NetBSD/sys/dev/ic/hpet.c

284 lines
7.2 KiB
C

/* $NetBSD: hpet.c,v 1.18 2022/08/20 06:47:28 mlelstv Exp $ */
/*
* Copyright (c) 2006 Nicolas Joly
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* High Precision Event Timer.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: hpet.c,v 1.18 2022/08/20 06:47:28 mlelstv Exp $");
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/module.h>
#include <sys/time.h>
#include <sys/timetc.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <machine/cpu_counter.h>
#include <dev/ic/hpetreg.h>
#include <dev/ic/hpetvar.h>
static u_int hpet_get_timecount(struct timecounter *);
static bool hpet_resume(device_t, const pmf_qual_t *);
static struct hpet_softc *hpet0 __read_mostly;
int
hpet_detach(device_t dv, int flags)
{
#if 0 /* XXX DELAY() is based off this, detaching is not a good idea. */
struct hpet_softc *sc = device_private(dv);
int rc;
if ((rc = tc_detach(&sc->sc_tc)) != 0)
return rc;
pmf_device_deregister(dv);
bus_space_write_4(sc->sc_memt, sc->sc_memh, HPET_CONFIG, sc->sc_config);
return 0;
#else
return EBUSY;
#endif
}
void
hpet_attach_subr(device_t dv)
{
struct hpet_softc *sc = device_private(dv);
struct timecounter *tc;
uint64_t tmp;
uint32_t val, sval, eval;
int i;
tc = &sc->sc_tc;
tc->tc_name = device_xname(dv);
tc->tc_get_timecount = hpet_get_timecount;
tc->tc_quality = 2000;
tc->tc_counter_mask = 0xffffffff;
/* Get frequency */
sc->sc_period = bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_PERIOD);
if (sc->sc_period == 0 || sc->sc_period > HPET_PERIOD_MAX) {
aprint_error_dev(dv, "invalid timer period\n");
return;
}
/*
* The following loop is a workaround for AMD SB700 based systems.
* http://kerneltrap.org/mailarchive/git-commits-head/2008/8/17/2964724
* http://git.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=a6825f1c1fa83b1e92b6715ee5771a4d6524d3b9
*/
for (i = 0; bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_CONFIG)
== 0xffffffff; i++) {
if (i >= 1000) {
aprint_error_dev(dv,
"HPET_CONFIG value = 0xffffffff\n");
return;
}
}
tmp = (1000000000000000ULL * 2) / sc->sc_period;
tc->tc_frequency = (tmp / 2) + (tmp & 1);
/* Enable timer */
val = bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_CONFIG);
sc->sc_config = val;
if ((val & HPET_CONFIG_ENABLE) == 0) {
val |= HPET_CONFIG_ENABLE;
bus_space_write_4(sc->sc_memt, sc->sc_memh, HPET_CONFIG, val);
}
tc->tc_priv = sc;
tc_init(tc);
if (!pmf_device_register(dv, NULL, hpet_resume))
aprint_error_dev(dv, "couldn't establish power handler\n");
if (device_unit(dv) == 0)
hpet0 = sc;
/*
* Determine approximately how long it takes to read the counter
* register once, and compute an ajustment for hpet_delay() based on
* that.
*/
(void)bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_MCOUNT_LO);
sval = bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_MCOUNT_LO);
for (i = 0; i < 998; i++)
(void)bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_MCOUNT_LO);
eval = bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_MCOUNT_LO);
val = eval - sval;
sc->sc_adj = (int64_t)val * sc->sc_period / 1000;
}
static u_int
hpet_get_timecount(struct timecounter *tc)
{
struct hpet_softc *sc = tc->tc_priv;
return bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_MCOUNT_LO);
}
static bool
hpet_resume(device_t dv, const pmf_qual_t *qual)
{
struct hpet_softc *sc = device_private(dv);
uint32_t val;
val = bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_CONFIG);
val |= HPET_CONFIG_ENABLE;
bus_space_write_4(sc->sc_memt, sc->sc_memh, HPET_CONFIG, val);
return true;
}
bool
hpet_delay_p(void)
{
return hpet0 != NULL;
}
void
hpet_delay(unsigned int us)
{
struct hpet_softc *sc;
uint32_t ntick, otick;
int64_t delta;
/*
* Read timer before slow division. Convert microseconds to
* femtoseconds, subtract the cost of 1 counter register access,
* and convert to HPET units.
*/
sc = hpet0;
otick = bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_MCOUNT_LO);
delta = (((int64_t)us * 1000000000) - sc->sc_adj) / sc->sc_period;
while (delta > 0) {
SPINLOCK_BACKOFF_HOOK;
ntick = bus_space_read_4(sc->sc_memt, sc->sc_memh,
HPET_MCOUNT_LO);
delta -= (uint32_t)(ntick - otick);
otick = ntick;
}
}
uint64_t
hpet_tsc_freq(void)
{
struct hpet_softc *sc;
uint64_t td0, td, val, freq;
uint32_t hd0, hd;
int s;
if (hpet0 == NULL || !cpu_hascounter())
return 0;
sc = hpet0;
s = splhigh();
(void)cpu_counter();
(void)bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_MCOUNT_LO);
hd0 = bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_MCOUNT_LO);
td0 = cpu_counter();
splx(s);
/*
* Wait 1000000 HPET ticks (typically 50..100ms).
*
* This interval can produce an error of 1ppm (a few kHz
* in estimated TSC frequency), however the HPET timer is
* allowed to drift +/- 500ppm in that interval.
*
*/
hpet_delay(sc->sc_period / 1000);
/*
* Determine TSC freq by comparing how far the TSC and HPET have
* advanced and round result to the nearest 1000.
*/
s = splhigh();
(void)cpu_counter();
(void)bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_MCOUNT_LO);
hd = bus_space_read_4(sc->sc_memt, sc->sc_memh, HPET_MCOUNT_LO);
td = cpu_counter();
splx(s);
val = (uint64_t)(hd - hd0) * sc->sc_period / 100000000;
freq = (td - td0) * 10000000 / val;
return rounddown(freq + 500, 1000);
}
MODULE(MODULE_CLASS_DRIVER, hpet, NULL);
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
hpet_modcmd(modcmd_t cmd, void *aux)
{
int rv = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
rv = config_init_component(cfdriver_ioconf_hpet,
cfattach_ioconf_hpet, cfdata_ioconf_hpet);
#endif
break;
case MODULE_CMD_FINI:
#ifdef _MODULE
rv = config_fini_component(cfdriver_ioconf_hpet,
cfattach_ioconf_hpet, cfdata_ioconf_hpet);
#endif
break;
default:
rv = ENOTTY;
}
return rv;
}