e225b7bd09
- Reorganize locking in UVM and provide extra serialisation for pmap(9). New lock order: [vmpage-owner-lock] -> pmap-lock. - Simplify locking in some pmap(9) modules by removing P->V locking. - Use lock object on vmobjlock (and thus vnode_t::v_interlock) to share the locks amongst UVM objects where necessary (tmpfs, layerfs, unionfs). - Rewrite and optimise x86 TLB shootdown code, make it simpler and cleaner. Add TLBSTATS option for x86 to collect statistics about TLB shootdowns. - Unify /dev/mem et al in MI code and provide required locking (removes kernel-lock on some ports). Also, avoid cache-aliasing issues. Thanks to Andrew Doran and Joerg Sonnenberger, as their initial patches formed the core changes of this branch.
2008 lines
46 KiB
C
2008 lines
46 KiB
C
/* $NetBSD: nfs_subs.c,v 1.221 2011/06/12 03:35:59 rmind Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Rick Macklem at The University of Guelph.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
|
|
*/
|
|
|
|
/*
|
|
* Copyright 2000 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Frank van der Linden for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.221 2011/06/12 03:35:59 rmind Exp $");
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_nfs.h"
|
|
#endif
|
|
|
|
/*
|
|
* These functions support the macros and help fiddle mbuf chains for
|
|
* the nfs op functions. They do things like create the rpc header and
|
|
* copy data between mbuf chains and uio lists.
|
|
*/
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/time.h>
|
|
#include <sys/dirent.h>
|
|
#include <sys/once.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/atomic.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
#include <nfs/rpcv2.h>
|
|
#include <nfs/nfsproto.h>
|
|
#include <nfs/nfsnode.h>
|
|
#include <nfs/nfs.h>
|
|
#include <nfs/xdr_subs.h>
|
|
#include <nfs/nfsm_subs.h>
|
|
#include <nfs/nfsmount.h>
|
|
#include <nfs/nfsrtt.h>
|
|
#include <nfs/nfs_var.h>
|
|
|
|
#include <miscfs/specfs/specdev.h>
|
|
|
|
#include <netinet/in.h>
|
|
|
|
static u_int32_t nfs_xid;
|
|
|
|
int nuidhash_max = NFS_MAXUIDHASH;
|
|
/*
|
|
* Data items converted to xdr at startup, since they are constant
|
|
* This is kinda hokey, but may save a little time doing byte swaps
|
|
*/
|
|
u_int32_t nfs_xdrneg1;
|
|
u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
|
|
rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
|
|
rpc_auth_kerb;
|
|
u_int32_t nfs_prog, nfs_true, nfs_false;
|
|
|
|
/* And other global data */
|
|
const nfstype nfsv2_type[9] =
|
|
{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
|
|
const nfstype nfsv3_type[9] =
|
|
{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
|
|
const enum vtype nv2tov_type[8] =
|
|
{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
|
|
const enum vtype nv3tov_type[8] =
|
|
{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
|
|
int nfs_ticks;
|
|
|
|
/* NFS client/server stats. */
|
|
struct nfsstats nfsstats;
|
|
|
|
/*
|
|
* Mapping of old NFS Version 2 RPC numbers to generic numbers.
|
|
*/
|
|
const int nfsv3_procid[NFS_NPROCS] = {
|
|
NFSPROC_NULL,
|
|
NFSPROC_GETATTR,
|
|
NFSPROC_SETATTR,
|
|
NFSPROC_NOOP,
|
|
NFSPROC_LOOKUP,
|
|
NFSPROC_READLINK,
|
|
NFSPROC_READ,
|
|
NFSPROC_NOOP,
|
|
NFSPROC_WRITE,
|
|
NFSPROC_CREATE,
|
|
NFSPROC_REMOVE,
|
|
NFSPROC_RENAME,
|
|
NFSPROC_LINK,
|
|
NFSPROC_SYMLINK,
|
|
NFSPROC_MKDIR,
|
|
NFSPROC_RMDIR,
|
|
NFSPROC_READDIR,
|
|
NFSPROC_FSSTAT,
|
|
NFSPROC_NOOP,
|
|
NFSPROC_NOOP,
|
|
NFSPROC_NOOP,
|
|
NFSPROC_NOOP,
|
|
NFSPROC_NOOP
|
|
};
|
|
|
|
/*
|
|
* and the reverse mapping from generic to Version 2 procedure numbers
|
|
*/
|
|
const int nfsv2_procid[NFS_NPROCS] = {
|
|
NFSV2PROC_NULL,
|
|
NFSV2PROC_GETATTR,
|
|
NFSV2PROC_SETATTR,
|
|
NFSV2PROC_LOOKUP,
|
|
NFSV2PROC_NOOP,
|
|
NFSV2PROC_READLINK,
|
|
NFSV2PROC_READ,
|
|
NFSV2PROC_WRITE,
|
|
NFSV2PROC_CREATE,
|
|
NFSV2PROC_MKDIR,
|
|
NFSV2PROC_SYMLINK,
|
|
NFSV2PROC_CREATE,
|
|
NFSV2PROC_REMOVE,
|
|
NFSV2PROC_RMDIR,
|
|
NFSV2PROC_RENAME,
|
|
NFSV2PROC_LINK,
|
|
NFSV2PROC_READDIR,
|
|
NFSV2PROC_NOOP,
|
|
NFSV2PROC_STATFS,
|
|
NFSV2PROC_NOOP,
|
|
NFSV2PROC_NOOP,
|
|
NFSV2PROC_NOOP,
|
|
NFSV2PROC_NOOP,
|
|
};
|
|
|
|
/*
|
|
* Maps errno values to nfs error numbers.
|
|
* Use NFSERR_IO as the catch all for ones not specifically defined in
|
|
* RFC 1094.
|
|
*/
|
|
static const u_char nfsrv_v2errmap[ELAST] = {
|
|
NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
|
|
NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
|
|
NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
|
|
NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
|
|
NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
|
|
NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
|
|
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
|
|
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
|
|
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
|
|
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
|
|
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
|
|
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
|
|
NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
|
|
NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
|
|
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
|
|
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
|
|
NFSERR_IO, NFSERR_IO,
|
|
};
|
|
|
|
/*
|
|
* Maps errno values to nfs error numbers.
|
|
* Although it is not obvious whether or not NFS clients really care if
|
|
* a returned error value is in the specified list for the procedure, the
|
|
* safest thing to do is filter them appropriately. For Version 2, the
|
|
* X/Open XNFS document is the only specification that defines error values
|
|
* for each RPC (The RFC simply lists all possible error values for all RPCs),
|
|
* so I have decided to not do this for Version 2.
|
|
* The first entry is the default error return and the rest are the valid
|
|
* errors for that RPC in increasing numeric order.
|
|
*/
|
|
static const short nfsv3err_null[] = {
|
|
0,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_getattr[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_setattr[] = {
|
|
NFSERR_IO,
|
|
NFSERR_PERM,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_INVAL,
|
|
NFSERR_NOSPC,
|
|
NFSERR_ROFS,
|
|
NFSERR_DQUOT,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_NOT_SYNC,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_lookup[] = {
|
|
NFSERR_IO,
|
|
NFSERR_NOENT,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_NOTDIR,
|
|
NFSERR_NAMETOL,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_access[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_readlink[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_INVAL,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_NOTSUPP,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_read[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_NXIO,
|
|
NFSERR_ACCES,
|
|
NFSERR_INVAL,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_SERVERFAULT,
|
|
NFSERR_JUKEBOX,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_write[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_INVAL,
|
|
NFSERR_FBIG,
|
|
NFSERR_NOSPC,
|
|
NFSERR_ROFS,
|
|
NFSERR_DQUOT,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_SERVERFAULT,
|
|
NFSERR_JUKEBOX,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_create[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_EXIST,
|
|
NFSERR_NOTDIR,
|
|
NFSERR_NOSPC,
|
|
NFSERR_ROFS,
|
|
NFSERR_NAMETOL,
|
|
NFSERR_DQUOT,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_NOTSUPP,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_mkdir[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_EXIST,
|
|
NFSERR_NOTDIR,
|
|
NFSERR_NOSPC,
|
|
NFSERR_ROFS,
|
|
NFSERR_NAMETOL,
|
|
NFSERR_DQUOT,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_NOTSUPP,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_symlink[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_EXIST,
|
|
NFSERR_NOTDIR,
|
|
NFSERR_NOSPC,
|
|
NFSERR_ROFS,
|
|
NFSERR_NAMETOL,
|
|
NFSERR_DQUOT,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_NOTSUPP,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_mknod[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_EXIST,
|
|
NFSERR_NOTDIR,
|
|
NFSERR_NOSPC,
|
|
NFSERR_ROFS,
|
|
NFSERR_NAMETOL,
|
|
NFSERR_DQUOT,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_NOTSUPP,
|
|
NFSERR_SERVERFAULT,
|
|
NFSERR_BADTYPE,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_remove[] = {
|
|
NFSERR_IO,
|
|
NFSERR_NOENT,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_NOTDIR,
|
|
NFSERR_ROFS,
|
|
NFSERR_NAMETOL,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_rmdir[] = {
|
|
NFSERR_IO,
|
|
NFSERR_NOENT,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_EXIST,
|
|
NFSERR_NOTDIR,
|
|
NFSERR_INVAL,
|
|
NFSERR_ROFS,
|
|
NFSERR_NAMETOL,
|
|
NFSERR_NOTEMPTY,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_NOTSUPP,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_rename[] = {
|
|
NFSERR_IO,
|
|
NFSERR_NOENT,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_EXIST,
|
|
NFSERR_XDEV,
|
|
NFSERR_NOTDIR,
|
|
NFSERR_ISDIR,
|
|
NFSERR_INVAL,
|
|
NFSERR_NOSPC,
|
|
NFSERR_ROFS,
|
|
NFSERR_MLINK,
|
|
NFSERR_NAMETOL,
|
|
NFSERR_NOTEMPTY,
|
|
NFSERR_DQUOT,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_NOTSUPP,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_link[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_EXIST,
|
|
NFSERR_XDEV,
|
|
NFSERR_NOTDIR,
|
|
NFSERR_INVAL,
|
|
NFSERR_NOSPC,
|
|
NFSERR_ROFS,
|
|
NFSERR_MLINK,
|
|
NFSERR_NAMETOL,
|
|
NFSERR_DQUOT,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_NOTSUPP,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_readdir[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_NOTDIR,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_BAD_COOKIE,
|
|
NFSERR_TOOSMALL,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_readdirplus[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_ACCES,
|
|
NFSERR_NOTDIR,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_BAD_COOKIE,
|
|
NFSERR_NOTSUPP,
|
|
NFSERR_TOOSMALL,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_fsstat[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_fsinfo[] = {
|
|
NFSERR_STALE,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_pathconf[] = {
|
|
NFSERR_STALE,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short nfsv3err_commit[] = {
|
|
NFSERR_IO,
|
|
NFSERR_IO,
|
|
NFSERR_STALE,
|
|
NFSERR_BADHANDLE,
|
|
NFSERR_SERVERFAULT,
|
|
0,
|
|
};
|
|
|
|
static const short * const nfsrv_v3errmap[] = {
|
|
nfsv3err_null,
|
|
nfsv3err_getattr,
|
|
nfsv3err_setattr,
|
|
nfsv3err_lookup,
|
|
nfsv3err_access,
|
|
nfsv3err_readlink,
|
|
nfsv3err_read,
|
|
nfsv3err_write,
|
|
nfsv3err_create,
|
|
nfsv3err_mkdir,
|
|
nfsv3err_symlink,
|
|
nfsv3err_mknod,
|
|
nfsv3err_remove,
|
|
nfsv3err_rmdir,
|
|
nfsv3err_rename,
|
|
nfsv3err_link,
|
|
nfsv3err_readdir,
|
|
nfsv3err_readdirplus,
|
|
nfsv3err_fsstat,
|
|
nfsv3err_fsinfo,
|
|
nfsv3err_pathconf,
|
|
nfsv3err_commit,
|
|
};
|
|
|
|
extern struct nfsrtt nfsrtt;
|
|
|
|
u_long nfsdirhashmask;
|
|
|
|
int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *);
|
|
|
|
/*
|
|
* Create the header for an rpc request packet
|
|
* The hsiz is the size of the rest of the nfs request header.
|
|
* (just used to decide if a cluster is a good idea)
|
|
*/
|
|
struct mbuf *
|
|
nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
|
|
{
|
|
struct mbuf *mb;
|
|
char *bpos;
|
|
|
|
mb = m_get(M_WAIT, MT_DATA);
|
|
MCLAIM(mb, &nfs_mowner);
|
|
if (hsiz >= MINCLSIZE)
|
|
m_clget(mb, M_WAIT);
|
|
mb->m_len = 0;
|
|
bpos = mtod(mb, void *);
|
|
|
|
/* Finally, return values */
|
|
*bposp = bpos;
|
|
return (mb);
|
|
}
|
|
|
|
/*
|
|
* Build the RPC header and fill in the authorization info.
|
|
* The authorization string argument is only used when the credentials
|
|
* come from outside of the kernel.
|
|
* Returns the head of the mbuf list.
|
|
*/
|
|
struct mbuf *
|
|
nfsm_rpchead(kauth_cred_t cr, int nmflag, int procid,
|
|
int auth_type, int auth_len, char *auth_str, int verf_len,
|
|
char *verf_str, struct mbuf *mrest, int mrest_len,
|
|
struct mbuf **mbp, uint32_t *xidp)
|
|
{
|
|
struct mbuf *mb;
|
|
u_int32_t *tl;
|
|
char *bpos;
|
|
int i;
|
|
struct mbuf *mreq;
|
|
int siz, grpsiz, authsiz;
|
|
|
|
authsiz = nfsm_rndup(auth_len);
|
|
mb = m_gethdr(M_WAIT, MT_DATA);
|
|
MCLAIM(mb, &nfs_mowner);
|
|
if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
|
|
m_clget(mb, M_WAIT);
|
|
} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
|
|
MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
|
|
} else {
|
|
MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
|
|
}
|
|
mb->m_len = 0;
|
|
mreq = mb;
|
|
bpos = mtod(mb, void *);
|
|
|
|
/*
|
|
* First the RPC header.
|
|
*/
|
|
nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
|
|
|
|
*tl++ = *xidp = nfs_getxid();
|
|
*tl++ = rpc_call;
|
|
*tl++ = rpc_vers;
|
|
*tl++ = txdr_unsigned(NFS_PROG);
|
|
if (nmflag & NFSMNT_NFSV3)
|
|
*tl++ = txdr_unsigned(NFS_VER3);
|
|
else
|
|
*tl++ = txdr_unsigned(NFS_VER2);
|
|
if (nmflag & NFSMNT_NFSV3)
|
|
*tl++ = txdr_unsigned(procid);
|
|
else
|
|
*tl++ = txdr_unsigned(nfsv2_procid[procid]);
|
|
|
|
/*
|
|
* And then the authorization cred.
|
|
*/
|
|
*tl++ = txdr_unsigned(auth_type);
|
|
*tl = txdr_unsigned(authsiz);
|
|
switch (auth_type) {
|
|
case RPCAUTH_UNIX:
|
|
nfsm_build(tl, u_int32_t *, auth_len);
|
|
*tl++ = 0; /* stamp ?? */
|
|
*tl++ = 0; /* NULL hostname */
|
|
*tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
|
|
*tl++ = txdr_unsigned(kauth_cred_getegid(cr));
|
|
grpsiz = (auth_len >> 2) - 5;
|
|
*tl++ = txdr_unsigned(grpsiz);
|
|
for (i = 0; i < grpsiz; i++)
|
|
*tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
|
|
break;
|
|
case RPCAUTH_KERB4:
|
|
siz = auth_len;
|
|
while (siz > 0) {
|
|
if (M_TRAILINGSPACE(mb) == 0) {
|
|
struct mbuf *mb2;
|
|
mb2 = m_get(M_WAIT, MT_DATA);
|
|
MCLAIM(mb2, &nfs_mowner);
|
|
if (siz >= MINCLSIZE)
|
|
m_clget(mb2, M_WAIT);
|
|
mb->m_next = mb2;
|
|
mb = mb2;
|
|
mb->m_len = 0;
|
|
bpos = mtod(mb, void *);
|
|
}
|
|
i = min(siz, M_TRAILINGSPACE(mb));
|
|
memcpy(bpos, auth_str, i);
|
|
mb->m_len += i;
|
|
auth_str += i;
|
|
bpos += i;
|
|
siz -= i;
|
|
}
|
|
if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
|
|
for (i = 0; i < siz; i++)
|
|
*bpos++ = '\0';
|
|
mb->m_len += siz;
|
|
}
|
|
break;
|
|
};
|
|
|
|
/*
|
|
* And the verifier...
|
|
*/
|
|
nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
|
|
if (verf_str) {
|
|
*tl++ = txdr_unsigned(RPCAUTH_KERB4);
|
|
*tl = txdr_unsigned(verf_len);
|
|
siz = verf_len;
|
|
while (siz > 0) {
|
|
if (M_TRAILINGSPACE(mb) == 0) {
|
|
struct mbuf *mb2;
|
|
mb2 = m_get(M_WAIT, MT_DATA);
|
|
MCLAIM(mb2, &nfs_mowner);
|
|
if (siz >= MINCLSIZE)
|
|
m_clget(mb2, M_WAIT);
|
|
mb->m_next = mb2;
|
|
mb = mb2;
|
|
mb->m_len = 0;
|
|
bpos = mtod(mb, void *);
|
|
}
|
|
i = min(siz, M_TRAILINGSPACE(mb));
|
|
memcpy(bpos, verf_str, i);
|
|
mb->m_len += i;
|
|
verf_str += i;
|
|
bpos += i;
|
|
siz -= i;
|
|
}
|
|
if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
|
|
for (i = 0; i < siz; i++)
|
|
*bpos++ = '\0';
|
|
mb->m_len += siz;
|
|
}
|
|
} else {
|
|
*tl++ = txdr_unsigned(RPCAUTH_NULL);
|
|
*tl = 0;
|
|
}
|
|
mb->m_next = mrest;
|
|
mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
|
|
mreq->m_pkthdr.rcvif = (struct ifnet *)0;
|
|
*mbp = mb;
|
|
return (mreq);
|
|
}
|
|
|
|
/*
|
|
* copies mbuf chain to the uio scatter/gather list
|
|
*/
|
|
int
|
|
nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, char **dpos)
|
|
{
|
|
char *mbufcp, *uiocp;
|
|
int xfer, left, len;
|
|
struct mbuf *mp;
|
|
long uiosiz, rem;
|
|
int error = 0;
|
|
|
|
mp = *mrep;
|
|
mbufcp = *dpos;
|
|
len = mtod(mp, char *) + mp->m_len - mbufcp;
|
|
rem = nfsm_rndup(siz)-siz;
|
|
while (siz > 0) {
|
|
if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
|
|
return (EFBIG);
|
|
left = uiop->uio_iov->iov_len;
|
|
uiocp = uiop->uio_iov->iov_base;
|
|
if (left > siz)
|
|
left = siz;
|
|
uiosiz = left;
|
|
while (left > 0) {
|
|
while (len == 0) {
|
|
mp = mp->m_next;
|
|
if (mp == NULL)
|
|
return (EBADRPC);
|
|
mbufcp = mtod(mp, void *);
|
|
len = mp->m_len;
|
|
}
|
|
xfer = (left > len) ? len : left;
|
|
error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
|
|
uiocp, xfer);
|
|
if (error) {
|
|
return error;
|
|
}
|
|
left -= xfer;
|
|
len -= xfer;
|
|
mbufcp += xfer;
|
|
uiocp += xfer;
|
|
uiop->uio_offset += xfer;
|
|
uiop->uio_resid -= xfer;
|
|
}
|
|
if (uiop->uio_iov->iov_len <= siz) {
|
|
uiop->uio_iovcnt--;
|
|
uiop->uio_iov++;
|
|
} else {
|
|
uiop->uio_iov->iov_base =
|
|
(char *)uiop->uio_iov->iov_base + uiosiz;
|
|
uiop->uio_iov->iov_len -= uiosiz;
|
|
}
|
|
siz -= uiosiz;
|
|
}
|
|
*dpos = mbufcp;
|
|
*mrep = mp;
|
|
if (rem > 0) {
|
|
if (len < rem)
|
|
error = nfs_adv(mrep, dpos, rem, len);
|
|
else
|
|
*dpos += rem;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* copies a uio scatter/gather list to an mbuf chain.
|
|
* NOTE: can ony handle iovcnt == 1
|
|
*/
|
|
int
|
|
nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, char **bpos)
|
|
{
|
|
char *uiocp;
|
|
struct mbuf *mp, *mp2;
|
|
int xfer, left, mlen;
|
|
int uiosiz, clflg, rem;
|
|
char *cp;
|
|
int error;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (uiop->uio_iovcnt != 1)
|
|
panic("nfsm_uiotombuf: iovcnt != 1");
|
|
#endif
|
|
|
|
if (siz > MLEN) /* or should it >= MCLBYTES ?? */
|
|
clflg = 1;
|
|
else
|
|
clflg = 0;
|
|
rem = nfsm_rndup(siz)-siz;
|
|
mp = mp2 = *mq;
|
|
while (siz > 0) {
|
|
left = uiop->uio_iov->iov_len;
|
|
uiocp = uiop->uio_iov->iov_base;
|
|
if (left > siz)
|
|
left = siz;
|
|
uiosiz = left;
|
|
while (left > 0) {
|
|
mlen = M_TRAILINGSPACE(mp);
|
|
if (mlen == 0) {
|
|
mp = m_get(M_WAIT, MT_DATA);
|
|
MCLAIM(mp, &nfs_mowner);
|
|
if (clflg)
|
|
m_clget(mp, M_WAIT);
|
|
mp->m_len = 0;
|
|
mp2->m_next = mp;
|
|
mp2 = mp;
|
|
mlen = M_TRAILINGSPACE(mp);
|
|
}
|
|
xfer = (left > mlen) ? mlen : left;
|
|
cp = mtod(mp, char *) + mp->m_len;
|
|
error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
|
|
xfer);
|
|
if (error) {
|
|
/* XXX */
|
|
}
|
|
mp->m_len += xfer;
|
|
left -= xfer;
|
|
uiocp += xfer;
|
|
uiop->uio_offset += xfer;
|
|
uiop->uio_resid -= xfer;
|
|
}
|
|
uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
|
|
uiosiz;
|
|
uiop->uio_iov->iov_len -= uiosiz;
|
|
siz -= uiosiz;
|
|
}
|
|
if (rem > 0) {
|
|
if (rem > M_TRAILINGSPACE(mp)) {
|
|
mp = m_get(M_WAIT, MT_DATA);
|
|
MCLAIM(mp, &nfs_mowner);
|
|
mp->m_len = 0;
|
|
mp2->m_next = mp;
|
|
}
|
|
cp = mtod(mp, char *) + mp->m_len;
|
|
for (left = 0; left < rem; left++)
|
|
*cp++ = '\0';
|
|
mp->m_len += rem;
|
|
*bpos = cp;
|
|
} else
|
|
*bpos = mtod(mp, char *) + mp->m_len;
|
|
*mq = mp;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get at least "siz" bytes of correctly aligned data.
|
|
* When called the mbuf pointers are not necessarily correct,
|
|
* dsosp points to what ought to be in m_data and left contains
|
|
* what ought to be in m_len.
|
|
* This is used by the macros nfsm_dissect and nfsm_dissecton for tough
|
|
* cases. (The macros use the vars. dpos and dpos2)
|
|
*/
|
|
int
|
|
nfsm_disct(struct mbuf **mdp, char **dposp, int siz, int left, char **cp2)
|
|
{
|
|
struct mbuf *m1, *m2;
|
|
struct mbuf *havebuf = NULL;
|
|
char *src = *dposp;
|
|
char *dst;
|
|
int len;
|
|
|
|
#ifdef DEBUG
|
|
if (left < 0)
|
|
panic("nfsm_disct: left < 0");
|
|
#endif
|
|
m1 = *mdp;
|
|
/*
|
|
* Skip through the mbuf chain looking for an mbuf with
|
|
* some data. If the first mbuf found has enough data
|
|
* and it is correctly aligned return it.
|
|
*/
|
|
while (left == 0) {
|
|
havebuf = m1;
|
|
*mdp = m1 = m1->m_next;
|
|
if (m1 == NULL)
|
|
return (EBADRPC);
|
|
src = mtod(m1, void *);
|
|
left = m1->m_len;
|
|
/*
|
|
* If we start a new mbuf and it is big enough
|
|
* and correctly aligned just return it, don't
|
|
* do any pull up.
|
|
*/
|
|
if (left >= siz && nfsm_aligned(src)) {
|
|
*cp2 = src;
|
|
*dposp = src + siz;
|
|
return (0);
|
|
}
|
|
}
|
|
if ((m1->m_flags & M_EXT) != 0) {
|
|
if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
|
|
nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
|
|
/*
|
|
* If the first mbuf with data has external data
|
|
* and there is a previous mbuf with some trailing
|
|
* space, use it to move the data into.
|
|
*/
|
|
m2 = m1;
|
|
*mdp = m1 = havebuf;
|
|
*cp2 = mtod(m1, char *) + m1->m_len;
|
|
} else if (havebuf) {
|
|
/*
|
|
* If the first mbuf has a external data
|
|
* and there is no previous empty mbuf
|
|
* allocate a new mbuf and move the external
|
|
* data to the new mbuf. Also make the first
|
|
* mbuf look empty.
|
|
*/
|
|
m2 = m1;
|
|
*mdp = m1 = m_get(M_WAIT, MT_DATA);
|
|
MCLAIM(m1, m2->m_owner);
|
|
if ((m2->m_flags & M_PKTHDR) != 0) {
|
|
/* XXX MOVE */
|
|
M_COPY_PKTHDR(m1, m2);
|
|
m_tag_delete_chain(m2, NULL);
|
|
m2->m_flags &= ~M_PKTHDR;
|
|
}
|
|
if (havebuf) {
|
|
havebuf->m_next = m1;
|
|
}
|
|
m1->m_next = m2;
|
|
MRESETDATA(m1);
|
|
m1->m_len = 0;
|
|
m2->m_data = src;
|
|
m2->m_len = left;
|
|
*cp2 = mtod(m1, char *);
|
|
} else {
|
|
struct mbuf **nextp = &m1->m_next;
|
|
|
|
m1->m_len -= left;
|
|
do {
|
|
m2 = m_get(M_WAIT, MT_DATA);
|
|
MCLAIM(m2, m1->m_owner);
|
|
if (left >= MINCLSIZE) {
|
|
MCLGET(m2, M_WAIT);
|
|
}
|
|
m2->m_next = *nextp;
|
|
*nextp = m2;
|
|
nextp = &m2->m_next;
|
|
len = (m2->m_flags & M_EXT) != 0 ?
|
|
MCLBYTES : MLEN;
|
|
if (len > left) {
|
|
len = left;
|
|
}
|
|
memcpy(mtod(m2, char *), src, len);
|
|
m2->m_len = len;
|
|
src += len;
|
|
left -= len;
|
|
} while (left > 0);
|
|
*mdp = m1 = m1->m_next;
|
|
m2 = m1->m_next;
|
|
*cp2 = mtod(m1, char *);
|
|
}
|
|
} else {
|
|
/*
|
|
* If the first mbuf has no external data
|
|
* move the data to the front of the mbuf.
|
|
*/
|
|
MRESETDATA(m1);
|
|
dst = mtod(m1, char *);
|
|
if (dst != src) {
|
|
memmove(dst, src, left);
|
|
}
|
|
m1->m_len = left;
|
|
m2 = m1->m_next;
|
|
*cp2 = m1->m_data;
|
|
}
|
|
*dposp = *cp2 + siz;
|
|
/*
|
|
* Loop through mbufs pulling data up into first mbuf until
|
|
* the first mbuf is full or there is no more data to
|
|
* pullup.
|
|
*/
|
|
dst = mtod(m1, char *) + m1->m_len;
|
|
while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
|
|
if ((len = min(len, m2->m_len)) != 0) {
|
|
memcpy(dst, mtod(m2, char *), len);
|
|
}
|
|
m1->m_len += len;
|
|
dst += len;
|
|
m2->m_data += len;
|
|
m2->m_len -= len;
|
|
m2 = m2->m_next;
|
|
}
|
|
if (m1->m_len < siz)
|
|
return (EBADRPC);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Advance the position in the mbuf chain.
|
|
*/
|
|
int
|
|
nfs_adv(struct mbuf **mdp, char **dposp, int offs, int left)
|
|
{
|
|
struct mbuf *m;
|
|
int s;
|
|
|
|
m = *mdp;
|
|
s = left;
|
|
while (s < offs) {
|
|
offs -= s;
|
|
m = m->m_next;
|
|
if (m == NULL)
|
|
return (EBADRPC);
|
|
s = m->m_len;
|
|
}
|
|
*mdp = m;
|
|
*dposp = mtod(m, char *) + offs;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Copy a string into mbufs for the hard cases...
|
|
*/
|
|
int
|
|
nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz)
|
|
{
|
|
struct mbuf *m1 = NULL, *m2;
|
|
long left, xfer, len, tlen;
|
|
u_int32_t *tl;
|
|
int putsize;
|
|
|
|
putsize = 1;
|
|
m2 = *mb;
|
|
left = M_TRAILINGSPACE(m2);
|
|
if (left > 0) {
|
|
tl = ((u_int32_t *)(*bpos));
|
|
*tl++ = txdr_unsigned(siz);
|
|
putsize = 0;
|
|
left -= NFSX_UNSIGNED;
|
|
m2->m_len += NFSX_UNSIGNED;
|
|
if (left > 0) {
|
|
memcpy((void *) tl, cp, left);
|
|
siz -= left;
|
|
cp += left;
|
|
m2->m_len += left;
|
|
left = 0;
|
|
}
|
|
}
|
|
/* Loop around adding mbufs */
|
|
while (siz > 0) {
|
|
m1 = m_get(M_WAIT, MT_DATA);
|
|
MCLAIM(m1, &nfs_mowner);
|
|
if (siz > MLEN)
|
|
m_clget(m1, M_WAIT);
|
|
m1->m_len = NFSMSIZ(m1);
|
|
m2->m_next = m1;
|
|
m2 = m1;
|
|
tl = mtod(m1, u_int32_t *);
|
|
tlen = 0;
|
|
if (putsize) {
|
|
*tl++ = txdr_unsigned(siz);
|
|
m1->m_len -= NFSX_UNSIGNED;
|
|
tlen = NFSX_UNSIGNED;
|
|
putsize = 0;
|
|
}
|
|
if (siz < m1->m_len) {
|
|
len = nfsm_rndup(siz);
|
|
xfer = siz;
|
|
if (xfer < len)
|
|
*(tl+(xfer>>2)) = 0;
|
|
} else {
|
|
xfer = len = m1->m_len;
|
|
}
|
|
memcpy((void *) tl, cp, xfer);
|
|
m1->m_len = len+tlen;
|
|
siz -= xfer;
|
|
cp += xfer;
|
|
}
|
|
*mb = m1;
|
|
*bpos = mtod(m1, char *) + m1->m_len;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Directory caching routines. They work as follows:
|
|
* - a cache is maintained per VDIR nfsnode.
|
|
* - for each offset cookie that is exported to userspace, and can
|
|
* thus be thrown back at us as an offset to VOP_READDIR, store
|
|
* information in the cache.
|
|
* - cached are:
|
|
* - cookie itself
|
|
* - blocknumber (essentially just a search key in the buffer cache)
|
|
* - entry number in block.
|
|
* - offset cookie of block in which this entry is stored
|
|
* - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
|
|
* - entries are looked up in a hash table
|
|
* - also maintained is an LRU list of entries, used to determine
|
|
* which ones to delete if the cache grows too large.
|
|
* - if 32 <-> 64 translation mode is requested for a filesystem,
|
|
* the cache also functions as a translation table
|
|
* - in the translation case, invalidating the cache does not mean
|
|
* flushing it, but just marking entries as invalid, except for
|
|
* the <64bit cookie, 32bitcookie> pair which is still valid, to
|
|
* still be able to use the cache as a translation table.
|
|
* - 32 bit cookies are uniquely created by combining the hash table
|
|
* entry value, and one generation count per hash table entry,
|
|
* incremented each time an entry is appended to the chain.
|
|
* - the cache is invalidated each time a direcory is modified
|
|
* - sanity checks are also done; if an entry in a block turns
|
|
* out not to have a matching cookie, the cache is invalidated
|
|
* and a new block starting from the wanted offset is fetched from
|
|
* the server.
|
|
* - directory entries as read from the server are extended to contain
|
|
* the 64bit and, optionally, the 32bit cookies, for sanity checking
|
|
* the cache and exporting them to userspace through the cookie
|
|
* argument to VOP_READDIR.
|
|
*/
|
|
|
|
u_long
|
|
nfs_dirhash(off_t off)
|
|
{
|
|
int i;
|
|
char *cp = (char *)&off;
|
|
u_long sum = 0L;
|
|
|
|
for (i = 0 ; i < sizeof (off); i++)
|
|
sum += *cp++;
|
|
|
|
return sum;
|
|
}
|
|
|
|
#define _NFSDC_MTX(np) (NFSTOV(np)->v_interlock)
|
|
#define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
|
|
#define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
|
|
#define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
|
|
|
|
void
|
|
nfs_initdircache(struct vnode *vp)
|
|
{
|
|
struct nfsnode *np = VTONFS(vp);
|
|
struct nfsdirhashhead *dircache;
|
|
|
|
dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
|
|
&nfsdirhashmask);
|
|
|
|
NFSDC_LOCK(np);
|
|
if (np->n_dircache == NULL) {
|
|
np->n_dircachesize = 0;
|
|
np->n_dircache = dircache;
|
|
dircache = NULL;
|
|
TAILQ_INIT(&np->n_dirchain);
|
|
}
|
|
NFSDC_UNLOCK(np);
|
|
if (dircache)
|
|
hashdone(dircache, HASH_LIST, nfsdirhashmask);
|
|
}
|
|
|
|
void
|
|
nfs_initdirxlatecookie(struct vnode *vp)
|
|
{
|
|
struct nfsnode *np = VTONFS(vp);
|
|
unsigned *dirgens;
|
|
|
|
KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
|
|
|
|
dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
|
|
NFSDC_LOCK(np);
|
|
if (np->n_dirgens == NULL) {
|
|
np->n_dirgens = dirgens;
|
|
dirgens = NULL;
|
|
}
|
|
NFSDC_UNLOCK(np);
|
|
if (dirgens)
|
|
kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
|
|
}
|
|
|
|
static const struct nfsdircache dzero;
|
|
|
|
static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *);
|
|
static void nfs_putdircache_unlocked(struct nfsnode *,
|
|
struct nfsdircache *);
|
|
|
|
static void
|
|
nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *ndp)
|
|
{
|
|
|
|
NFSDC_ASSERT_LOCKED(np);
|
|
KASSERT(ndp != &dzero);
|
|
|
|
if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
|
|
return;
|
|
|
|
TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
|
|
LIST_REMOVE(ndp, dc_hash);
|
|
LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
|
|
|
|
nfs_putdircache_unlocked(np, ndp);
|
|
}
|
|
|
|
void
|
|
nfs_putdircache(struct nfsnode *np, struct nfsdircache *ndp)
|
|
{
|
|
int ref;
|
|
|
|
if (ndp == &dzero)
|
|
return;
|
|
|
|
KASSERT(ndp->dc_refcnt > 0);
|
|
NFSDC_LOCK(np);
|
|
ref = --ndp->dc_refcnt;
|
|
NFSDC_UNLOCK(np);
|
|
|
|
if (ref == 0)
|
|
kmem_free(ndp, sizeof(*ndp));
|
|
}
|
|
|
|
static void
|
|
nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
|
|
{
|
|
int ref;
|
|
|
|
NFSDC_ASSERT_LOCKED(np);
|
|
|
|
if (ndp == &dzero)
|
|
return;
|
|
|
|
KASSERT(ndp->dc_refcnt > 0);
|
|
ref = --ndp->dc_refcnt;
|
|
if (ref == 0)
|
|
kmem_free(ndp, sizeof(*ndp));
|
|
}
|
|
|
|
struct nfsdircache *
|
|
nfs_searchdircache(struct vnode *vp, off_t off, int do32, int *hashent)
|
|
{
|
|
struct nfsdirhashhead *ndhp;
|
|
struct nfsdircache *ndp = NULL;
|
|
struct nfsnode *np = VTONFS(vp);
|
|
unsigned ent;
|
|
|
|
/*
|
|
* Zero is always a valid cookie.
|
|
*/
|
|
if (off == 0)
|
|
/* XXXUNCONST */
|
|
return (struct nfsdircache *)__UNCONST(&dzero);
|
|
|
|
if (!np->n_dircache)
|
|
return NULL;
|
|
|
|
/*
|
|
* We use a 32bit cookie as search key, directly reconstruct
|
|
* the hashentry. Else use the hashfunction.
|
|
*/
|
|
if (do32) {
|
|
ent = (u_int32_t)off >> 24;
|
|
if (ent >= NFS_DIRHASHSIZ)
|
|
return NULL;
|
|
ndhp = &np->n_dircache[ent];
|
|
} else {
|
|
ndhp = NFSDIRHASH(np, off);
|
|
}
|
|
|
|
if (hashent)
|
|
*hashent = (int)(ndhp - np->n_dircache);
|
|
|
|
NFSDC_LOCK(np);
|
|
if (do32) {
|
|
LIST_FOREACH(ndp, ndhp, dc_hash) {
|
|
if (ndp->dc_cookie32 == (u_int32_t)off) {
|
|
/*
|
|
* An invalidated entry will become the
|
|
* start of a new block fetched from
|
|
* the server.
|
|
*/
|
|
if (ndp->dc_flags & NFSDC_INVALID) {
|
|
ndp->dc_blkcookie = ndp->dc_cookie;
|
|
ndp->dc_entry = 0;
|
|
ndp->dc_flags &= ~NFSDC_INVALID;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
LIST_FOREACH(ndp, ndhp, dc_hash) {
|
|
if (ndp->dc_cookie == off)
|
|
break;
|
|
}
|
|
}
|
|
if (ndp != NULL)
|
|
ndp->dc_refcnt++;
|
|
NFSDC_UNLOCK(np);
|
|
return ndp;
|
|
}
|
|
|
|
|
|
struct nfsdircache *
|
|
nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
|
|
daddr_t blkno)
|
|
{
|
|
struct nfsnode *np = VTONFS(vp);
|
|
struct nfsdirhashhead *ndhp;
|
|
struct nfsdircache *ndp = NULL;
|
|
struct nfsdircache *newndp = NULL;
|
|
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
|
|
int hashent = 0, gen, overwrite; /* XXX: GCC */
|
|
|
|
/*
|
|
* XXX refuse entries for offset 0. amd(8) erroneously sets
|
|
* cookie 0 for the '.' entry, making this necessary. This
|
|
* isn't so bad, as 0 is a special case anyway.
|
|
*/
|
|
if (off == 0)
|
|
/* XXXUNCONST */
|
|
return (struct nfsdircache *)__UNCONST(&dzero);
|
|
|
|
if (!np->n_dircache)
|
|
/*
|
|
* XXX would like to do this in nfs_nget but vtype
|
|
* isn't known at that time.
|
|
*/
|
|
nfs_initdircache(vp);
|
|
|
|
if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
|
|
nfs_initdirxlatecookie(vp);
|
|
|
|
retry:
|
|
ndp = nfs_searchdircache(vp, off, 0, &hashent);
|
|
|
|
NFSDC_LOCK(np);
|
|
if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
|
|
/*
|
|
* Overwriting an old entry. Check if it's the same.
|
|
* If so, just return. If not, remove the old entry.
|
|
*/
|
|
if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
|
|
goto done;
|
|
nfs_unlinkdircache(np, ndp);
|
|
nfs_putdircache_unlocked(np, ndp);
|
|
ndp = NULL;
|
|
}
|
|
|
|
ndhp = &np->n_dircache[hashent];
|
|
|
|
if (!ndp) {
|
|
if (newndp == NULL) {
|
|
NFSDC_UNLOCK(np);
|
|
newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
|
|
newndp->dc_refcnt = 1;
|
|
LIST_NEXT(newndp, dc_hash) = (void *)-1;
|
|
goto retry;
|
|
}
|
|
ndp = newndp;
|
|
newndp = NULL;
|
|
overwrite = 0;
|
|
if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
|
|
/*
|
|
* We're allocating a new entry, so bump the
|
|
* generation number.
|
|
*/
|
|
KASSERT(np->n_dirgens);
|
|
gen = ++np->n_dirgens[hashent];
|
|
if (gen == 0) {
|
|
np->n_dirgens[hashent]++;
|
|
gen++;
|
|
}
|
|
ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
|
|
}
|
|
} else
|
|
overwrite = 1;
|
|
|
|
ndp->dc_cookie = off;
|
|
ndp->dc_blkcookie = blkoff;
|
|
ndp->dc_entry = en;
|
|
ndp->dc_flags = 0;
|
|
|
|
if (overwrite)
|
|
goto done;
|
|
|
|
/*
|
|
* If the maximum directory cookie cache size has been reached
|
|
* for this node, take one off the front. The idea is that
|
|
* directories are typically read front-to-back once, so that
|
|
* the oldest entries can be thrown away without much performance
|
|
* loss.
|
|
*/
|
|
if (np->n_dircachesize == NFS_MAXDIRCACHE) {
|
|
nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
|
|
} else
|
|
np->n_dircachesize++;
|
|
|
|
KASSERT(ndp->dc_refcnt == 1);
|
|
LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
|
|
TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
|
|
ndp->dc_refcnt++;
|
|
done:
|
|
KASSERT(ndp->dc_refcnt > 0);
|
|
NFSDC_UNLOCK(np);
|
|
if (newndp)
|
|
nfs_putdircache(np, newndp);
|
|
return ndp;
|
|
}
|
|
|
|
void
|
|
nfs_invaldircache(struct vnode *vp, int flags)
|
|
{
|
|
struct nfsnode *np = VTONFS(vp);
|
|
struct nfsdircache *ndp = NULL;
|
|
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
|
|
const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (vp->v_type != VDIR)
|
|
panic("nfs: invaldircache: not dir");
|
|
#endif
|
|
|
|
if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
|
|
np->n_flag &= ~NEOFVALID;
|
|
|
|
if (!np->n_dircache)
|
|
return;
|
|
|
|
NFSDC_LOCK(np);
|
|
if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
|
|
while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
|
|
KASSERT(!forcefree || ndp->dc_refcnt == 1);
|
|
nfs_unlinkdircache(np, ndp);
|
|
}
|
|
np->n_dircachesize = 0;
|
|
if (forcefree && np->n_dirgens) {
|
|
kmem_free(np->n_dirgens,
|
|
NFS_DIRHASHSIZ * sizeof(unsigned));
|
|
np->n_dirgens = NULL;
|
|
}
|
|
} else {
|
|
TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
|
|
ndp->dc_flags |= NFSDC_INVALID;
|
|
}
|
|
|
|
NFSDC_UNLOCK(np);
|
|
}
|
|
|
|
/*
|
|
* Called once before VFS init to initialize shared and
|
|
* server-specific data structures.
|
|
*/
|
|
static int
|
|
nfs_init0(void)
|
|
{
|
|
|
|
nfsrtt.pos = 0;
|
|
rpc_vers = txdr_unsigned(RPC_VER2);
|
|
rpc_call = txdr_unsigned(RPC_CALL);
|
|
rpc_reply = txdr_unsigned(RPC_REPLY);
|
|
rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
|
|
rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
|
|
rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
|
|
rpc_autherr = txdr_unsigned(RPC_AUTHERR);
|
|
rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
|
|
rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
|
|
nfs_prog = txdr_unsigned(NFS_PROG);
|
|
nfs_true = txdr_unsigned(true);
|
|
nfs_false = txdr_unsigned(false);
|
|
nfs_xdrneg1 = txdr_unsigned(-1);
|
|
nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
|
|
if (nfs_ticks < 1)
|
|
nfs_ticks = 1;
|
|
nfs_xid = arc4random();
|
|
nfsdreq_init();
|
|
|
|
/*
|
|
* Initialize reply list and start timer
|
|
*/
|
|
TAILQ_INIT(&nfs_reqq);
|
|
nfs_timer_init();
|
|
MOWNER_ATTACH(&nfs_mowner);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is disgusting, but it must support both modular and monolothic
|
|
* configurations. For monolithic builds NFSSERVER may not imply NFS.
|
|
*
|
|
* Yuck.
|
|
*/
|
|
void
|
|
nfs_init(void)
|
|
{
|
|
static ONCE_DECL(nfs_init_once);
|
|
|
|
RUN_ONCE(&nfs_init_once, nfs_init0);
|
|
}
|
|
|
|
void
|
|
nfs_fini(void)
|
|
{
|
|
|
|
nfsdreq_fini();
|
|
nfs_timer_fini();
|
|
MOWNER_DETACH(&nfs_mowner);
|
|
}
|
|
|
|
/*
|
|
* A fiddled version of m_adj() that ensures null fill to a 32-bit
|
|
* boundary and only trims off the back end
|
|
*
|
|
* 1. trim off 'len' bytes as m_adj(mp, -len).
|
|
* 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
|
|
*/
|
|
void
|
|
nfs_zeropad(struct mbuf *mp, int len, int nul)
|
|
{
|
|
struct mbuf *m;
|
|
int count;
|
|
|
|
/*
|
|
* Trim from tail. Scan the mbuf chain,
|
|
* calculating its length and finding the last mbuf.
|
|
* If the adjustment only affects this mbuf, then just
|
|
* adjust and return. Otherwise, rescan and truncate
|
|
* after the remaining size.
|
|
*/
|
|
count = 0;
|
|
m = mp;
|
|
for (;;) {
|
|
count += m->m_len;
|
|
if (m->m_next == NULL)
|
|
break;
|
|
m = m->m_next;
|
|
}
|
|
|
|
KDASSERT(count >= len);
|
|
|
|
if (m->m_len >= len) {
|
|
m->m_len -= len;
|
|
} else {
|
|
count -= len;
|
|
/*
|
|
* Correct length for chain is "count".
|
|
* Find the mbuf with last data, adjust its length,
|
|
* and toss data from remaining mbufs on chain.
|
|
*/
|
|
for (m = mp; m; m = m->m_next) {
|
|
if (m->m_len >= count) {
|
|
m->m_len = count;
|
|
break;
|
|
}
|
|
count -= m->m_len;
|
|
}
|
|
KASSERT(m && m->m_next);
|
|
m_freem(m->m_next);
|
|
m->m_next = NULL;
|
|
}
|
|
|
|
KDASSERT(m->m_next == NULL);
|
|
|
|
/*
|
|
* zero-padding.
|
|
*/
|
|
if (nul > 0) {
|
|
char *cp;
|
|
int i;
|
|
|
|
if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
|
|
struct mbuf *n;
|
|
|
|
KDASSERT(MLEN >= nul);
|
|
n = m_get(M_WAIT, MT_DATA);
|
|
MCLAIM(n, &nfs_mowner);
|
|
n->m_len = nul;
|
|
n->m_next = NULL;
|
|
m->m_next = n;
|
|
cp = mtod(n, void *);
|
|
} else {
|
|
cp = mtod(m, char *) + m->m_len;
|
|
m->m_len += nul;
|
|
}
|
|
for (i = 0; i < nul; i++)
|
|
*cp++ = '\0';
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Make these functions instead of macros, so that the kernel text size
|
|
* doesn't get too big...
|
|
*/
|
|
void
|
|
nfsm_srvwcc(struct nfsrv_descript *nfsd, int before_ret, struct vattr *before_vap, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
|
|
{
|
|
struct mbuf *mb = *mbp;
|
|
char *bpos = *bposp;
|
|
u_int32_t *tl;
|
|
|
|
if (before_ret) {
|
|
nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = nfs_false;
|
|
} else {
|
|
nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
|
|
*tl++ = nfs_true;
|
|
txdr_hyper(before_vap->va_size, tl);
|
|
tl += 2;
|
|
txdr_nfsv3time(&(before_vap->va_mtime), tl);
|
|
tl += 2;
|
|
txdr_nfsv3time(&(before_vap->va_ctime), tl);
|
|
}
|
|
*bposp = bpos;
|
|
*mbp = mb;
|
|
nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
|
|
}
|
|
|
|
void
|
|
nfsm_srvpostopattr(struct nfsrv_descript *nfsd, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
|
|
{
|
|
struct mbuf *mb = *mbp;
|
|
char *bpos = *bposp;
|
|
u_int32_t *tl;
|
|
struct nfs_fattr *fp;
|
|
|
|
if (after_ret) {
|
|
nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = nfs_false;
|
|
} else {
|
|
nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
|
|
*tl++ = nfs_true;
|
|
fp = (struct nfs_fattr *)tl;
|
|
nfsm_srvfattr(nfsd, after_vap, fp);
|
|
}
|
|
*mbp = mb;
|
|
*bposp = bpos;
|
|
}
|
|
|
|
void
|
|
nfsm_srvfattr(struct nfsrv_descript *nfsd, struct vattr *vap, struct nfs_fattr *fp)
|
|
{
|
|
|
|
fp->fa_nlink = txdr_unsigned(vap->va_nlink);
|
|
fp->fa_uid = txdr_unsigned(vap->va_uid);
|
|
fp->fa_gid = txdr_unsigned(vap->va_gid);
|
|
if (nfsd->nd_flag & ND_NFSV3) {
|
|
fp->fa_type = vtonfsv3_type(vap->va_type);
|
|
fp->fa_mode = vtonfsv3_mode(vap->va_mode);
|
|
txdr_hyper(vap->va_size, &fp->fa3_size);
|
|
txdr_hyper(vap->va_bytes, &fp->fa3_used);
|
|
fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
|
|
fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
|
|
fp->fa3_fsid.nfsuquad[0] = 0;
|
|
fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
|
|
txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
|
|
txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
|
|
txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
|
|
txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
|
|
} else {
|
|
fp->fa_type = vtonfsv2_type(vap->va_type);
|
|
fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
|
|
fp->fa2_size = txdr_unsigned(vap->va_size);
|
|
fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
|
|
if (vap->va_type == VFIFO)
|
|
fp->fa2_rdev = 0xffffffff;
|
|
else
|
|
fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
|
|
fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
|
|
fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
|
|
fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
|
|
txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
|
|
txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
|
|
txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function compares two net addresses by family and returns true
|
|
* if they are the same host.
|
|
* If there is any doubt, return false.
|
|
* The AF_INET family is handled as a special case so that address mbufs
|
|
* don't need to be saved to store "struct in_addr", which is only 4 bytes.
|
|
*/
|
|
int
|
|
netaddr_match(int family, union nethostaddr *haddr, struct mbuf *nam)
|
|
{
|
|
struct sockaddr_in *inetaddr;
|
|
|
|
switch (family) {
|
|
case AF_INET:
|
|
inetaddr = mtod(nam, struct sockaddr_in *);
|
|
if (inetaddr->sin_family == AF_INET &&
|
|
inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
|
|
return (1);
|
|
break;
|
|
case AF_INET6:
|
|
{
|
|
struct sockaddr_in6 *sin6_1, *sin6_2;
|
|
|
|
sin6_1 = mtod(nam, struct sockaddr_in6 *);
|
|
sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
|
|
if (sin6_1->sin6_family == AF_INET6 &&
|
|
IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
|
|
return 1;
|
|
}
|
|
default:
|
|
break;
|
|
};
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The write verifier has changed (probably due to a server reboot), so all
|
|
* PG_NEEDCOMMIT pages will have to be written again. Since they are marked
|
|
* as dirty or are being written out just now, all this takes is clearing
|
|
* the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
|
|
* the mount point.
|
|
*/
|
|
void
|
|
nfs_clearcommit(struct mount *mp)
|
|
{
|
|
struct vnode *vp;
|
|
struct nfsnode *np;
|
|
struct vm_page *pg;
|
|
struct nfsmount *nmp = VFSTONFS(mp);
|
|
|
|
rw_enter(&nmp->nm_writeverflock, RW_WRITER);
|
|
mutex_enter(&mntvnode_lock);
|
|
TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
|
|
KASSERT(vp->v_mount == mp);
|
|
if (vp->v_type != VREG)
|
|
continue;
|
|
mutex_enter(vp->v_interlock);
|
|
if (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) {
|
|
mutex_exit(vp->v_interlock);
|
|
continue;
|
|
}
|
|
np = VTONFS(vp);
|
|
np->n_pushlo = np->n_pushhi = np->n_pushedlo =
|
|
np->n_pushedhi = 0;
|
|
np->n_commitflags &=
|
|
~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
|
|
TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) {
|
|
pg->flags &= ~PG_NEEDCOMMIT;
|
|
}
|
|
mutex_exit(vp->v_interlock);
|
|
}
|
|
mutex_exit(&mntvnode_lock);
|
|
mutex_enter(&nmp->nm_lock);
|
|
nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
|
|
mutex_exit(&nmp->nm_lock);
|
|
rw_exit(&nmp->nm_writeverflock);
|
|
}
|
|
|
|
void
|
|
nfs_merge_commit_ranges(struct vnode *vp)
|
|
{
|
|
struct nfsnode *np = VTONFS(vp);
|
|
|
|
KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
|
|
|
|
if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
|
|
np->n_pushedlo = np->n_pushlo;
|
|
np->n_pushedhi = np->n_pushhi;
|
|
np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
|
|
} else {
|
|
if (np->n_pushlo < np->n_pushedlo)
|
|
np->n_pushedlo = np->n_pushlo;
|
|
if (np->n_pushhi > np->n_pushedhi)
|
|
np->n_pushedhi = np->n_pushhi;
|
|
}
|
|
|
|
np->n_pushlo = np->n_pushhi = 0;
|
|
np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
|
|
|
|
#ifdef NFS_DEBUG_COMMIT
|
|
printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
|
|
(unsigned)np->n_pushedhi);
|
|
#endif
|
|
}
|
|
|
|
int
|
|
nfs_in_committed_range(struct vnode *vp, off_t off, off_t len)
|
|
{
|
|
struct nfsnode *np = VTONFS(vp);
|
|
off_t lo, hi;
|
|
|
|
if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
|
|
return 0;
|
|
lo = off;
|
|
hi = lo + len;
|
|
|
|
return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
|
|
}
|
|
|
|
int
|
|
nfs_in_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
|
|
{
|
|
struct nfsnode *np = VTONFS(vp);
|
|
off_t lo, hi;
|
|
|
|
if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
|
|
return 0;
|
|
lo = off;
|
|
hi = lo + len;
|
|
|
|
return (lo >= np->n_pushlo && hi <= np->n_pushhi);
|
|
}
|
|
|
|
void
|
|
nfs_add_committed_range(struct vnode *vp, off_t off, off_t len)
|
|
{
|
|
struct nfsnode *np = VTONFS(vp);
|
|
off_t lo, hi;
|
|
|
|
lo = off;
|
|
hi = lo + len;
|
|
|
|
if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
|
|
np->n_pushedlo = lo;
|
|
np->n_pushedhi = hi;
|
|
np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
|
|
} else {
|
|
if (hi > np->n_pushedhi)
|
|
np->n_pushedhi = hi;
|
|
if (lo < np->n_pushedlo)
|
|
np->n_pushedlo = lo;
|
|
}
|
|
#ifdef NFS_DEBUG_COMMIT
|
|
printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
|
|
(unsigned)np->n_pushedhi);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
nfs_del_committed_range(struct vnode *vp, off_t off, off_t len)
|
|
{
|
|
struct nfsnode *np = VTONFS(vp);
|
|
off_t lo, hi;
|
|
|
|
if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
|
|
return;
|
|
|
|
lo = off;
|
|
hi = lo + len;
|
|
|
|
if (lo > np->n_pushedhi || hi < np->n_pushedlo)
|
|
return;
|
|
if (lo <= np->n_pushedlo)
|
|
np->n_pushedlo = hi;
|
|
else if (hi >= np->n_pushedhi)
|
|
np->n_pushedhi = lo;
|
|
else {
|
|
/*
|
|
* XXX There's only one range. If the deleted range
|
|
* is in the middle, pick the largest of the
|
|
* contiguous ranges that it leaves.
|
|
*/
|
|
if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
|
|
np->n_pushedhi = lo;
|
|
else
|
|
np->n_pushedlo = hi;
|
|
}
|
|
#ifdef NFS_DEBUG_COMMIT
|
|
printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
|
|
(unsigned)np->n_pushedhi);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
nfs_add_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
|
|
{
|
|
struct nfsnode *np = VTONFS(vp);
|
|
off_t lo, hi;
|
|
|
|
lo = off;
|
|
hi = lo + len;
|
|
|
|
if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
|
|
np->n_pushlo = lo;
|
|
np->n_pushhi = hi;
|
|
np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
|
|
} else {
|
|
if (lo < np->n_pushlo)
|
|
np->n_pushlo = lo;
|
|
if (hi > np->n_pushhi)
|
|
np->n_pushhi = hi;
|
|
}
|
|
#ifdef NFS_DEBUG_COMMIT
|
|
printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
|
|
(unsigned)np->n_pushhi);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
nfs_del_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
|
|
{
|
|
struct nfsnode *np = VTONFS(vp);
|
|
off_t lo, hi;
|
|
|
|
if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
|
|
return;
|
|
|
|
lo = off;
|
|
hi = lo + len;
|
|
|
|
if (lo > np->n_pushhi || hi < np->n_pushlo)
|
|
return;
|
|
|
|
if (lo <= np->n_pushlo)
|
|
np->n_pushlo = hi;
|
|
else if (hi >= np->n_pushhi)
|
|
np->n_pushhi = lo;
|
|
else {
|
|
/*
|
|
* XXX There's only one range. If the deleted range
|
|
* is in the middle, pick the largest of the
|
|
* contiguous ranges that it leaves.
|
|
*/
|
|
if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
|
|
np->n_pushhi = lo;
|
|
else
|
|
np->n_pushlo = hi;
|
|
}
|
|
#ifdef NFS_DEBUG_COMMIT
|
|
printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
|
|
(unsigned)np->n_pushhi);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Map errnos to NFS error numbers. For Version 3 also filter out error
|
|
* numbers not specified for the associated procedure.
|
|
*/
|
|
int
|
|
nfsrv_errmap(struct nfsrv_descript *nd, int err)
|
|
{
|
|
const short *defaulterrp, *errp;
|
|
|
|
if (nd->nd_flag & ND_NFSV3) {
|
|
if (nd->nd_procnum <= NFSPROC_COMMIT) {
|
|
errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
|
|
while (*++errp) {
|
|
if (*errp == err)
|
|
return (err);
|
|
else if (*errp > err)
|
|
break;
|
|
}
|
|
return ((int)*defaulterrp);
|
|
} else
|
|
return (err & 0xffff);
|
|
}
|
|
if (err <= ELAST)
|
|
return ((int)nfsrv_v2errmap[err - 1]);
|
|
return (NFSERR_IO);
|
|
}
|
|
|
|
u_int32_t
|
|
nfs_getxid(void)
|
|
{
|
|
u_int32_t newxid;
|
|
|
|
/* get next xid. skip 0 */
|
|
do {
|
|
newxid = atomic_inc_32_nv(&nfs_xid);
|
|
} while (__predict_false(newxid == 0));
|
|
|
|
return txdr_unsigned(newxid);
|
|
}
|
|
|
|
/*
|
|
* assign a new xid for existing request.
|
|
* used for NFSERR_JUKEBOX handling.
|
|
*/
|
|
void
|
|
nfs_renewxid(struct nfsreq *req)
|
|
{
|
|
u_int32_t xid;
|
|
int off;
|
|
|
|
xid = nfs_getxid();
|
|
if (req->r_nmp->nm_sotype == SOCK_STREAM)
|
|
off = sizeof(u_int32_t); /* RPC record mark */
|
|
else
|
|
off = 0;
|
|
|
|
m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
|
|
req->r_xid = xid;
|
|
}
|