NetBSD/sys/kern/kern_lock.c
martin edde015a73 Fix inverted condition in r1.136 - we do want LOCKDEBUG spinouts of the
kernel lock to assert as soon as we have userland running - not in
the early boot phase (where firmware loading and device init could take
a long time).
2020-05-02 09:13:40 +00:00

346 lines
8.8 KiB
C

/* $NetBSD: kern_lock.c,v 1.171 2020/05/02 09:13:40 martin Exp $ */
/*-
* Copyright (c) 2002, 2006, 2007, 2008, 2009, 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.171 2020/05/02 09:13:40 martin Exp $");
#ifdef _KERNEL_OPT
#include "opt_lockdebug.h"
#endif
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/lock.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lockdebug.h>
#include <sys/cpu.h>
#include <sys/syslog.h>
#include <sys/atomic.h>
#include <sys/lwp.h>
#include <sys/pserialize.h>
#if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
#include <sys/ksyms.h>
#endif
#include <machine/lock.h>
#include <dev/lockstat.h>
#define RETURN_ADDRESS (uintptr_t)__builtin_return_address(0)
bool kernel_lock_dodebug;
__cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
__cacheline_aligned;
void
assert_sleepable(void)
{
const char *reason;
uint64_t pctr;
bool idle;
if (panicstr != NULL) {
return;
}
LOCKDEBUG_BARRIER(kernel_lock, 1);
/*
* Avoid disabling/re-enabling preemption here since this
* routine may be called in delicate situations.
*/
do {
pctr = lwp_pctr();
__insn_barrier();
idle = CURCPU_IDLE_P();
__insn_barrier();
} while (pctr != lwp_pctr());
reason = NULL;
if (idle && !cold &&
kcpuset_isset(kcpuset_running, cpu_index(curcpu()))) {
reason = "idle";
}
if (cpu_intr_p()) {
reason = "interrupt";
}
if (cpu_softintr_p()) {
reason = "softint";
}
if (!pserialize_not_in_read_section()) {
reason = "pserialize";
}
if (reason) {
panic("%s: %s caller=%p", __func__, reason,
(void *)RETURN_ADDRESS);
}
}
/*
* Functions for manipulating the kernel_lock. We put them here
* so that they show up in profiles.
*/
#define _KERNEL_LOCK_ABORT(msg) \
LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
#ifdef LOCKDEBUG
#define _KERNEL_LOCK_ASSERT(cond) \
do { \
if (!(cond)) \
_KERNEL_LOCK_ABORT("assertion failed: " #cond); \
} while (/* CONSTCOND */ 0)
#else
#define _KERNEL_LOCK_ASSERT(cond) /* nothing */
#endif
static void _kernel_lock_dump(const volatile void *, lockop_printer_t);
lockops_t _kernel_lock_ops = {
.lo_name = "Kernel lock",
.lo_type = LOCKOPS_SPIN,
.lo_dump = _kernel_lock_dump,
};
/*
* Initialize the kernel lock.
*/
void
kernel_lock_init(void)
{
__cpu_simple_lock_init(kernel_lock);
kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
RETURN_ADDRESS);
}
CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
/*
* Print debugging information about the kernel lock.
*/
static void
_kernel_lock_dump(const volatile void *junk, lockop_printer_t pr)
{
struct cpu_info *ci = curcpu();
(void)junk;
pr("curcpu holds : %18d wanted by: %#018lx\n",
ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
}
/*
* Acquire 'nlocks' holds on the kernel lock.
*
* Although it may not look it, this is one of the most central, intricate
* routines in the kernel, and tons of code elsewhere depends on its exact
* behaviour. If you change something in here, expect it to bite you in the
* rear.
*/
void
_kernel_lock(int nlocks)
{
struct cpu_info *ci;
LOCKSTAT_TIMER(spintime);
LOCKSTAT_FLAG(lsflag);
struct lwp *owant;
#ifdef LOCKDEBUG
u_int spins = 0;
#endif
int s;
struct lwp *l = curlwp;
_KERNEL_LOCK_ASSERT(nlocks > 0);
s = splvm();
ci = curcpu();
if (ci->ci_biglock_count != 0) {
_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
ci->ci_biglock_count += nlocks;
l->l_blcnt += nlocks;
splx(s);
return;
}
_KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
0);
if (__predict_true(__cpu_simple_lock_try(kernel_lock))) {
ci->ci_biglock_count = nlocks;
l->l_blcnt = nlocks;
LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
RETURN_ADDRESS, 0);
splx(s);
return;
}
/*
* To remove the ordering constraint between adaptive mutexes
* and kernel_lock we must make it appear as if this thread is
* blocking. For non-interlocked mutex release, a store fence
* is required to ensure that the result of any mutex_exit()
* by the current LWP becomes visible on the bus before the set
* of ci->ci_biglock_wanted becomes visible.
*
* However, we won't set ci_biglock_wanted until we've spun for
* a bit, as we don't want to make any lock waiters in rw_oncpu()
* or mutex_oncpu() block prematurely.
*/
membar_producer();
owant = ci->ci_biglock_wanted;
ci->ci_biglock_wanted = l;
#if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
l->l_ld_wanted = __builtin_return_address(0);
#endif
/*
* Spin until we acquire the lock. Once we have it, record the
* time spent with lockstat.
*/
LOCKSTAT_ENTER(lsflag);
LOCKSTAT_START_TIMER(lsflag, spintime);
do {
splx(s);
while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
#ifdef LOCKDEBUG
if (SPINLOCK_SPINOUT(spins)) {
extern int start_init_exec;
if (start_init_exec)
_KERNEL_LOCK_ABORT("spinout");
}
SPINLOCK_BACKOFF_HOOK;
SPINLOCK_SPIN_HOOK;
#endif
}
s = splvm();
} while (!__cpu_simple_lock_try(kernel_lock));
ci->ci_biglock_count = nlocks;
l->l_blcnt = nlocks;
LOCKSTAT_STOP_TIMER(lsflag, spintime);
LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
RETURN_ADDRESS, 0);
if (owant == NULL) {
LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
}
LOCKSTAT_EXIT(lsflag);
splx(s);
/*
* Now that we have kernel_lock, reset ci_biglock_wanted. This
* store must be unbuffered (immediately visible on the bus) in
* order for non-interlocked mutex release to work correctly.
* It must be visible before a mutex_exit() can execute on this
* processor.
*
* Note: only where CAS is available in hardware will this be
* an unbuffered write, but non-interlocked release cannot be
* done on CPUs without CAS in hardware.
*/
(void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
/*
* Issue a memory barrier as we have acquired a lock. This also
* prevents stores from a following mutex_exit() being reordered
* to occur before our store to ci_biglock_wanted above.
*/
#ifndef __HAVE_ATOMIC_AS_MEMBAR
membar_enter();
#endif
}
/*
* Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
* all holds.
*/
void
_kernel_unlock(int nlocks, int *countp)
{
struct cpu_info *ci;
u_int olocks;
int s;
struct lwp *l = curlwp;
_KERNEL_LOCK_ASSERT(nlocks < 2);
olocks = l->l_blcnt;
if (olocks == 0) {
_KERNEL_LOCK_ASSERT(nlocks <= 0);
if (countp != NULL)
*countp = 0;
return;
}
_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
if (nlocks == 0)
nlocks = olocks;
else if (nlocks == -1) {
nlocks = 1;
_KERNEL_LOCK_ASSERT(olocks == 1);
}
s = splvm();
ci = curcpu();
_KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
if (ci->ci_biglock_count == nlocks) {
LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
RETURN_ADDRESS, 0);
ci->ci_biglock_count = 0;
__cpu_simple_unlock(kernel_lock);
l->l_blcnt -= nlocks;
splx(s);
if (l->l_dopreempt)
kpreempt(0);
} else {
ci->ci_biglock_count -= nlocks;
l->l_blcnt -= nlocks;
splx(s);
}
if (countp != NULL)
*countp = olocks;
}
bool
_kernel_locked_p(void)
{
return __SIMPLELOCK_LOCKED_P(kernel_lock);
}