NetBSD/sys/net/if.c

2639 lines
60 KiB
C

/* $NetBSD: if.c,v 1.319 2015/11/20 08:10:36 ozaki-r Exp $ */
/*-
* Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by William Studenmund and Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1980, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if.c 8.5 (Berkeley) 1/9/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if.c,v 1.319 2015/11/20 08:10:36 ozaki-r Exp $");
#if defined(_KERNEL_OPT)
#include "opt_inet.h"
#include "opt_atalk.h"
#include "opt_natm.h"
#include "opt_wlan.h"
#include "opt_net_mpsafe.h"
#endif
#include <sys/param.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/kernel.h>
#include <sys/ioctl.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/kauth.h>
#include <sys/kmem.h>
#include <sys/xcall.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net80211/ieee80211.h>
#include <net80211/ieee80211_ioctl.h>
#include <net/if_types.h>
#include <net/radix.h>
#include <net/route.h>
#include <net/netisr.h>
#include <sys/module.h>
#ifdef NETATALK
#include <netatalk/at_extern.h>
#include <netatalk/at.h>
#endif
#include <net/pfil.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#ifdef INET6
#include <netinet6/in6_var.h>
#include <netinet6/nd6.h>
#endif
#include "ether.h"
#include "fddi.h"
#include "token.h"
#include "carp.h"
#if NCARP > 0
#include <netinet/ip_carp.h>
#endif
#include <compat/sys/sockio.h>
#include <compat/sys/socket.h>
MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
/*
* Global list of interfaces.
*/
struct ifnet_head ifnet_list;
static ifnet_t ** ifindex2ifnet = NULL;
static u_int if_index = 1;
static size_t if_indexlim = 0;
static uint64_t index_gen;
static kmutex_t index_gen_mtx;
static kmutex_t if_clone_mtx;
struct ifnet *lo0ifp;
int ifqmaxlen = IFQ_MAXLEN;
static int if_rt_walktree(struct rtentry *, void *);
static struct if_clone *if_clone_lookup(const char *, int *);
static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
static int if_cloners_count;
/* Packet filtering hook for interfaces. */
pfil_head_t * if_pfil;
static kauth_listener_t if_listener;
static int doifioctl(struct socket *, u_long, void *, struct lwp *);
static int ifioctl_attach(struct ifnet *);
static void ifioctl_detach(struct ifnet *);
static void ifnet_lock_enter(struct ifnet_lock *);
static void ifnet_lock_exit(struct ifnet_lock *);
static void if_detach_queues(struct ifnet *, struct ifqueue *);
static void sysctl_sndq_setup(struct sysctllog **, const char *,
struct ifaltq *);
static void if_slowtimo(void *);
static void if_free_sadl(struct ifnet *);
static void if_attachdomain1(struct ifnet *);
static int ifconf(u_long, void *);
static int if_clone_create(const char *);
static int if_clone_destroy(const char *);
#if defined(INET) || defined(INET6)
static void sysctl_net_pktq_setup(struct sysctllog **, int);
#endif
static int
if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
void *arg0, void *arg1, void *arg2, void *arg3)
{
int result;
enum kauth_network_req req;
result = KAUTH_RESULT_DEFER;
req = (enum kauth_network_req)arg1;
if (action != KAUTH_NETWORK_INTERFACE)
return result;
if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
(req == KAUTH_REQ_NETWORK_INTERFACE_SET))
result = KAUTH_RESULT_ALLOW;
return result;
}
/*
* Network interface utility routines.
*
* Routines with ifa_ifwith* names take sockaddr *'s as
* parameters.
*/
void
ifinit(void)
{
#if defined(INET)
sysctl_net_pktq_setup(NULL, PF_INET);
#endif
#ifdef INET6
if (in6_present)
sysctl_net_pktq_setup(NULL, PF_INET6);
#endif
if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
if_listener_cb, NULL);
/* interfaces are available, inform socket code */
ifioctl = doifioctl;
}
/*
* XXX Initialization before configure().
* XXX hack to get pfil_add_hook working in autoconf.
*/
void
ifinit1(void)
{
mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
TAILQ_INIT(&ifnet_list);
if_indexlim = 8;
if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
KASSERT(if_pfil != NULL);
#if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
etherinit();
#endif
}
ifnet_t *
if_alloc(u_char type)
{
return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
}
void
if_free(ifnet_t *ifp)
{
kmem_free(ifp, sizeof(ifnet_t));
}
void
if_initname(struct ifnet *ifp, const char *name, int unit)
{
(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
"%s%d", name, unit);
}
/*
* Null routines used while an interface is going away. These routines
* just return an error.
*/
int
if_nulloutput(struct ifnet *ifp, struct mbuf *m,
const struct sockaddr *so, struct rtentry *rt)
{
return ENXIO;
}
void
if_nullinput(struct ifnet *ifp, struct mbuf *m)
{
/* Nothing. */
}
void
if_nullstart(struct ifnet *ifp)
{
/* Nothing. */
}
int
if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
{
/* Wake ifioctl_detach(), who may wait for all threads to
* quit the critical section.
*/
cv_signal(&ifp->if_ioctl_lock->il_emptied);
return ENXIO;
}
int
if_nullinit(struct ifnet *ifp)
{
return ENXIO;
}
void
if_nullstop(struct ifnet *ifp, int disable)
{
/* Nothing. */
}
void
if_nullslowtimo(struct ifnet *ifp)
{
/* Nothing. */
}
void
if_nulldrain(struct ifnet *ifp)
{
/* Nothing. */
}
void
if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
{
struct ifaddr *ifa;
struct sockaddr_dl *sdl;
ifp->if_addrlen = addrlen;
if_alloc_sadl(ifp);
ifa = ifp->if_dl;
sdl = satosdl(ifa->ifa_addr);
(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
if (factory) {
ifp->if_hwdl = ifp->if_dl;
ifaref(ifp->if_hwdl);
}
/* TBD routing socket */
}
struct ifaddr *
if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
{
unsigned socksize, ifasize;
int addrlen, namelen;
struct sockaddr_dl *mask, *sdl;
struct ifaddr *ifa;
namelen = strlen(ifp->if_xname);
addrlen = ifp->if_addrlen;
socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
ifasize = sizeof(*ifa) + 2 * socksize;
ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
sdl = (struct sockaddr_dl *)(ifa + 1);
mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
ifp->if_xname, namelen, NULL, addrlen);
mask->sdl_len = sockaddr_dl_measure(namelen, 0);
memset(&mask->sdl_data[0], 0xff, namelen);
ifa->ifa_rtrequest = link_rtrequest;
ifa->ifa_addr = (struct sockaddr *)sdl;
ifa->ifa_netmask = (struct sockaddr *)mask;
*sdlp = sdl;
return ifa;
}
static void
if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
{
const struct sockaddr_dl *sdl;
ifp->if_dl = ifa;
ifaref(ifa);
sdl = satosdl(ifa->ifa_addr);
ifp->if_sadl = sdl;
}
/*
* Allocate the link level name for the specified interface. This
* is an attachment helper. It must be called after ifp->if_addrlen
* is initialized, which may not be the case when if_attach() is
* called.
*/
void
if_alloc_sadl(struct ifnet *ifp)
{
struct ifaddr *ifa;
const struct sockaddr_dl *sdl;
/*
* If the interface already has a link name, release it
* now. This is useful for interfaces that can change
* link types, and thus switch link names often.
*/
if (ifp->if_sadl != NULL)
if_free_sadl(ifp);
ifa = if_dl_create(ifp, &sdl);
ifa_insert(ifp, ifa);
if_sadl_setrefs(ifp, ifa);
}
static void
if_deactivate_sadl(struct ifnet *ifp)
{
struct ifaddr *ifa;
KASSERT(ifp->if_dl != NULL);
ifa = ifp->if_dl;
ifp->if_sadl = NULL;
ifp->if_dl = NULL;
ifafree(ifa);
}
void
if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
const struct sockaddr_dl *sdl)
{
int s;
s = splnet();
if_deactivate_sadl(ifp);
if_sadl_setrefs(ifp, ifa);
IFADDR_FOREACH(ifa, ifp)
rtinit(ifa, RTM_LLINFO_UPD, 0);
splx(s);
}
/*
* Free the link level name for the specified interface. This is
* a detach helper. This is called from if_detach().
*/
static void
if_free_sadl(struct ifnet *ifp)
{
struct ifaddr *ifa;
int s;
ifa = ifp->if_dl;
if (ifa == NULL) {
KASSERT(ifp->if_sadl == NULL);
return;
}
KASSERT(ifp->if_sadl != NULL);
s = splnet();
rtinit(ifa, RTM_DELETE, 0);
ifa_remove(ifp, ifa);
if_deactivate_sadl(ifp);
if (ifp->if_hwdl == ifa) {
ifafree(ifa);
ifp->if_hwdl = NULL;
}
splx(s);
}
static void
if_getindex(ifnet_t *ifp)
{
bool hitlimit = false;
mutex_enter(&index_gen_mtx);
ifp->if_index_gen = index_gen++;
mutex_exit(&index_gen_mtx);
ifp->if_index = if_index;
if (ifindex2ifnet == NULL) {
if_index++;
goto skip;
}
while (if_byindex(ifp->if_index)) {
/*
* If we hit USHRT_MAX, we skip back to 0 since
* there are a number of places where the value
* of if_index or if_index itself is compared
* to or stored in an unsigned short. By
* jumping back, we won't botch those assignments
* or comparisons.
*/
if (++if_index == 0) {
if_index = 1;
} else if (if_index == USHRT_MAX) {
/*
* However, if we have to jump back to
* zero *twice* without finding an empty
* slot in ifindex2ifnet[], then there
* there are too many (>65535) interfaces.
*/
if (hitlimit) {
panic("too many interfaces");
}
hitlimit = true;
if_index = 1;
}
ifp->if_index = if_index;
}
skip:
/*
* ifindex2ifnet is indexed by if_index. Since if_index will
* grow dynamically, it should grow too.
*/
if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
size_t m, n, oldlim;
void *q;
oldlim = if_indexlim;
while (ifp->if_index >= if_indexlim)
if_indexlim <<= 1;
/* grow ifindex2ifnet */
m = oldlim * sizeof(struct ifnet *);
n = if_indexlim * sizeof(struct ifnet *);
q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
if (ifindex2ifnet != NULL) {
memcpy(q, ifindex2ifnet, m);
free(ifindex2ifnet, M_IFADDR);
}
ifindex2ifnet = (struct ifnet **)q;
}
ifindex2ifnet[ifp->if_index] = ifp;
}
/*
* Initialize an interface and assign an index for it.
*
* It must be called prior to a device specific attach routine
* (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
* and be followed by if_register:
*
* if_initialize(ifp);
* ether_ifattach(ifp, enaddr);
* if_register(ifp);
*/
void
if_initialize(ifnet_t *ifp)
{
KASSERT(if_indexlim > 0);
TAILQ_INIT(&ifp->if_addrlist);
/*
* Link level name is allocated later by a separate call to
* if_alloc_sadl().
*/
if (ifp->if_snd.ifq_maxlen == 0)
ifp->if_snd.ifq_maxlen = ifqmaxlen;
ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
ifp->if_link_state = LINK_STATE_UNKNOWN;
ifp->if_capenable = 0;
ifp->if_csum_flags_tx = 0;
ifp->if_csum_flags_rx = 0;
#ifdef ALTQ
ifp->if_snd.altq_type = 0;
ifp->if_snd.altq_disc = NULL;
ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
ifp->if_snd.altq_tbr = NULL;
ifp->if_snd.altq_ifp = ifp;
#endif
#ifdef NET_MPSAFE
ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
#else
ifp->if_snd.ifq_lock = NULL;
#endif
ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
(void)pfil_run_hooks(if_pfil,
(struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
IF_AFDATA_LOCK_INIT(ifp);
if_getindex(ifp);
}
/*
* Register an interface to the list of "active" interfaces.
*/
void
if_register(ifnet_t *ifp)
{
if (ifioctl_attach(ifp) != 0)
panic("%s: ifioctl_attach() failed", __func__);
sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
if (!STAILQ_EMPTY(&domains))
if_attachdomain1(ifp);
/* Announce the interface. */
rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
if (ifp->if_slowtimo != NULL) {
ifp->if_slowtimo_ch =
kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
callout_init(ifp->if_slowtimo_ch, 0);
callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
if_slowtimo(ifp);
}
TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
}
/*
* Deprecated. Use if_initialize and if_register instead.
* See the above comment of if_initialize.
*/
void
if_attach(ifnet_t *ifp)
{
if_initialize(ifp);
if_register(ifp);
}
void
if_attachdomain(void)
{
struct ifnet *ifp;
int s;
s = splnet();
IFNET_FOREACH(ifp)
if_attachdomain1(ifp);
splx(s);
}
static void
if_attachdomain1(struct ifnet *ifp)
{
struct domain *dp;
int s;
s = splnet();
/* address family dependent data region */
memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
DOMAIN_FOREACH(dp) {
if (dp->dom_ifattach != NULL)
ifp->if_afdata[dp->dom_family] =
(*dp->dom_ifattach)(ifp);
}
splx(s);
}
/*
* Deactivate an interface. This points all of the procedure
* handles at error stubs. May be called from interrupt context.
*/
void
if_deactivate(struct ifnet *ifp)
{
int s;
s = splnet();
ifp->if_output = if_nulloutput;
ifp->if_input = if_nullinput;
ifp->if_start = if_nullstart;
ifp->if_ioctl = if_nullioctl;
ifp->if_init = if_nullinit;
ifp->if_stop = if_nullstop;
ifp->if_slowtimo = if_nullslowtimo;
ifp->if_drain = if_nulldrain;
/* No more packets may be enqueued. */
ifp->if_snd.ifq_maxlen = 0;
splx(s);
}
void
if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
{
struct ifaddr *ifa, *nifa;
IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
if (ifa->ifa_addr->sa_family != family)
continue;
(*purgeaddr)(ifa);
}
}
/*
* Detach an interface from the list of "active" interfaces,
* freeing any resources as we go along.
*
* NOTE: This routine must be called with a valid thread context,
* as it may block.
*/
void
if_detach(struct ifnet *ifp)
{
struct socket so;
struct ifaddr *ifa;
#ifdef IFAREF_DEBUG
struct ifaddr *last_ifa = NULL;
#endif
struct domain *dp;
const struct protosw *pr;
int s, i, family, purged;
uint64_t xc;
/*
* XXX It's kind of lame that we have to have the
* XXX socket structure...
*/
memset(&so, 0, sizeof(so));
s = splnet();
ifindex2ifnet[ifp->if_index] = NULL;
TAILQ_REMOVE(&ifnet_list, ifp, if_list);
if (ifp->if_slowtimo != NULL) {
ifp->if_slowtimo = NULL;
callout_halt(ifp->if_slowtimo_ch, NULL);
callout_destroy(ifp->if_slowtimo_ch);
kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
}
/*
* Do an if_down() to give protocols a chance to do something.
*/
if_down(ifp);
#ifdef ALTQ
if (ALTQ_IS_ENABLED(&ifp->if_snd))
altq_disable(&ifp->if_snd);
if (ALTQ_IS_ATTACHED(&ifp->if_snd))
altq_detach(&ifp->if_snd);
#endif
if (ifp->if_snd.ifq_lock)
mutex_obj_free(ifp->if_snd.ifq_lock);
sysctl_teardown(&ifp->if_sysctl_log);
#if NCARP > 0
/* Remove the interface from any carp group it is a part of. */
if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
carp_ifdetach(ifp);
#endif
/*
* Rip all the addresses off the interface. This should make
* all of the routes go away.
*
* pr_usrreq calls can remove an arbitrary number of ifaddrs
* from the list, including our "cursor", ifa. For safety,
* and to honor the TAILQ abstraction, I just restart the
* loop after each removal. Note that the loop will exit
* when all of the remaining ifaddrs belong to the AF_LINK
* family. I am counting on the historical fact that at
* least one pr_usrreq in each address domain removes at
* least one ifaddr.
*/
again:
IFADDR_FOREACH(ifa, ifp) {
family = ifa->ifa_addr->sa_family;
#ifdef IFAREF_DEBUG
printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
ifa, family, ifa->ifa_refcnt);
if (last_ifa != NULL && ifa == last_ifa)
panic("if_detach: loop detected");
last_ifa = ifa;
#endif
if (family == AF_LINK)
continue;
dp = pffinddomain(family);
#ifdef DIAGNOSTIC
if (dp == NULL)
panic("if_detach: no domain for AF %d",
family);
#endif
/*
* XXX These PURGEIF calls are redundant with the
* purge-all-families calls below, but are left in for
* now both to make a smaller change, and to avoid
* unplanned interactions with clearing of
* ifp->if_addrlist.
*/
purged = 0;
for (pr = dp->dom_protosw;
pr < dp->dom_protoswNPROTOSW; pr++) {
so.so_proto = pr;
if (pr->pr_usrreqs) {
(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
purged = 1;
}
}
if (purged == 0) {
/*
* XXX What's really the best thing to do
* XXX here? --thorpej@NetBSD.org
*/
printf("if_detach: WARNING: AF %d not purged\n",
family);
ifa_remove(ifp, ifa);
}
goto again;
}
if_free_sadl(ifp);
/* Walk the routing table looking for stragglers. */
for (i = 0; i <= AF_MAX; i++) {
while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
continue;
}
DOMAIN_FOREACH(dp) {
if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
{
void *p = ifp->if_afdata[dp->dom_family];
if (p) {
ifp->if_afdata[dp->dom_family] = NULL;
(*dp->dom_ifdetach)(ifp, p);
}
}
/*
* One would expect multicast memberships (INET and
* INET6) on UDP sockets to be purged by the PURGEIF
* calls above, but if all addresses were removed from
* the interface prior to destruction, the calls will
* not be made (e.g. ppp, for which pppd(8) generally
* removes addresses before destroying the interface).
* Because there is no invariant that multicast
* memberships only exist for interfaces with IPv4
* addresses, we must call PURGEIF regardless of
* addresses. (Protocols which might store ifnet
* pointers are marked with PR_PURGEIF.)
*/
for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
so.so_proto = pr;
if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
}
}
(void)pfil_run_hooks(if_pfil,
(struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
(void)pfil_head_destroy(ifp->if_pfil);
/* Announce that the interface is gone. */
rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
ifioctl_detach(ifp);
/*
* remove packets that came from ifp, from software interrupt queues.
*/
DOMAIN_FOREACH(dp) {
for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
struct ifqueue *iq = dp->dom_ifqueues[i];
if (iq == NULL)
break;
dp->dom_ifqueues[i] = NULL;
if_detach_queues(ifp, iq);
}
}
/*
* IP queues have to be processed separately: net-queue barrier
* ensures that the packets are dequeued while a cross-call will
* ensure that the interrupts have completed. FIXME: not quite..
*/
#ifdef INET
pktq_barrier(ip_pktq);
#endif
#ifdef INET6
if (in6_present)
pktq_barrier(ip6_pktq);
#endif
xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
xc_wait(xc);
splx(s);
}
static void
if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
{
struct mbuf *m, *prev, *next;
prev = NULL;
for (m = q->ifq_head; m != NULL; m = next) {
KASSERT((m->m_flags & M_PKTHDR) != 0);
next = m->m_nextpkt;
if (m->m_pkthdr.rcvif != ifp) {
prev = m;
continue;
}
if (prev != NULL)
prev->m_nextpkt = m->m_nextpkt;
else
q->ifq_head = m->m_nextpkt;
if (q->ifq_tail == m)
q->ifq_tail = prev;
q->ifq_len--;
m->m_nextpkt = NULL;
m_freem(m);
IF_DROP(q);
}
}
/*
* Callback for a radix tree walk to delete all references to an
* ifnet.
*/
static int
if_rt_walktree(struct rtentry *rt, void *v)
{
struct ifnet *ifp = (struct ifnet *)v;
int error;
struct rtentry *retrt;
if (rt->rt_ifp != ifp)
return 0;
/* Delete the entry. */
error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
rt_mask(rt), rt->rt_flags, &retrt);
if (error == 0) {
KASSERT(retrt == rt);
KASSERT((retrt->rt_flags & RTF_UP) == 0);
retrt->rt_ifp = NULL;
rtfree(retrt);
} else {
printf("%s: warning: unable to delete rtentry @ %p, "
"error = %d\n", ifp->if_xname, rt, error);
}
return ERESTART;
}
/*
* Create a clone network interface.
*/
static int
if_clone_create(const char *name)
{
struct if_clone *ifc;
int unit;
ifc = if_clone_lookup(name, &unit);
if (ifc == NULL)
return EINVAL;
if (ifunit(name) != NULL)
return EEXIST;
return (*ifc->ifc_create)(ifc, unit);
}
/*
* Destroy a clone network interface.
*/
static int
if_clone_destroy(const char *name)
{
struct if_clone *ifc;
struct ifnet *ifp;
ifc = if_clone_lookup(name, NULL);
if (ifc == NULL)
return EINVAL;
ifp = ifunit(name);
if (ifp == NULL)
return ENXIO;
if (ifc->ifc_destroy == NULL)
return EOPNOTSUPP;
return (*ifc->ifc_destroy)(ifp);
}
/*
* Look up a network interface cloner.
*/
static struct if_clone *
if_clone_lookup(const char *name, int *unitp)
{
struct if_clone *ifc;
const char *cp;
char *dp, ifname[IFNAMSIZ + 3];
int unit;
strcpy(ifname, "if_");
/* separate interface name from unit */
for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
*cp && (*cp < '0' || *cp > '9');)
*dp++ = *cp++;
if (cp == name || cp - name == IFNAMSIZ || !*cp)
return NULL; /* No name or unit number */
*dp++ = '\0';
again:
LIST_FOREACH(ifc, &if_cloners, ifc_list) {
if (strcmp(ifname + 3, ifc->ifc_name) == 0)
break;
}
if (ifc == NULL) {
if (*ifname == '\0' ||
module_autoload(ifname, MODULE_CLASS_DRIVER))
return NULL;
*ifname = '\0';
goto again;
}
unit = 0;
while (cp - name < IFNAMSIZ && *cp) {
if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
/* Bogus unit number. */
return NULL;
}
unit = (unit * 10) + (*cp++ - '0');
}
if (unitp != NULL)
*unitp = unit;
return ifc;
}
/*
* Register a network interface cloner.
*/
void
if_clone_attach(struct if_clone *ifc)
{
LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
if_cloners_count++;
}
/*
* Unregister a network interface cloner.
*/
void
if_clone_detach(struct if_clone *ifc)
{
LIST_REMOVE(ifc, ifc_list);
if_cloners_count--;
}
/*
* Provide list of interface cloners to userspace.
*/
int
if_clone_list(int buf_count, char *buffer, int *total)
{
char outbuf[IFNAMSIZ], *dst;
struct if_clone *ifc;
int count, error = 0;
*total = if_cloners_count;
if ((dst = buffer) == NULL) {
/* Just asking how many there are. */
return 0;
}
if (buf_count < 0)
return EINVAL;
count = (if_cloners_count < buf_count) ?
if_cloners_count : buf_count;
for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
if (outbuf[sizeof(outbuf) - 1] != '\0')
return ENAMETOOLONG;
error = copyout(outbuf, dst, sizeof(outbuf));
if (error != 0)
break;
}
return error;
}
void
ifaref(struct ifaddr *ifa)
{
ifa->ifa_refcnt++;
}
void
ifafree(struct ifaddr *ifa)
{
KASSERT(ifa != NULL);
KASSERT(ifa->ifa_refcnt > 0);
if (--ifa->ifa_refcnt == 0) {
free(ifa, M_IFADDR);
}
}
void
ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
{
ifa->ifa_ifp = ifp;
TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
ifaref(ifa);
}
void
ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
{
KASSERT(ifa->ifa_ifp == ifp);
TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
ifafree(ifa);
}
static inline int
equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
{
return sockaddr_cmp(sa1, sa2) == 0;
}
/*
* Locate an interface based on a complete address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithaddr(const struct sockaddr *addr)
{
struct ifnet *ifp;
struct ifaddr *ifa;
IFNET_FOREACH(ifp) {
if (ifp->if_output == if_nulloutput)
continue;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (equal(addr, ifa->ifa_addr))
return ifa;
if ((ifp->if_flags & IFF_BROADCAST) &&
ifa->ifa_broadaddr &&
/* IP6 doesn't have broadcast */
ifa->ifa_broadaddr->sa_len != 0 &&
equal(ifa->ifa_broadaddr, addr))
return ifa;
}
}
return NULL;
}
/*
* Locate the point to point interface with a given destination address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithdstaddr(const struct sockaddr *addr)
{
struct ifnet *ifp;
struct ifaddr *ifa;
IFNET_FOREACH(ifp) {
if (ifp->if_output == if_nulloutput)
continue;
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
continue;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != addr->sa_family ||
ifa->ifa_dstaddr == NULL)
continue;
if (equal(addr, ifa->ifa_dstaddr))
return ifa;
}
}
return NULL;
}
/*
* Find an interface on a specific network. If many, choice
* is most specific found.
*/
struct ifaddr *
ifa_ifwithnet(const struct sockaddr *addr)
{
struct ifnet *ifp;
struct ifaddr *ifa;
const struct sockaddr_dl *sdl;
struct ifaddr *ifa_maybe = 0;
u_int af = addr->sa_family;
const char *addr_data = addr->sa_data, *cplim;
if (af == AF_LINK) {
sdl = satocsdl(addr);
if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
ifindex2ifnet[sdl->sdl_index] &&
ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) {
return ifindex2ifnet[sdl->sdl_index]->if_dl;
}
}
#ifdef NETATALK
if (af == AF_APPLETALK) {
const struct sockaddr_at *sat, *sat2;
sat = (const struct sockaddr_at *)addr;
IFNET_FOREACH(ifp) {
if (ifp->if_output == if_nulloutput)
continue;
ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
if (ifa == NULL)
continue;
sat2 = (struct sockaddr_at *)ifa->ifa_addr;
if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
return ifa; /* exact match */
if (ifa_maybe == NULL) {
/* else keep the if with the right range */
ifa_maybe = ifa;
}
}
return ifa_maybe;
}
#endif
IFNET_FOREACH(ifp) {
if (ifp->if_output == if_nulloutput)
continue;
IFADDR_FOREACH(ifa, ifp) {
const char *cp, *cp2, *cp3;
if (ifa->ifa_addr->sa_family != af ||
ifa->ifa_netmask == NULL)
next: continue;
cp = addr_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = (const char *)ifa->ifa_netmask +
ifa->ifa_netmask->sa_len;
while (cp3 < cplim) {
if ((*cp++ ^ *cp2++) & *cp3++) {
/* want to continue for() loop */
goto next;
}
}
if (ifa_maybe == NULL ||
rn_refines((void *)ifa->ifa_netmask,
(void *)ifa_maybe->ifa_netmask))
ifa_maybe = ifa;
}
}
return ifa_maybe;
}
/*
* Find the interface of the addresss.
*/
struct ifaddr *
ifa_ifwithladdr(const struct sockaddr *addr)
{
struct ifaddr *ia;
if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
(ia = ifa_ifwithnet(addr)))
return ia;
return NULL;
}
/*
* Find an interface using a specific address family
*/
struct ifaddr *
ifa_ifwithaf(int af)
{
struct ifnet *ifp;
struct ifaddr *ifa;
IFNET_FOREACH(ifp) {
if (ifp->if_output == if_nulloutput)
continue;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family == af)
return ifa;
}
}
return NULL;
}
/*
* Find an interface address specific to an interface best matching
* a given address.
*/
struct ifaddr *
ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
{
struct ifaddr *ifa;
const char *cp, *cp2, *cp3;
const char *cplim;
struct ifaddr *ifa_maybe = 0;
u_int af = addr->sa_family;
if (ifp->if_output == if_nulloutput)
return NULL;
if (af >= AF_MAX)
return NULL;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != af)
continue;
ifa_maybe = ifa;
if (ifa->ifa_netmask == NULL) {
if (equal(addr, ifa->ifa_addr) ||
(ifa->ifa_dstaddr &&
equal(addr, ifa->ifa_dstaddr)))
return ifa;
continue;
}
cp = addr->sa_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
for (; cp3 < cplim; cp3++) {
if ((*cp++ ^ *cp2++) & *cp3)
break;
}
if (cp3 == cplim)
return ifa;
}
return ifa_maybe;
}
/*
* Default action when installing a route with a Link Level gateway.
* Lookup an appropriate real ifa to point to.
* This should be moved to /sys/net/link.c eventually.
*/
void
link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
{
struct ifaddr *ifa;
const struct sockaddr *dst;
struct ifnet *ifp;
if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
(ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
return;
if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
rt_replace_ifa(rt, ifa);
if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
ifa->ifa_rtrequest(cmd, rt, info);
}
}
/*
* Handle a change in the interface link state.
* XXX: We should listen to the routing socket in-kernel rather
* than calling in6_if_link_* functions directly from here.
*/
void
if_link_state_change(struct ifnet *ifp, int link_state)
{
int s;
int old_link_state;
struct domain *dp;
s = splnet();
if (ifp->if_link_state == link_state) {
splx(s);
return;
}
old_link_state = ifp->if_link_state;
ifp->if_link_state = link_state;
#ifdef DEBUG
log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
link_state == LINK_STATE_UP ? "UP" :
link_state == LINK_STATE_DOWN ? "DOWN" :
"UNKNOWN",
old_link_state == LINK_STATE_UP ? "UP" :
old_link_state == LINK_STATE_DOWN ? "DOWN" :
"UNKNOWN");
#endif
/*
* When going from UNKNOWN to UP, we need to mark existing
* addresses as tentative and restart DAD as we may have
* erroneously not found a duplicate.
*
* This needs to happen before rt_ifmsg to avoid a race where
* listeners would have an address and expect it to work right
* away.
*/
if (link_state == LINK_STATE_UP &&
old_link_state == LINK_STATE_UNKNOWN)
{
DOMAIN_FOREACH(dp) {
if (dp->dom_if_link_state_change != NULL)
dp->dom_if_link_state_change(ifp,
LINK_STATE_DOWN);
}
}
/* Notify that the link state has changed. */
rt_ifmsg(ifp);
#if NCARP > 0
if (ifp->if_carp)
carp_carpdev_state(ifp);
#endif
DOMAIN_FOREACH(dp) {
if (dp->dom_if_link_state_change != NULL)
dp->dom_if_link_state_change(ifp, link_state);
}
splx(s);
}
/*
* Default action when installing a local route on a point-to-point
* interface.
*/
void
p2p_rtrequest(int req, struct rtentry *rt,
__unused const struct rt_addrinfo *info)
{
struct ifnet *ifp = rt->rt_ifp;
struct ifaddr *ifa, *lo0ifa;
switch (req) {
case RTM_ADD:
if ((rt->rt_flags & RTF_LOCAL) == 0)
break;
IFADDR_FOREACH(ifa, ifp) {
if (equal(rt_getkey(rt), ifa->ifa_addr))
break;
}
if (ifa == NULL)
break;
/*
* Ensure lo0 has an address of the same family.
*/
IFADDR_FOREACH(lo0ifa, lo0ifp) {
if (lo0ifa->ifa_addr->sa_family ==
ifa->ifa_addr->sa_family)
break;
}
if (lo0ifa == NULL)
break;
rt->rt_ifp = lo0ifp;
rt->rt_flags &= ~RTF_LLINFO;
/*
* Make sure to set rt->rt_ifa to the interface
* address we are using, otherwise we will have trouble
* with source address selection.
*/
if (ifa != rt->rt_ifa)
rt_replace_ifa(rt, ifa);
break;
case RTM_DELETE:
case RTM_RESOLVE:
default:
break;
}
}
/*
* Mark an interface down and notify protocols of
* the transition.
* NOTE: must be called at splsoftnet or equivalent.
*/
void
if_down(struct ifnet *ifp)
{
struct ifaddr *ifa;
struct domain *dp;
ifp->if_flags &= ~IFF_UP;
nanotime(&ifp->if_lastchange);
IFADDR_FOREACH(ifa, ifp)
pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
IFQ_PURGE(&ifp->if_snd);
#if NCARP > 0
if (ifp->if_carp)
carp_carpdev_state(ifp);
#endif
rt_ifmsg(ifp);
DOMAIN_FOREACH(dp) {
if (dp->dom_if_down)
dp->dom_if_down(ifp);
}
}
/*
* Mark an interface up and notify protocols of
* the transition.
* NOTE: must be called at splsoftnet or equivalent.
*/
void
if_up(struct ifnet *ifp)
{
#ifdef notyet
struct ifaddr *ifa;
#endif
struct domain *dp;
ifp->if_flags |= IFF_UP;
nanotime(&ifp->if_lastchange);
#ifdef notyet
/* this has no effect on IP, and will kill all ISO connections XXX */
IFADDR_FOREACH(ifa, ifp)
pfctlinput(PRC_IFUP, ifa->ifa_addr);
#endif
#if NCARP > 0
if (ifp->if_carp)
carp_carpdev_state(ifp);
#endif
rt_ifmsg(ifp);
DOMAIN_FOREACH(dp) {
if (dp->dom_if_up)
dp->dom_if_up(ifp);
}
}
/*
* Handle interface slowtimo timer routine. Called
* from softclock, we decrement timer (if set) and
* call the appropriate interface routine on expiration.
*/
static void
if_slowtimo(void *arg)
{
void (*slowtimo)(struct ifnet *);
struct ifnet *ifp = arg;
int s;
slowtimo = ifp->if_slowtimo;
if (__predict_false(slowtimo == NULL))
return;
s = splnet();
if (ifp->if_timer != 0 && --ifp->if_timer == 0)
(*slowtimo)(ifp);
splx(s);
if (__predict_true(ifp->if_slowtimo != NULL))
callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
}
/*
* Set/clear promiscuous mode on interface ifp based on the truth value
* of pswitch. The calls are reference counted so that only the first
* "on" request actually has an effect, as does the final "off" request.
* Results are undefined if the "off" and "on" requests are not matched.
*/
int
ifpromisc(struct ifnet *ifp, int pswitch)
{
int pcount, ret;
short nflags;
pcount = ifp->if_pcount;
if (pswitch) {
/*
* Allow the device to be "placed" into promiscuous
* mode even if it is not configured up. It will
* consult IFF_PROMISC when it is brought up.
*/
if (ifp->if_pcount++ != 0)
return 0;
nflags = ifp->if_flags | IFF_PROMISC;
} else {
if (--ifp->if_pcount > 0)
return 0;
nflags = ifp->if_flags & ~IFF_PROMISC;
}
ret = if_flags_set(ifp, nflags);
/* Restore interface state if not successful. */
if (ret != 0) {
ifp->if_pcount = pcount;
}
return ret;
}
/*
* Map interface name to
* interface structure pointer.
*/
struct ifnet *
ifunit(const char *name)
{
struct ifnet *ifp;
const char *cp = name;
u_int unit = 0;
u_int i;
/*
* If the entire name is a number, treat it as an ifindex.
*/
for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
unit = unit * 10 + (*cp - '0');
}
/*
* If the number took all of the name, then it's a valid ifindex.
*/
if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
if (unit >= if_indexlim)
return NULL;
ifp = ifindex2ifnet[unit];
if (ifp == NULL || ifp->if_output == if_nulloutput)
return NULL;
return ifp;
}
IFNET_FOREACH(ifp) {
if (ifp->if_output == if_nulloutput)
continue;
if (strcmp(ifp->if_xname, name) == 0)
return ifp;
}
return NULL;
}
ifnet_t *
if_byindex(u_int idx)
{
return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
}
/* common */
int
ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
{
int s;
struct ifreq *ifr;
struct ifcapreq *ifcr;
struct ifdatareq *ifdr;
switch (cmd) {
case SIOCSIFCAP:
ifcr = data;
if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
return EINVAL;
if (ifcr->ifcr_capenable == ifp->if_capenable)
return 0;
ifp->if_capenable = ifcr->ifcr_capenable;
/* Pre-compute the checksum flags mask. */
ifp->if_csum_flags_tx = 0;
ifp->if_csum_flags_rx = 0;
if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
ifp->if_csum_flags_tx |= M_CSUM_IPv4;
}
if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
ifp->if_csum_flags_rx |= M_CSUM_IPv4;
}
if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
}
if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
}
if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
}
if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
}
if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
}
if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
}
if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
}
if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
}
if (ifp->if_flags & IFF_UP)
return ENETRESET;
return 0;
case SIOCSIFFLAGS:
ifr = data;
if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
s = splnet();
if_down(ifp);
splx(s);
}
if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
s = splnet();
if_up(ifp);
splx(s);
}
ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
(ifr->ifr_flags &~ IFF_CANTCHANGE);
break;
case SIOCGIFFLAGS:
ifr = data;
ifr->ifr_flags = ifp->if_flags;
break;
case SIOCGIFMETRIC:
ifr = data;
ifr->ifr_metric = ifp->if_metric;
break;
case SIOCGIFMTU:
ifr = data;
ifr->ifr_mtu = ifp->if_mtu;
break;
case SIOCGIFDLT:
ifr = data;
ifr->ifr_dlt = ifp->if_dlt;
break;
case SIOCGIFCAP:
ifcr = data;
ifcr->ifcr_capabilities = ifp->if_capabilities;
ifcr->ifcr_capenable = ifp->if_capenable;
break;
case SIOCSIFMETRIC:
ifr = data;
ifp->if_metric = ifr->ifr_metric;
break;
case SIOCGIFDATA:
ifdr = data;
ifdr->ifdr_data = ifp->if_data;
break;
case SIOCGIFINDEX:
ifr = data;
ifr->ifr_index = ifp->if_index;
break;
case SIOCZIFDATA:
ifdr = data;
ifdr->ifdr_data = ifp->if_data;
/*
* Assumes that the volatile counters that can be
* zero'ed are at the end of if_data.
*/
memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
offsetof(struct if_data, ifi_ipackets));
/*
* The memset() clears to the bottm of if_data. In the area,
* if_lastchange is included. Please be careful if new entry
* will be added into if_data or rewite this.
*
* And also, update if_lastchnage.
*/
getnanotime(&ifp->if_lastchange);
break;
case SIOCSIFMTU:
ifr = data;
if (ifp->if_mtu == ifr->ifr_mtu)
break;
ifp->if_mtu = ifr->ifr_mtu;
/*
* If the link MTU changed, do network layer specific procedure.
*/
#ifdef INET6
if (in6_present)
nd6_setmtu(ifp);
#endif
return ENETRESET;
default:
return ENOTTY;
}
return 0;
}
int
ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
{
struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
struct ifaddr *ifa;
const struct sockaddr *any, *sa;
union {
struct sockaddr sa;
struct sockaddr_storage ss;
} u, v;
switch (cmd) {
case SIOCSIFADDRPREF:
if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
NULL) != 0)
return EPERM;
case SIOCGIFADDRPREF:
break;
default:
return EOPNOTSUPP;
}
/* sanity checks */
if (data == NULL || ifp == NULL) {
panic("invalid argument to %s", __func__);
/*NOTREACHED*/
}
/* address must be specified on ADD and DELETE */
sa = sstocsa(&ifap->ifap_addr);
if (sa->sa_family != sofamily(so))
return EINVAL;
if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
return EINVAL;
sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != sa->sa_family)
continue;
sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
if (sockaddr_cmp(&u.sa, &v.sa) == 0)
break;
}
if (ifa == NULL)
return EADDRNOTAVAIL;
switch (cmd) {
case SIOCSIFADDRPREF:
ifa->ifa_preference = ifap->ifap_preference;
return 0;
case SIOCGIFADDRPREF:
/* fill in the if_laddrreq structure */
(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
sizeof(ifap->ifap_addr), ifa->ifa_addr);
ifap->ifap_preference = ifa->ifa_preference;
return 0;
default:
return EOPNOTSUPP;
}
}
static void
ifnet_lock_enter(struct ifnet_lock *il)
{
uint64_t *nenter;
/* Before trying to acquire the mutex, increase the count of threads
* who have entered or who wait to enter the critical section.
* Avoid one costly locked memory transaction by keeping a count for
* each CPU.
*/
nenter = percpu_getref(il->il_nenter);
(*nenter)++;
percpu_putref(il->il_nenter);
mutex_enter(&il->il_lock);
}
static void
ifnet_lock_exit(struct ifnet_lock *il)
{
/* Increase the count of threads who have exited the critical
* section. Increase while we still hold the lock.
*/
il->il_nexit++;
mutex_exit(&il->il_lock);
}
/*
* Interface ioctls.
*/
static int
doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
{
struct ifnet *ifp;
struct ifreq *ifr;
int error = 0;
#if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
u_long ocmd = cmd;
#endif
short oif_flags;
#ifdef COMPAT_OIFREQ
struct ifreq ifrb;
struct oifreq *oifr = NULL;
#endif
int r;
switch (cmd) {
#ifdef COMPAT_OIFREQ
case OSIOCGIFCONF:
case OOSIOCGIFCONF:
return compat_ifconf(cmd, data);
#endif
#ifdef COMPAT_OIFDATA
case OSIOCGIFDATA:
case OSIOCZIFDATA:
return compat_ifdatareq(l, cmd, data);
#endif
case SIOCGIFCONF:
return ifconf(cmd, data);
case SIOCINITIFADDR:
return EPERM;
}
#ifdef COMPAT_OIFREQ
cmd = compat_cvtcmd(cmd);
if (cmd != ocmd) {
oifr = data;
data = ifr = &ifrb;
ifreqo2n(oifr, ifr);
} else
#endif
ifr = data;
ifp = ifunit(ifr->ifr_name);
switch (cmd) {
case SIOCIFCREATE:
case SIOCIFDESTROY:
if (l != NULL) {
error = kauth_authorize_network(l->l_cred,
KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
(void *)cmd, NULL);
if (error != 0)
return error;
}
mutex_enter(&if_clone_mtx);
r = (cmd == SIOCIFCREATE) ?
if_clone_create(ifr->ifr_name) :
if_clone_destroy(ifr->ifr_name);
mutex_exit(&if_clone_mtx);
return r;
case SIOCIFGCLONERS:
{
struct if_clonereq *req = (struct if_clonereq *)data;
return if_clone_list(req->ifcr_count, req->ifcr_buffer,
&req->ifcr_total);
}
}
if (ifp == NULL)
return ENXIO;
switch (cmd) {
case SIOCALIFADDR:
case SIOCDLIFADDR:
case SIOCSIFADDRPREF:
case SIOCSIFFLAGS:
case SIOCSIFCAP:
case SIOCSIFMETRIC:
case SIOCZIFDATA:
case SIOCSIFMTU:
case SIOCSIFPHYADDR:
case SIOCDIFPHYADDR:
#ifdef INET6
case SIOCSIFPHYADDR_IN6:
#endif
case SIOCSLIFPHYADDR:
case SIOCADDMULTI:
case SIOCDELMULTI:
case SIOCSIFMEDIA:
case SIOCSDRVSPEC:
case SIOCG80211:
case SIOCS80211:
case SIOCS80211NWID:
case SIOCS80211NWKEY:
case SIOCS80211POWER:
case SIOCS80211BSSID:
case SIOCS80211CHANNEL:
case SIOCSLINKSTR:
if (l != NULL) {
error = kauth_authorize_network(l->l_cred,
KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
(void *)cmd, NULL);
if (error != 0)
return error;
}
}
oif_flags = ifp->if_flags;
ifnet_lock_enter(ifp->if_ioctl_lock);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error != ENOTTY)
;
else if (so->so_proto == NULL)
error = EOPNOTSUPP;
else {
#ifdef COMPAT_OSOCK
error = compat_ifioctl(so, ocmd, cmd, data, l);
#else
error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
cmd, data, ifp);
#endif
}
if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
if ((ifp->if_flags & IFF_UP) != 0) {
int s = splnet();
if_up(ifp);
splx(s);
}
}
#ifdef COMPAT_OIFREQ
if (cmd != ocmd)
ifreqn2o(oifr, ifr);
#endif
ifnet_lock_exit(ifp->if_ioctl_lock);
return error;
}
/* This callback adds to the sum in `arg' the number of
* threads on `ci' who have entered or who wait to enter the
* critical section.
*/
static void
ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
{
uint64_t *sum = arg, *nenter = p;
*sum += *nenter;
}
/* Return the number of threads who have entered or who wait
* to enter the critical section on all CPUs.
*/
static uint64_t
ifnet_lock_entrances(struct ifnet_lock *il)
{
uint64_t sum = 0;
percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
return sum;
}
static int
ifioctl_attach(struct ifnet *ifp)
{
struct ifnet_lock *il;
/* If the driver has not supplied its own if_ioctl, then
* supply the default.
*/
if (ifp->if_ioctl == NULL)
ifp->if_ioctl = ifioctl_common;
/* Create an ifnet_lock for synchronizing ifioctls. */
if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
return ENOMEM;
il->il_nenter = percpu_alloc(sizeof(uint64_t));
if (il->il_nenter == NULL) {
kmem_free(il, sizeof(*il));
return ENOMEM;
}
mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&il->il_emptied, ifp->if_xname);
ifp->if_ioctl_lock = il;
return 0;
}
/*
* This must not be called until after `ifp' has been withdrawn from the
* ifnet tables so that ifioctl() cannot get a handle on it by calling
* ifunit().
*/
static void
ifioctl_detach(struct ifnet *ifp)
{
struct ifnet_lock *il;
il = ifp->if_ioctl_lock;
mutex_enter(&il->il_lock);
/* Install if_nullioctl to make sure that any thread that
* subsequently enters the critical section will quit it
* immediately and signal the condition variable that we
* wait on, below.
*/
ifp->if_ioctl = if_nullioctl;
/* Sleep while threads are still in the critical section or
* wait to enter it.
*/
while (ifnet_lock_entrances(il) != il->il_nexit)
cv_wait(&il->il_emptied, &il->il_lock);
/* At this point, we are the only thread still in the critical
* section, and no new thread can get a handle on the ifioctl
* lock, so it is safe to free its memory.
*/
mutex_exit(&il->il_lock);
ifp->if_ioctl_lock = NULL;
percpu_free(il->il_nenter, sizeof(uint64_t));
il->il_nenter = NULL;
cv_destroy(&il->il_emptied);
mutex_destroy(&il->il_lock);
kmem_free(il, sizeof(*il));
}
/*
* Return interface configuration
* of system. List may be used
* in later ioctl's (above) to get
* other information.
*
* Each record is a struct ifreq. Before the addition of
* sockaddr_storage, the API rule was that sockaddr flavors that did
* not fit would extend beyond the struct ifreq, with the next struct
* ifreq starting sa_len beyond the struct sockaddr. Because the
* union in struct ifreq includes struct sockaddr_storage, every kind
* of sockaddr must fit. Thus, there are no longer any overlength
* records.
*
* Records are added to the user buffer if they fit, and ifc_len is
* adjusted to the length that was written. Thus, the user is only
* assured of getting the complete list if ifc_len on return is at
* least sizeof(struct ifreq) less than it was on entry.
*
* If the user buffer pointer is NULL, this routine copies no data and
* returns the amount of space that would be needed.
*
* Invariants:
* ifrp points to the next part of the user's buffer to be used. If
* ifrp != NULL, space holds the number of bytes remaining that we may
* write at ifrp. Otherwise, space holds the number of bytes that
* would have been written had there been adequate space.
*/
/*ARGSUSED*/
static int
ifconf(u_long cmd, void *data)
{
struct ifconf *ifc = (struct ifconf *)data;
struct ifnet *ifp;
struct ifaddr *ifa;
struct ifreq ifr, *ifrp = NULL;
int space = 0, error = 0;
const int sz = (int)sizeof(struct ifreq);
const bool docopy = ifc->ifc_req != NULL;
if (docopy) {
space = ifc->ifc_len;
ifrp = ifc->ifc_req;
}
IFNET_FOREACH(ifp) {
(void)strncpy(ifr.ifr_name, ifp->if_xname,
sizeof(ifr.ifr_name));
if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
return ENAMETOOLONG;
if (IFADDR_EMPTY(ifp)) {
/* Interface with no addresses - send zero sockaddr. */
memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
if (!docopy) {
space += sz;
continue;
}
if (space >= sz) {
error = copyout(&ifr, ifrp, sz);
if (error != 0)
return error;
ifrp++;
space -= sz;
}
}
IFADDR_FOREACH(ifa, ifp) {
struct sockaddr *sa = ifa->ifa_addr;
/* all sockaddrs must fit in sockaddr_storage */
KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
if (!docopy) {
space += sz;
continue;
}
memcpy(&ifr.ifr_space, sa, sa->sa_len);
if (space >= sz) {
error = copyout(&ifr, ifrp, sz);
if (error != 0)
return (error);
ifrp++; space -= sz;
}
}
}
if (docopy) {
KASSERT(0 <= space && space <= ifc->ifc_len);
ifc->ifc_len -= space;
} else {
KASSERT(space >= 0);
ifc->ifc_len = space;
}
return (0);
}
int
ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
{
uint8_t len;
#ifdef COMPAT_OIFREQ
struct ifreq ifrb;
struct oifreq *oifr = NULL;
u_long ocmd = cmd;
cmd = compat_cvtcmd(cmd);
if (cmd != ocmd) {
oifr = (struct oifreq *)(void *)ifr;
ifr = &ifrb;
ifreqo2n(oifr, ifr);
len = sizeof(oifr->ifr_addr);
} else
#endif
len = sizeof(ifr->ifr_ifru.ifru_space);
if (len < sa->sa_len)
return EFBIG;
memset(&ifr->ifr_addr, 0, len);
sockaddr_copy(&ifr->ifr_addr, len, sa);
#ifdef COMPAT_OIFREQ
if (cmd != ocmd)
ifreqn2o(oifr, ifr);
#endif
return 0;
}
/*
* Queue message on interface, and start output if interface
* not yet active.
*/
int
ifq_enqueue(struct ifnet *ifp, struct mbuf *m
ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
{
int len = m->m_pkthdr.len;
int mflags = m->m_flags;
int s = splnet();
int error;
IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
if (error != 0)
goto out;
ifp->if_obytes += len;
if (mflags & M_MCAST)
ifp->if_omcasts++;
if ((ifp->if_flags & IFF_OACTIVE) == 0)
(*ifp->if_start)(ifp);
out:
splx(s);
return error;
}
/*
* Queue message on interface, possibly using a second fast queue
*/
int
ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
{
int error = 0;
if (ifq != NULL
#ifdef ALTQ
&& ALTQ_IS_ENABLED(&ifp->if_snd) == 0
#endif
) {
if (IF_QFULL(ifq)) {
IF_DROP(&ifp->if_snd);
m_freem(m);
if (error == 0)
error = ENOBUFS;
} else
IF_ENQUEUE(ifq, m);
} else
IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
if (error != 0) {
++ifp->if_oerrors;
return error;
}
return 0;
}
int
if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
{
int rc;
if (ifp->if_initaddr != NULL)
rc = (*ifp->if_initaddr)(ifp, ifa, src);
else if (src ||
(rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
return rc;
}
int
if_do_dad(struct ifnet *ifp)
{
if ((ifp->if_flags & IFF_LOOPBACK) != 0)
return 0;
switch (ifp->if_type) {
case IFT_FAITH:
/*
* These interfaces do not have the IFF_LOOPBACK flag,
* but loop packets back. We do not have to do DAD on such
* interfaces. We should even omit it, because loop-backed
* responses would confuse the DAD procedure.
*/
return 0;
default:
/*
* Our DAD routine requires the interface up and running.
* However, some interfaces can be up before the RUNNING
* status. Additionaly, users may try to assign addresses
* before the interface becomes up (or running).
* We simply skip DAD in such a case as a work around.
* XXX: we should rather mark "tentative" on such addresses,
* and do DAD after the interface becomes ready.
*/
if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
(IFF_UP|IFF_RUNNING))
return 0;
return 1;
}
}
int
if_flags_set(ifnet_t *ifp, const short flags)
{
int rc;
if (ifp->if_setflags != NULL)
rc = (*ifp->if_setflags)(ifp, flags);
else {
short cantflags, chgdflags;
struct ifreq ifr;
chgdflags = ifp->if_flags ^ flags;
cantflags = chgdflags & IFF_CANTCHANGE;
if (cantflags != 0)
ifp->if_flags ^= cantflags;
/* Traditionally, we do not call if_ioctl after
* setting/clearing only IFF_PROMISC if the interface
* isn't IFF_UP. Uphold that tradition.
*/
if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
return 0;
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
if (rc != 0 && cantflags != 0)
ifp->if_flags ^= cantflags;
}
return rc;
}
int
if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
{
int rc;
struct ifreq ifr;
if (ifp->if_mcastop != NULL)
rc = (*ifp->if_mcastop)(ifp, cmd, sa);
else {
ifreq_setaddr(cmd, &ifr, sa);
rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
}
return rc;
}
static void
sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
struct ifaltq *ifq)
{
const struct sysctlnode *cnode, *rnode;
if (sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "interfaces",
SYSCTL_DESCR("Per-interface controls"),
NULL, 0, NULL, 0,
CTL_NET, CTL_CREATE, CTL_EOL) != 0)
goto bad;
if (sysctl_createv(clog, 0, &rnode, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, ifname,
SYSCTL_DESCR("Interface controls"),
NULL, 0, NULL, 0,
CTL_CREATE, CTL_EOL) != 0)
goto bad;
if (sysctl_createv(clog, 0, &rnode, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "sndq",
SYSCTL_DESCR("Interface output queue controls"),
NULL, 0, NULL, 0,
CTL_CREATE, CTL_EOL) != 0)
goto bad;
if (sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "len",
SYSCTL_DESCR("Current output queue length"),
NULL, 0, &ifq->ifq_len, 0,
CTL_CREATE, CTL_EOL) != 0)
goto bad;
if (sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxlen",
SYSCTL_DESCR("Maximum allowed output queue length"),
NULL, 0, &ifq->ifq_maxlen, 0,
CTL_CREATE, CTL_EOL) != 0)
goto bad;
if (sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "drops",
SYSCTL_DESCR("Packets dropped due to full output queue"),
NULL, 0, &ifq->ifq_drops, 0,
CTL_CREATE, CTL_EOL) != 0)
goto bad;
return;
bad:
printf("%s: could not attach sysctl nodes\n", ifname);
return;
}
#if defined(INET) || defined(INET6)
#define SYSCTL_NET_PKTQ(q, cn, c) \
static int \
sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
{ \
return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
}
#if defined(INET)
static int
sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
{
return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
}
SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
#endif
#if defined(INET6)
static int
sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
{
return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
}
SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
#endif
static void
sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
{
sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
const char *pfname = NULL, *ipname = NULL;
int ipn = 0, qid = 0;
switch (pf) {
#if defined(INET)
case PF_INET:
len_func = sysctl_net_ip_pktq_items;
maxlen_func = sysctl_net_ip_pktq_maxlen;
drops_func = sysctl_net_ip_pktq_drops;
pfname = "inet", ipn = IPPROTO_IP;
ipname = "ip", qid = IPCTL_IFQ;
break;
#endif
#if defined(INET6)
case PF_INET6:
len_func = sysctl_net_ip6_pktq_items;
maxlen_func = sysctl_net_ip6_pktq_maxlen;
drops_func = sysctl_net_ip6_pktq_drops;
pfname = "inet6", ipn = IPPROTO_IPV6;
ipname = "ip6", qid = IPV6CTL_IFQ;
break;
#endif
default:
KASSERT(false);
}
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, pfname, NULL,
NULL, 0, NULL, 0,
CTL_NET, pf, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, ipname, NULL,
NULL, 0, NULL, 0,
CTL_NET, pf, ipn, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ifq",
SYSCTL_DESCR("Protocol input queue controls"),
NULL, 0, NULL, 0,
CTL_NET, pf, ipn, qid, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "len",
SYSCTL_DESCR("Current input queue length"),
len_func, 0, NULL, 0,
CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxlen",
SYSCTL_DESCR("Maximum allowed input queue length"),
maxlen_func, 0, NULL, 0,
CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "drops",
SYSCTL_DESCR("Packets dropped due to full input queue"),
drops_func, 0, NULL, 0,
CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
}
#endif /* INET || INET6 */
static int
if_sdl_sysctl(SYSCTLFN_ARGS)
{
struct ifnet *ifp;
const struct sockaddr_dl *sdl;
if (namelen != 1)
return EINVAL;
ifp = if_byindex(name[0]);
if (ifp == NULL)
return ENODEV;
sdl = ifp->if_sadl;
if (sdl == NULL) {
*oldlenp = 0;
return 0;
}
if (oldp == NULL) {
*oldlenp = sdl->sdl_alen;
return 0;
}
if (*oldlenp >= sdl->sdl_alen)
*oldlenp = sdl->sdl_alen;
return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
}
SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
{
const struct sysctlnode *rnode = NULL;
sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "sdl",
SYSCTL_DESCR("Get active link-layer address"),
if_sdl_sysctl, 0, NULL, 0,
CTL_NET, CTL_CREATE, CTL_EOL);
}