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
|
|
M_MBUF, M_NOWAIT);
|
|
bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
|
|
mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
|
|
VM_MBUF_SIZE, FALSE);
|
|
|
|
/*
|
|
* Initialize callouts
|
|
*/
|
|
callfree = callout;
|
|
for (i = 1; i < ncallout; i++)
|
|
callout[i-1].c_next = &callout[i];
|
|
callout[i-1].c_next = NULL;
|
|
|
|
printf("avail mem = %d\n", (int) ptoa(cnt.v_free_count));
|
|
printf("using %d buffers containing %d bytes of memory\n",
|
|
nbuf, bufpages * CLBYTES);
|
|
|
|
/*
|
|
* Tell the VM system that writing to kernel text isn't allowed.
|
|
* If we don't, we might end up COW'ing the text segment!
|
|
*/
|
|
if (vm_map_protect(kernel_map, (vm_offset_t) kernel_text,
|
|
sun3x_trunc_page((vm_offset_t) etext),
|
|
VM_PROT_READ|VM_PROT_EXECUTE, TRUE)
|
|
!= KERN_SUCCESS)
|
|
panic("can't protect kernel text");
|
|
|
|
/*
|
|
* Allocate a virtual page (for use by /dev/mem)
|
|
* This page is handed to pmap_enter() therefore
|
|
* it has to be in the normal kernel VA range.
|
|
*/
|
|
vmmap = kmem_alloc_wait(kernel_map, NBPG);
|
|
|
|
/*
|
|
* Create the DVMA maps.
|
|
*/
|
|
dvma_init();
|
|
|
|
/*
|
|
* Set up CPU-specific registers, cache, etc.
|
|
*/
|
|
initcpu();
|
|
|
|
/*
|
|
* Set up buffers, so they can be used to read disk labels.
|
|
*/
|
|
bufinit();
|
|
|
|
/*
|
|
* Configure the system.
|
|
*/
|
|
configure();
|
|
}
|
|
|
|
/*
|
|
* Set registers on exec.
|
|
* XXX Should clear registers except sp, pc,
|
|
* but would break init; should be fixed soon.
|
|
*/
|
|
void
|
|
setregs(p, pack, stack, retval)
|
|
register struct proc *p;
|
|
struct exec_package *pack;
|
|
u_long stack;
|
|
register_t *retval;
|
|
{
|
|
struct frame *frame = (struct frame *)p->p_md.md_regs;
|
|
|
|
frame->f_pc = pack->ep_entry & ~1;
|
|
frame->f_regs[SP] = stack;
|
|
frame->f_regs[A2] = (int)PS_STRINGS;
|
|
|
|
/* restore a null state frame */
|
|
p->p_addr->u_pcb.pcb_fpregs.fpf_null = 0;
|
|
if (fpu_type) {
|
|
m68881_restore(&p->p_addr->u_pcb.pcb_fpregs);
|
|
}
|
|
p->p_md.md_flags = 0;
|
|
/* XXX - HPUX sigcode hack would go here... */
|
|
}
|
|
|
|
/*
|
|
* Info for CTL_HW
|
|
*/
|
|
char machine[] = "sun3x"; /* cpu "architecture" */
|
|
char cpu_model[120];
|
|
extern long hostid;
|
|
|
|
void
|
|
identifycpu()
|
|
{
|
|
/*
|
|
* actual identification done earlier because i felt like it,
|
|
* and i believe i will need the info to deal with some VAC, and awful
|
|
* framebuffer placement problems. could be moved later.
|
|
*/
|
|
strcpy(cpu_model, "Sun 3/");
|
|
|
|
/* should eventually include whether it has a VAC, mc6888x version, etc */
|
|
strcat(cpu_model, cpu_string);
|
|
|
|
printf("Model: %s (hostid %x)\n", cpu_model, (int) hostid);
|
|
}
|
|
|
|
/*
|
|
* machine dependent system variables.
|
|
*/
|
|
int
|
|
cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
|
|
int *name;
|
|
u_int namelen;
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
size_t newlen;
|
|
struct proc *p;
|
|
{
|
|
int error;
|
|
dev_t consdev;
|
|
|
|
/* all sysctl names at this level are terminal */
|
|
if (namelen != 1)
|
|
return (ENOTDIR); /* overloaded */
|
|
|
|
switch (name[0]) {
|
|
case CPU_CONSDEV:
|
|
if (cn_tab != NULL)
|
|
consdev = cn_tab->cn_dev;
|
|
else
|
|
consdev = NODEV;
|
|
error = sysctl_rdstruct(oldp, oldlenp, newp,
|
|
&consdev, sizeof consdev);
|
|
break;
|
|
|
|
#if 0 /* XXX - Not yet... */
|
|
case CPU_ROOT_DEVICE:
|
|
error = sysctl_rdstring(oldp, oldlenp, newp, root_device);
|
|
break;
|
|
|
|
case CPU_BOOTED_KERNEL:
|
|
error = sysctl_rdstring(oldp, oldlenp, newp, booted_kernel);
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#define SS_RTEFRAME 1
|
|
#define SS_FPSTATE 2
|
|
#define SS_USERREGS 4
|
|
|
|
struct sigstate {
|
|
int ss_flags; /* which of the following are valid */
|
|
struct frame ss_frame; /* original exception frame */
|
|
struct fpframe ss_fpstate; /* 68881/68882 state info */
|
|
};
|
|
|
|
/*
|
|
* WARNING: code in locore.s assumes the layout shown for sf_signum
|
|
* thru sf_handler so... don't screw with them!
|
|
*/
|
|
struct sigframe {
|
|
int sf_signum; /* signo for handler */
|
|
int sf_code; /* additional info for handler */
|
|
struct sigcontext *sf_scp; /* context ptr for handler */
|
|
sig_t sf_handler; /* handler addr for u_sigc */
|
|
struct sigstate sf_state; /* state of the hardware */
|
|
struct sigcontext sf_sc; /* actual context */
|
|
};
|
|
|
|
#ifdef DEBUG
|
|
int sigdebug = 0;
|
|
int sigpid = 0;
|
|
#define SDB_FOLLOW 0x01
|
|
#define SDB_KSTACK 0x02
|
|
#define SDB_FPSTATE 0x04
|
|
#endif
|
|
|
|
/*
|
|
* Send an interrupt to process.
|
|
*/
|
|
void
|
|
sendsig(catcher, sig, mask, code)
|
|
sig_t catcher;
|
|
int sig, mask;
|
|
u_long code;
|
|
{
|
|
register struct proc *p = curproc;
|
|
register struct sigframe *fp, *kfp;
|
|
register struct frame *frame;
|
|
register struct sigacts *psp = p->p_sigacts;
|
|
register short ft;
|
|
int oonstack, fsize;
|
|
extern char sigcode[], esigcode[];
|
|
|
|
frame = (struct frame *)p->p_md.md_regs;
|
|
ft = frame->f_format;
|
|
oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
|
|
|
|
/*
|
|
* Allocate and validate space for the signal handler
|
|
* context. Note that if the stack is in P0 space, the
|
|
* call to grow() is a nop, and the useracc() check
|
|
* will fail if the process has not already allocated
|
|
* the space with a `brk'.
|
|
*/
|
|
fsize = sizeof(struct sigframe);
|
|
if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
|
|
(psp->ps_sigonstack & sigmask(sig))) {
|
|
fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
|
|
psp->ps_sigstk.ss_size - fsize);
|
|
psp->ps_sigstk.ss_flags |= SS_ONSTACK;
|
|
} else
|
|
fp = (struct sigframe *)(frame->f_regs[SP] - fsize);
|
|
if ((unsigned)fp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
|
|
(void)grow(p, (unsigned)fp);
|
|
#ifdef DEBUG
|
|
if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
|
|
printf("sendsig(%d): sig %d ssp %x usp %x scp %x ft %d\n",
|
|
p->p_pid, sig, &oonstack, fp, &fp->sf_sc, ft);
|
|
#endif
|
|
if (useracc((caddr_t)fp, fsize, B_WRITE) == 0) {
|
|
#ifdef DEBUG
|
|
if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
|
|
printf("sendsig(%d): useracc failed on sig %d\n",
|
|
p->p_pid, sig);
|
|
#endif
|
|
/*
|
|
* Process has trashed its stack; give it an illegal
|
|
* instruction to halt it in its tracks.
|
|
*/
|
|
SIGACTION(p, SIGILL) = SIG_DFL;
|
|
sig = sigmask(SIGILL);
|
|
p->p_sigignore &= ~sig;
|
|
p->p_sigcatch &= ~sig;
|
|
p->p_sigmask &= ~sig;
|
|
psignal(p, SIGILL);
|
|
return;
|
|
}
|
|
kfp = (struct sigframe *)malloc((u_long)fsize, M_TEMP, M_WAITOK);
|
|
/*
|
|
* Build the argument list for the signal handler.
|
|
*/
|
|
kfp->sf_signum = sig;
|
|
kfp->sf_code = code;
|
|
kfp->sf_scp = &fp->sf_sc;
|
|
kfp->sf_handler = catcher;
|
|
/*
|
|
* Save necessary hardware state. Currently this includes:
|
|
* - general registers
|
|
* - original exception frame (if not a "normal" frame)
|
|
* - FP coprocessor state
|
|
*/
|
|
kfp->sf_state.ss_flags = SS_USERREGS;
|
|
bcopy((caddr_t)frame->f_regs,
|
|
(caddr_t)kfp->sf_state.ss_frame.f_regs, sizeof frame->f_regs);
|
|
if (ft >= FMT7) {
|
|
#ifdef DEBUG
|
|
if (ft > 15 || exframesize[ft] < 0)
|
|
panic("sendsig: bogus frame type");
|
|
#endif
|
|
kfp->sf_state.ss_flags |= SS_RTEFRAME;
|
|
kfp->sf_state.ss_frame.f_format = frame->f_format;
|
|
kfp->sf_state.ss_frame.f_vector = frame->f_vector;
|
|
bcopy((caddr_t)&frame->F_u,
|
|
(caddr_t)&kfp->sf_state.ss_frame.F_u,
|
|
(size_t) exframesize[ft]);
|
|
/*
|
|
* Leave an indicator that we need to clean up the kernel
|
|
* stack. We do this by setting the "pad word" above the
|
|
* hardware stack frame to the amount the stack must be
|
|
* adjusted by.
|
|
*
|
|
* N.B. we increment rather than just set f_stackadj in
|
|
* case we are called from syscall when processing a
|
|
* sigreturn. In that case, f_stackadj may be non-zero.
|
|
*/
|
|
frame->f_stackadj += exframesize[ft];
|
|
frame->f_format = frame->f_vector = 0;
|
|
#ifdef DEBUG
|
|
if (sigdebug & SDB_FOLLOW)
|
|
printf("sendsig(%d): copy out %d of frame %d\n",
|
|
p->p_pid, exframesize[ft], ft);
|
|
#endif
|
|
}
|
|
|
|
if (fpu_type) {
|
|
kfp->sf_state.ss_flags |= SS_FPSTATE;
|
|
m68881_save(&kfp->sf_state.ss_fpstate);
|
|
}
|
|
#ifdef DEBUG
|
|
if ((sigdebug & SDB_FPSTATE) && *(char *)&kfp->sf_state.ss_fpstate)
|
|
printf("sendsig(%d): copy out FP state (%x) to %x\n",
|
|
p->p_pid, *(u_int *)&kfp->sf_state.ss_fpstate,
|
|
&kfp->sf_state.ss_fpstate);
|
|
#endif
|
|
|
|
/*
|
|
* Build the signal context to be used by sigreturn.
|
|
*/
|
|
kfp->sf_sc.sc_onstack = oonstack;
|
|
kfp->sf_sc.sc_mask = mask;
|
|
kfp->sf_sc.sc_sp = frame->f_regs[SP];
|
|
kfp->sf_sc.sc_fp = frame->f_regs[A6];
|
|
kfp->sf_sc.sc_ap = (int)&fp->sf_state;
|
|
kfp->sf_sc.sc_pc = frame->f_pc;
|
|
kfp->sf_sc.sc_ps = frame->f_sr;
|
|
(void) copyout((caddr_t)kfp, (caddr_t)fp, fsize);
|
|
frame->f_regs[SP] = (int)fp;
|
|
#ifdef DEBUG
|
|
if (sigdebug & SDB_FOLLOW)
|
|
printf("sendsig(%d): sig %d scp %x fp %x sc_sp %x sc_ap %x\n",
|
|
p->p_pid, sig, kfp->sf_scp, fp,
|
|
kfp->sf_sc.sc_sp, kfp->sf_sc.sc_ap);
|
|
#endif
|
|
/*
|
|
* Signal trampoline code is at base of user stack.
|
|
*/
|
|
frame->f_pc = (int)PS_STRINGS - (esigcode - sigcode);
|
|
#ifdef DEBUG
|
|
if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
|
|
printf("sendsig(%d): sig %d returns\n",
|
|
p->p_pid, sig);
|
|
#endif
|
|
free((caddr_t)kfp, M_TEMP);
|
|
}
|
|
|
|
/*
|
|
* System call to cleanup state after a signal
|
|
* has been taken. Reset signal mask and
|
|
* stack state from context left by sendsig (above).
|
|
* Return to previous pc and psl as specified by
|
|
* context left by sendsig. Check carefully to
|
|
* make sure that the user has not modified the
|
|
* psl to gain improper priviledges or to cause
|
|
* a machine fault.
|
|
*/
|
|
int
|
|
sys_sigreturn(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct sys_sigreturn_args *uap = v;
|
|
register struct sigcontext *scp;
|
|
register struct frame *frame;
|
|
register int rf;
|
|
struct sigcontext tsigc;
|
|
struct sigstate tstate;
|
|
int flags;
|
|
|
|
scp = SCARG(uap, sigcntxp);
|
|
#ifdef DEBUG
|
|
if (sigdebug & SDB_FOLLOW)
|
|
printf("sigreturn: pid %d, scp %x\n", p->p_pid, scp);
|
|
#endif
|
|
if ((int)scp & 1)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Test and fetch the context structure.
|
|
* We grab it all at once for speed.
|
|
*/
|
|
if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
|
|
copyin((caddr_t)scp, (caddr_t)&tsigc, sizeof tsigc))
|
|
return (EINVAL);
|
|
scp = &tsigc;
|
|
if ((scp->sc_ps & (PSL_MBZ|PSL_IPL|PSL_S)) != 0)
|
|
return (EINVAL);
|
|
/*
|
|
* Restore the user supplied information
|
|
*/
|
|
if (scp->sc_onstack & 01)
|
|
p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
|
|
else
|
|
p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
|
|
p->p_sigmask = scp->sc_mask &~ sigcantmask;
|
|
frame = (struct frame *) p->p_md.md_regs;
|
|
frame->f_regs[SP] = scp->sc_sp;
|
|
frame->f_regs[A6] = scp->sc_fp;
|
|
frame->f_pc = scp->sc_pc;
|
|
frame->f_sr = scp->sc_ps;
|
|
|
|
/*
|
|
* Grab pointer to hardware state information.
|
|
* If zero, the user is probably doing a longjmp.
|
|
*/
|
|
if ((rf = scp->sc_ap) == 0)
|
|
return (EJUSTRETURN);
|
|
/*
|
|
* See if there is anything to do before we go to the
|
|
* expense of copying in close to 1/2K of data
|
|
*/
|
|
flags = fuword((caddr_t)rf);
|
|
#ifdef DEBUG
|
|
if (sigdebug & SDB_FOLLOW)
|
|
printf("sigreturn(%d): sc_ap %x flags %x\n",
|
|
p->p_pid, rf, flags);
|
|
#endif
|
|
/*
|
|
* fuword failed (bogus sc_ap value).
|
|
*/
|
|
if (flags == -1)
|
|
return (EINVAL);
|
|
if (flags == 0 || copyin((caddr_t)rf, (caddr_t)&tstate, sizeof tstate))
|
|
return (EJUSTRETURN);
|
|
#ifdef DEBUG
|
|
if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
|
|
printf("sigreturn(%d): ssp %x usp %x scp %x ft %d\n",
|
|
p->p_pid, &flags, scp->sc_sp, SCARG(uap, sigcntxp),
|
|
(flags&SS_RTEFRAME) ? tstate.ss_frame.f_format : -1);
|
|
#endif
|
|
/*
|
|
* Restore most of the users registers except for A6 and SP
|
|
* which were handled above.
|
|
*/
|
|
if (flags & SS_USERREGS)
|
|
bcopy((caddr_t)tstate.ss_frame.f_regs,
|
|
(caddr_t)frame->f_regs, sizeof(frame->f_regs)-2*NBPW);
|
|
/*
|
|
* Restore long stack frames. Note that we do not copy
|
|
* back the saved SR or PC, they were picked up above from
|
|
* the sigcontext structure.
|
|
*/
|
|
if (flags & SS_RTEFRAME) {
|
|
register int sz;
|
|
|
|
/* grab frame type and validate */
|
|
sz = tstate.ss_frame.f_format;
|
|
if (sz > 15 || (sz = exframesize[sz]) < 0)
|
|
return (EINVAL);
|
|
frame->f_stackadj -= sz;
|
|
frame->f_format = tstate.ss_frame.f_format;
|
|
frame->f_vector = tstate.ss_frame.f_vector;
|
|
bcopy((caddr_t)&tstate.ss_frame.F_u, (caddr_t)&frame->F_u, sz);
|
|
#ifdef DEBUG
|
|
if (sigdebug & SDB_FOLLOW)
|
|
printf("sigreturn(%d): copy in %d of frame type %d\n",
|
|
p->p_pid, sz, tstate.ss_frame.f_format);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Finally we restore the original FP context
|
|
*/
|
|
if (flags & SS_FPSTATE)
|
|
m68881_restore(&tstate.ss_fpstate);
|
|
#ifdef DEBUG
|
|
if ((sigdebug & SDB_FPSTATE) && *(char *)&tstate.ss_fpstate)
|
|
printf("sigreturn(%d): copied in FP state (%x) at %x\n",
|
|
p->p_pid, *(u_int *)&tstate.ss_fpstate,
|
|
&tstate.ss_fpstate);
|
|
if ((sigdebug & SDB_FOLLOW) ||
|
|
((sigdebug & SDB_KSTACK) && p->p_pid == sigpid))
|
|
printf("sigreturn(%d): returns\n", p->p_pid);
|
|
#endif
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
|
|
/*
|
|
* Do a sync in preparation for a reboot.
|
|
* XXX - This could probably be common code.
|
|
* XXX - And now, most of it is in vfs_shutdown()
|
|
* XXX - Put waittime checks in there too?
|
|
*/
|
|
int waittime = -1; /* XXX - Who else looks at this? -gwr */
|
|
static void
|
|
reboot_sync __P((void))
|
|
{
|
|
|
|
/* Check waittime here to localize its use to this function. */
|
|
if (waittime >= 0)
|
|
return;
|
|
waittime = 0;
|
|
vfs_shutdown();
|
|
}
|
|
|
|
/*
|
|
* Common part of the BSD and SunOS reboot system calls.
|
|
* XXX - Should be named: cpu_reboot maybe? -gwr
|
|
*/
|
|
__dead void
|
|
boot(howto, user_boot_string)
|
|
int howto;
|
|
char *user_boot_string;
|
|
{
|
|
/* Note: this string MUST be static! */
|
|
static char bootstr[128];
|
|
char *p;
|
|
|
|
/* If system is cold, just halt. (early panic?) */
|
|
if (cold)
|
|
goto haltsys;
|
|
|
|
if ((howto & RB_NOSYNC) == 0) {
|
|
reboot_sync();
|
|
/*
|
|
* If we've been adjusting the clock, the todr
|
|
* will be out of synch; adjust it now.
|
|
*
|
|
* XXX - However, if the kernel has been sitting in ddb,
|
|
* the time will be way off, so don't set the HW clock!
|
|
* XXX - Should do sanity check against HW clock. -gwr
|
|
*/
|
|
/* resettodr(); */
|
|
}
|
|
|
|
/* Disable interrupts. */
|
|
splhigh();
|
|
|
|
/* Write out a crash dump if asked. */
|
|
if (howto & RB_DUMP)
|
|
dumpsys();
|
|
|
|
/* run any shutdown hooks */
|
|
doshutdownhooks();
|
|
|
|
if (howto & RB_HALT) {
|
|
haltsys:
|
|
printf("Kernel halted.\n");
|
|
sun3x_mon_halt();
|
|
}
|
|
|
|
/*
|
|
* Automatic reboot.
|
|
*/
|
|
if (user_boot_string)
|
|
strncpy(bootstr, user_boot_string, sizeof(bootstr));
|
|
else {
|
|
/*
|
|
* Build our own boot string with an empty
|
|
* boot device/file and (maybe) some flags.
|
|
* The PROM will supply the device/file name.
|
|
*/
|
|
p = bootstr;
|
|
*p = '\0';
|
|
if (howto & (RB_KDB|RB_ASKNAME|RB_SINGLE)) {
|
|
/* Append the boot flags. */
|
|
*p++ = ' ';
|
|
*p++ = '-';
|
|
if (howto & RB_KDB)
|
|
*p++ = 'd';
|
|
if (howto & RB_ASKNAME)
|
|
*p++ = 'a';
|
|
if (howto & RB_SINGLE)
|
|
*p++ = 's';
|
|
*p = '\0';
|
|
}
|
|
}
|
|
printf("Kernel rebooting...\n");
|
|
sun3x_mon_reboot(bootstr);
|
|
for (;;) ;
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
/*
|
|
* These variables are needed by /sbin/savecore
|
|
*/
|
|
u_long dumpmag = 0x8fca0101; /* magic number */
|
|
int dumpsize = 0; /* pages */
|
|
long dumplo = 0; /* blocks */
|
|
|
|
/*
|
|
* This is called by cpu_startup to set dumplo, dumpsize.
|
|
* Dumps always skip the first CLBYTES of disk space
|
|
* in case there might be a disk label stored there.
|
|
* If there is extra space, put dump at the end to
|
|
* reduce the chance that swapping trashes it.
|
|
*/
|
|
void
|
|
dumpconf()
|
|
{
|
|
int nblks; /* size of dump area */
|
|
int maj;
|
|
int (*getsize)__P((dev_t));
|
|
|
|
if (dumpdev == NODEV)
|
|
return;
|
|
|
|
maj = major(dumpdev);
|
|
if (maj < 0 || maj >= nblkdev)
|
|
panic("dumpconf: bad dumpdev=0x%x", dumpdev);
|
|
getsize = bdevsw[maj].d_psize;
|
|
if (getsize == NULL)
|
|
return;
|
|
nblks = (*getsize)(dumpdev);
|
|
if (nblks <= ctod(1))
|
|
return;
|
|
|
|
/* Position dump image near end of space, page aligned. */
|
|
dumpsize = physmem; /* pages */
|
|
dumplo = nblks - ctod(dumpsize);
|
|
dumplo &= ~(ctod(1)-1);
|
|
|
|
/* If it does not fit, truncate it by moving dumplo. */
|
|
/* Note: Must force signed comparison. */
|
|
if (dumplo < ((long)ctod(1))) {
|
|
dumplo = ctod(1);
|
|
dumpsize = dtoc(nblks - dumplo);
|
|
}
|
|
}
|
|
|
|
struct pcb dumppcb;
|
|
extern vm_offset_t avail_start;
|
|
|
|
/*
|
|
* Write a crash dump. The format while in swap is:
|
|
* kcore_seg_t cpu_hdr;
|
|
* cpu_kcore_hdr_t cpu_data;
|
|
* padding (NBPG-sizeof(kcore_seg_t))
|
|
* pagemap (2*NBPG)
|
|
* physical memory...
|
|
*/
|
|
void
|
|
dumpsys()
|
|
{
|
|
struct bdevsw *dsw;
|
|
char *vaddr;
|
|
vm_offset_t paddr;
|
|
int psize, todo, chunk;
|
|
daddr_t blkno;
|
|
int error = 0;
|
|
|
|
msgbufmapped = 0;
|
|
if (dumpdev == NODEV)
|
|
return;
|
|
|
|
/*
|
|
* For dumps during autoconfiguration,
|
|
* if dump device has already configured...
|
|
*/
|
|
if (dumpsize == 0)
|
|
dumpconf();
|
|
if (dumplo <= 0)
|
|
return;
|
|
savectx(&dumppcb);
|
|
|
|
dsw = &bdevsw[major(dumpdev)];
|
|
psize = (*(dsw->d_psize))(dumpdev);
|
|
if (psize == -1) {
|
|
printf("dump area unavailable\n");
|
|
return;
|
|
}
|
|
|
|
printf("\ndumping to dev %x, offset %d\n",
|
|
(int) dumpdev, (int) dumplo);
|
|
|
|
/*
|
|
* Write the dump header, including MMU state.
|
|
*/
|
|
blkno = dumplo;
|
|
todo = dumpsize; /* pages */
|
|
|
|
/*
|
|
* Now dump physical memory. Have to do it in two chunks.
|
|
* The first chunk is "unmanaged" (by the VM code) and its
|
|
* range of physical addresses is not allow in pmap_enter.
|
|
* However, that segment is mapped linearly, so we can just
|
|
* use the virtual mappings already in place. The second
|
|
* chunk is done the normal way, using pmap_enter.
|
|
*
|
|
* Note that vaddr==(paddr+KERNBASE) for paddr=0 through etext.
|
|
*/
|
|
|
|
/* Do the first chunk (0 <= PA < avail_start) */
|
|
paddr = 0;
|
|
chunk = btoc(avail_start);
|
|
if (chunk > todo)
|
|
chunk = todo;
|
|
do {
|
|
if ((todo & 0xf) == 0)
|
|
printf("\r%4d", todo);
|
|
vaddr = (char*)(paddr + KERNBASE);
|
|
error = (*dsw->d_dump)(dumpdev, blkno, vaddr, NBPG);
|
|
if (error)
|
|
goto fail;
|
|
paddr += NBPG;
|
|
blkno += btodb(NBPG);
|
|
--todo;
|
|
} while (--chunk > 0);
|
|
|
|
/* Do the second chunk (avail_start <= PA < dumpsize) */
|
|
vaddr = (char*)vmmap; /* Borrow /dev/mem VA */
|
|
do {
|
|
if ((todo & 0xf) == 0)
|
|
printf("\r%4d", todo);
|
|
pmap_enter(pmap_kernel(), vmmap, paddr | PMAP_NC,
|
|
VM_PROT_READ, FALSE);
|
|
error = (*dsw->d_dump)(dumpdev, blkno, vaddr, NBPG);
|
|
pmap_remove(pmap_kernel(), vmmap, vmmap + NBPG);
|
|
if (error)
|
|
goto fail;
|
|
paddr += NBPG;
|
|
blkno += btodb(NBPG);
|
|
} while (--todo > 0);
|
|
|
|
printf("\rdump succeeded\n");
|
|
return;
|
|
fail:
|
|
printf(" dump error=%d\n", error);
|
|
}
|
|
|
|
static void
|
|
initcpu()
|
|
{
|
|
/* XXX: Enable RAM parity/ECC checking? */
|
|
/* XXX: parityenable(); */
|
|
|
|
nofault = NULL; /* XXX - needed? */
|
|
|
|
#ifdef HAVECACHE
|
|
cache_enable();
|
|
#endif
|
|
}
|
|
|
|
/* called from locore.s */
|
|
void straytrap __P((struct trapframe));
|
|
void
|
|
straytrap(frame)
|
|
struct trapframe frame;
|
|
{
|
|
printf("unexpected trap; vector=0x%x at pc=0x%x\n",
|
|
frame.tf_vector, frame.tf_pc);
|
|
#ifdef DDB
|
|
kdb_trap(-1, (db_regs_t *) &frame);
|
|
#endif
|
|
}
|
|
|
|
/* from hp300: badaddr() */
|
|
/* peek_byte(), peek_word() moved to autoconf.c */
|
|
|
|
/* XXX: parityenable() ? */
|
|
|
|
static void dumpmem __P((int *, int, int));
|
|
static char *hexstr __P((int, int));
|
|
|
|
/*
|
|
* Print a register and stack dump.
|
|
*/
|
|
void
|
|
regdump(fp, sbytes)
|
|
struct frame *fp; /* must not be register */
|
|
int sbytes;
|
|
{
|
|
static int doingdump = 0;
|
|
register int i;
|
|
int s;
|
|
|
|
if (doingdump)
|
|
return;
|
|
s = splhigh();
|
|
doingdump = 1;
|
|
printf("pid = %d, pc = %s, ",
|
|
curproc ? curproc->p_pid : -1, hexstr(fp->f_pc, 8));
|
|
printf("ps = %s, ", hexstr(fp->f_sr, 4));
|
|
printf("sfc = %s, ", hexstr(getsfc(), 4));
|
|
printf("dfc = %s\n", hexstr(getdfc(), 4));
|
|
printf("Registers:\n ");
|
|
for (i = 0; i < 8; i++)
|
|
printf(" %d", i);
|
|
printf("\ndreg:");
|
|
for (i = 0; i < 8; i++)
|
|
printf(" %s", hexstr(fp->f_regs[i], 8));
|
|
printf("\nareg:");
|
|
for (i = 0; i < 8; i++)
|
|
printf(" %s", hexstr(fp->f_regs[i+8], 8));
|
|
if (sbytes > 0) {
|
|
if (fp->f_sr & PSL_S) {
|
|
printf("\n\nKernel stack (%s):",
|
|
hexstr((int)(((int *)&fp)-1), 8));
|
|
dumpmem(((int *)&fp)-1, sbytes, 0);
|
|
} else {
|
|
printf("\n\nUser stack (%s):", hexstr(fp->f_regs[SP], 8));
|
|
dumpmem((int *)fp->f_regs[SP], sbytes, 1);
|
|
}
|
|
}
|
|
doingdump = 0;
|
|
splx(s);
|
|
}
|
|
|
|
#define KSADDR ((int *)((u_int)curproc->p_addr + USPACE - NBPG))
|
|
|
|
static void
|
|
dumpmem(ptr, sz, ustack)
|
|
register int *ptr;
|
|
int sz, ustack;
|
|
{
|
|
register int i, val;
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
if ((i & 7) == 0)
|
|
printf("\n%s: ", hexstr((int)ptr, 6));
|
|
else
|
|
printf(" ");
|
|
if (ustack == 1) {
|
|
if ((val = fuword(ptr++)) == -1)
|
|
break;
|
|
} else {
|
|
if (ustack == 0 &&
|
|
(ptr < KSADDR || ptr > KSADDR+(NBPG/4-1)))
|
|
break;
|
|
val = *ptr++;
|
|
}
|
|
printf("%s", hexstr(val, 8));
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static char *
|
|
hexstr(val, len)
|
|
register int val;
|
|
int len;
|
|
{
|
|
static char nbuf[9];
|
|
register int x, i;
|
|
|
|
if (len > 8)
|
|
return("");
|
|
nbuf[len] = '\0';
|
|
for (i = len-1; i >= 0; --i) {
|
|
x = val & 0xF;
|
|
/* Isn't this a cool trick? */
|
|
nbuf[i] = "0123456789ABCDEF"[x];
|
|
val >>= 4;
|
|
}
|
|
return(nbuf);
|
|
}
|
|
|
|
/*
|
|
* cpu_exec_aout_makecmds():
|
|
* cpu-dependent a.out format hook for execve().
|
|
*
|
|
* Determine if the given exec package refers to something which we
|
|
* understand and, if so, set up the vmcmds for it.
|
|
*/
|
|
int
|
|
cpu_exec_aout_makecmds(p, epp)
|
|
struct proc *p;
|
|
struct exec_package *epp;
|
|
{
|
|
int error = ENOEXEC;
|
|
|
|
#ifdef COMPAT_SUNOS
|
|
extern sunos_exec_aout_makecmds
|
|
__P((struct proc *, struct exec_package *));
|
|
if ((error = sunos_exec_aout_makecmds(p, epp)) == 0)
|
|
return 0;
|
|
#endif
|
|
return error;
|
|
}
|