2639 lines
60 KiB
C
2639 lines
60 KiB
C
/* $NetBSD: if.c,v 1.319 2015/11/20 08:10:36 ozaki-r Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by William Studenmund and Jason R. Thorpe.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1980, 1986, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)if.c 8.5 (Berkeley) 1/9/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if.c,v 1.319 2015/11/20 08:10:36 ozaki-r Exp $");
|
|
|
|
#if defined(_KERNEL_OPT)
|
|
#include "opt_inet.h"
|
|
|
|
#include "opt_atalk.h"
|
|
#include "opt_natm.h"
|
|
#include "opt_wlan.h"
|
|
#include "opt_net_mpsafe.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/xcall.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_media.h>
|
|
#include <net80211/ieee80211.h>
|
|
#include <net80211/ieee80211_ioctl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/radix.h>
|
|
#include <net/route.h>
|
|
#include <net/netisr.h>
|
|
#include <sys/module.h>
|
|
#ifdef NETATALK
|
|
#include <netatalk/at_extern.h>
|
|
#include <netatalk/at.h>
|
|
#endif
|
|
#include <net/pfil.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
|
|
#ifdef INET6
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet6/nd6.h>
|
|
#endif
|
|
|
|
#include "ether.h"
|
|
#include "fddi.h"
|
|
#include "token.h"
|
|
|
|
#include "carp.h"
|
|
#if NCARP > 0
|
|
#include <netinet/ip_carp.h>
|
|
#endif
|
|
|
|
#include <compat/sys/sockio.h>
|
|
#include <compat/sys/socket.h>
|
|
|
|
MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
|
|
MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
|
|
|
|
/*
|
|
* Global list of interfaces.
|
|
*/
|
|
struct ifnet_head ifnet_list;
|
|
static ifnet_t ** ifindex2ifnet = NULL;
|
|
|
|
static u_int if_index = 1;
|
|
static size_t if_indexlim = 0;
|
|
static uint64_t index_gen;
|
|
static kmutex_t index_gen_mtx;
|
|
static kmutex_t if_clone_mtx;
|
|
|
|
struct ifnet *lo0ifp;
|
|
int ifqmaxlen = IFQ_MAXLEN;
|
|
|
|
static int if_rt_walktree(struct rtentry *, void *);
|
|
|
|
static struct if_clone *if_clone_lookup(const char *, int *);
|
|
|
|
static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
|
|
static int if_cloners_count;
|
|
|
|
/* Packet filtering hook for interfaces. */
|
|
pfil_head_t * if_pfil;
|
|
|
|
static kauth_listener_t if_listener;
|
|
|
|
static int doifioctl(struct socket *, u_long, void *, struct lwp *);
|
|
static int ifioctl_attach(struct ifnet *);
|
|
static void ifioctl_detach(struct ifnet *);
|
|
static void ifnet_lock_enter(struct ifnet_lock *);
|
|
static void ifnet_lock_exit(struct ifnet_lock *);
|
|
static void if_detach_queues(struct ifnet *, struct ifqueue *);
|
|
static void sysctl_sndq_setup(struct sysctllog **, const char *,
|
|
struct ifaltq *);
|
|
static void if_slowtimo(void *);
|
|
static void if_free_sadl(struct ifnet *);
|
|
static void if_attachdomain1(struct ifnet *);
|
|
static int ifconf(u_long, void *);
|
|
static int if_clone_create(const char *);
|
|
static int if_clone_destroy(const char *);
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
static void sysctl_net_pktq_setup(struct sysctllog **, int);
|
|
#endif
|
|
|
|
static int
|
|
if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
|
|
void *arg0, void *arg1, void *arg2, void *arg3)
|
|
{
|
|
int result;
|
|
enum kauth_network_req req;
|
|
|
|
result = KAUTH_RESULT_DEFER;
|
|
req = (enum kauth_network_req)arg1;
|
|
|
|
if (action != KAUTH_NETWORK_INTERFACE)
|
|
return result;
|
|
|
|
if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
|
|
(req == KAUTH_REQ_NETWORK_INTERFACE_SET))
|
|
result = KAUTH_RESULT_ALLOW;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Network interface utility routines.
|
|
*
|
|
* Routines with ifa_ifwith* names take sockaddr *'s as
|
|
* parameters.
|
|
*/
|
|
void
|
|
ifinit(void)
|
|
{
|
|
#if defined(INET)
|
|
sysctl_net_pktq_setup(NULL, PF_INET);
|
|
#endif
|
|
#ifdef INET6
|
|
if (in6_present)
|
|
sysctl_net_pktq_setup(NULL, PF_INET6);
|
|
#endif
|
|
|
|
if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
|
|
if_listener_cb, NULL);
|
|
|
|
/* interfaces are available, inform socket code */
|
|
ifioctl = doifioctl;
|
|
}
|
|
|
|
/*
|
|
* XXX Initialization before configure().
|
|
* XXX hack to get pfil_add_hook working in autoconf.
|
|
*/
|
|
void
|
|
ifinit1(void)
|
|
{
|
|
mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
|
|
mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
|
|
TAILQ_INIT(&ifnet_list);
|
|
if_indexlim = 8;
|
|
|
|
if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
|
|
KASSERT(if_pfil != NULL);
|
|
|
|
#if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
|
|
etherinit();
|
|
#endif
|
|
}
|
|
|
|
ifnet_t *
|
|
if_alloc(u_char type)
|
|
{
|
|
return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
|
|
}
|
|
|
|
void
|
|
if_free(ifnet_t *ifp)
|
|
{
|
|
kmem_free(ifp, sizeof(ifnet_t));
|
|
}
|
|
|
|
void
|
|
if_initname(struct ifnet *ifp, const char *name, int unit)
|
|
{
|
|
(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
|
|
"%s%d", name, unit);
|
|
}
|
|
|
|
/*
|
|
* Null routines used while an interface is going away. These routines
|
|
* just return an error.
|
|
*/
|
|
|
|
int
|
|
if_nulloutput(struct ifnet *ifp, struct mbuf *m,
|
|
const struct sockaddr *so, struct rtentry *rt)
|
|
{
|
|
|
|
return ENXIO;
|
|
}
|
|
|
|
void
|
|
if_nullinput(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
|
|
/* Nothing. */
|
|
}
|
|
|
|
void
|
|
if_nullstart(struct ifnet *ifp)
|
|
{
|
|
|
|
/* Nothing. */
|
|
}
|
|
|
|
int
|
|
if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
|
|
/* Wake ifioctl_detach(), who may wait for all threads to
|
|
* quit the critical section.
|
|
*/
|
|
cv_signal(&ifp->if_ioctl_lock->il_emptied);
|
|
return ENXIO;
|
|
}
|
|
|
|
int
|
|
if_nullinit(struct ifnet *ifp)
|
|
{
|
|
|
|
return ENXIO;
|
|
}
|
|
|
|
void
|
|
if_nullstop(struct ifnet *ifp, int disable)
|
|
{
|
|
|
|
/* Nothing. */
|
|
}
|
|
|
|
void
|
|
if_nullslowtimo(struct ifnet *ifp)
|
|
{
|
|
|
|
/* Nothing. */
|
|
}
|
|
|
|
void
|
|
if_nulldrain(struct ifnet *ifp)
|
|
{
|
|
|
|
/* Nothing. */
|
|
}
|
|
|
|
void
|
|
if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct sockaddr_dl *sdl;
|
|
|
|
ifp->if_addrlen = addrlen;
|
|
if_alloc_sadl(ifp);
|
|
ifa = ifp->if_dl;
|
|
sdl = satosdl(ifa->ifa_addr);
|
|
|
|
(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
|
|
if (factory) {
|
|
ifp->if_hwdl = ifp->if_dl;
|
|
ifaref(ifp->if_hwdl);
|
|
}
|
|
/* TBD routing socket */
|
|
}
|
|
|
|
struct ifaddr *
|
|
if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
|
|
{
|
|
unsigned socksize, ifasize;
|
|
int addrlen, namelen;
|
|
struct sockaddr_dl *mask, *sdl;
|
|
struct ifaddr *ifa;
|
|
|
|
namelen = strlen(ifp->if_xname);
|
|
addrlen = ifp->if_addrlen;
|
|
socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
|
|
ifasize = sizeof(*ifa) + 2 * socksize;
|
|
ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
|
|
|
|
sdl = (struct sockaddr_dl *)(ifa + 1);
|
|
mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
|
|
|
|
sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
|
|
ifp->if_xname, namelen, NULL, addrlen);
|
|
mask->sdl_len = sockaddr_dl_measure(namelen, 0);
|
|
memset(&mask->sdl_data[0], 0xff, namelen);
|
|
ifa->ifa_rtrequest = link_rtrequest;
|
|
ifa->ifa_addr = (struct sockaddr *)sdl;
|
|
ifa->ifa_netmask = (struct sockaddr *)mask;
|
|
|
|
*sdlp = sdl;
|
|
|
|
return ifa;
|
|
}
|
|
|
|
static void
|
|
if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
|
|
{
|
|
const struct sockaddr_dl *sdl;
|
|
|
|
ifp->if_dl = ifa;
|
|
ifaref(ifa);
|
|
sdl = satosdl(ifa->ifa_addr);
|
|
ifp->if_sadl = sdl;
|
|
}
|
|
|
|
/*
|
|
* Allocate the link level name for the specified interface. This
|
|
* is an attachment helper. It must be called after ifp->if_addrlen
|
|
* is initialized, which may not be the case when if_attach() is
|
|
* called.
|
|
*/
|
|
void
|
|
if_alloc_sadl(struct ifnet *ifp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
const struct sockaddr_dl *sdl;
|
|
|
|
/*
|
|
* If the interface already has a link name, release it
|
|
* now. This is useful for interfaces that can change
|
|
* link types, and thus switch link names often.
|
|
*/
|
|
if (ifp->if_sadl != NULL)
|
|
if_free_sadl(ifp);
|
|
|
|
ifa = if_dl_create(ifp, &sdl);
|
|
|
|
ifa_insert(ifp, ifa);
|
|
if_sadl_setrefs(ifp, ifa);
|
|
}
|
|
|
|
static void
|
|
if_deactivate_sadl(struct ifnet *ifp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
KASSERT(ifp->if_dl != NULL);
|
|
|
|
ifa = ifp->if_dl;
|
|
|
|
ifp->if_sadl = NULL;
|
|
|
|
ifp->if_dl = NULL;
|
|
ifafree(ifa);
|
|
}
|
|
|
|
void
|
|
if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
|
|
const struct sockaddr_dl *sdl)
|
|
{
|
|
int s;
|
|
|
|
s = splnet();
|
|
|
|
if_deactivate_sadl(ifp);
|
|
|
|
if_sadl_setrefs(ifp, ifa);
|
|
IFADDR_FOREACH(ifa, ifp)
|
|
rtinit(ifa, RTM_LLINFO_UPD, 0);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Free the link level name for the specified interface. This is
|
|
* a detach helper. This is called from if_detach().
|
|
*/
|
|
static void
|
|
if_free_sadl(struct ifnet *ifp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
int s;
|
|
|
|
ifa = ifp->if_dl;
|
|
if (ifa == NULL) {
|
|
KASSERT(ifp->if_sadl == NULL);
|
|
return;
|
|
}
|
|
|
|
KASSERT(ifp->if_sadl != NULL);
|
|
|
|
s = splnet();
|
|
rtinit(ifa, RTM_DELETE, 0);
|
|
ifa_remove(ifp, ifa);
|
|
if_deactivate_sadl(ifp);
|
|
if (ifp->if_hwdl == ifa) {
|
|
ifafree(ifa);
|
|
ifp->if_hwdl = NULL;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
if_getindex(ifnet_t *ifp)
|
|
{
|
|
bool hitlimit = false;
|
|
|
|
mutex_enter(&index_gen_mtx);
|
|
ifp->if_index_gen = index_gen++;
|
|
mutex_exit(&index_gen_mtx);
|
|
|
|
ifp->if_index = if_index;
|
|
if (ifindex2ifnet == NULL) {
|
|
if_index++;
|
|
goto skip;
|
|
}
|
|
while (if_byindex(ifp->if_index)) {
|
|
/*
|
|
* If we hit USHRT_MAX, we skip back to 0 since
|
|
* there are a number of places where the value
|
|
* of if_index or if_index itself is compared
|
|
* to or stored in an unsigned short. By
|
|
* jumping back, we won't botch those assignments
|
|
* or comparisons.
|
|
*/
|
|
if (++if_index == 0) {
|
|
if_index = 1;
|
|
} else if (if_index == USHRT_MAX) {
|
|
/*
|
|
* However, if we have to jump back to
|
|
* zero *twice* without finding an empty
|
|
* slot in ifindex2ifnet[], then there
|
|
* there are too many (>65535) interfaces.
|
|
*/
|
|
if (hitlimit) {
|
|
panic("too many interfaces");
|
|
}
|
|
hitlimit = true;
|
|
if_index = 1;
|
|
}
|
|
ifp->if_index = if_index;
|
|
}
|
|
skip:
|
|
/*
|
|
* ifindex2ifnet is indexed by if_index. Since if_index will
|
|
* grow dynamically, it should grow too.
|
|
*/
|
|
if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
|
|
size_t m, n, oldlim;
|
|
void *q;
|
|
|
|
oldlim = if_indexlim;
|
|
while (ifp->if_index >= if_indexlim)
|
|
if_indexlim <<= 1;
|
|
|
|
/* grow ifindex2ifnet */
|
|
m = oldlim * sizeof(struct ifnet *);
|
|
n = if_indexlim * sizeof(struct ifnet *);
|
|
q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
|
|
if (ifindex2ifnet != NULL) {
|
|
memcpy(q, ifindex2ifnet, m);
|
|
free(ifindex2ifnet, M_IFADDR);
|
|
}
|
|
ifindex2ifnet = (struct ifnet **)q;
|
|
}
|
|
ifindex2ifnet[ifp->if_index] = ifp;
|
|
}
|
|
|
|
/*
|
|
* Initialize an interface and assign an index for it.
|
|
*
|
|
* It must be called prior to a device specific attach routine
|
|
* (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
|
|
* and be followed by if_register:
|
|
*
|
|
* if_initialize(ifp);
|
|
* ether_ifattach(ifp, enaddr);
|
|
* if_register(ifp);
|
|
*/
|
|
void
|
|
if_initialize(ifnet_t *ifp)
|
|
{
|
|
KASSERT(if_indexlim > 0);
|
|
TAILQ_INIT(&ifp->if_addrlist);
|
|
|
|
/*
|
|
* Link level name is allocated later by a separate call to
|
|
* if_alloc_sadl().
|
|
*/
|
|
|
|
if (ifp->if_snd.ifq_maxlen == 0)
|
|
ifp->if_snd.ifq_maxlen = ifqmaxlen;
|
|
|
|
ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
|
|
|
|
ifp->if_link_state = LINK_STATE_UNKNOWN;
|
|
|
|
ifp->if_capenable = 0;
|
|
ifp->if_csum_flags_tx = 0;
|
|
ifp->if_csum_flags_rx = 0;
|
|
|
|
#ifdef ALTQ
|
|
ifp->if_snd.altq_type = 0;
|
|
ifp->if_snd.altq_disc = NULL;
|
|
ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
|
|
ifp->if_snd.altq_tbr = NULL;
|
|
ifp->if_snd.altq_ifp = ifp;
|
|
#endif
|
|
|
|
#ifdef NET_MPSAFE
|
|
ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
|
|
#else
|
|
ifp->if_snd.ifq_lock = NULL;
|
|
#endif
|
|
|
|
ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
|
|
(void)pfil_run_hooks(if_pfil,
|
|
(struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
|
|
|
|
IF_AFDATA_LOCK_INIT(ifp);
|
|
|
|
if_getindex(ifp);
|
|
}
|
|
|
|
/*
|
|
* Register an interface to the list of "active" interfaces.
|
|
*/
|
|
void
|
|
if_register(ifnet_t *ifp)
|
|
{
|
|
if (ifioctl_attach(ifp) != 0)
|
|
panic("%s: ifioctl_attach() failed", __func__);
|
|
|
|
sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
|
|
|
|
if (!STAILQ_EMPTY(&domains))
|
|
if_attachdomain1(ifp);
|
|
|
|
/* Announce the interface. */
|
|
rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
|
|
|
|
if (ifp->if_slowtimo != NULL) {
|
|
ifp->if_slowtimo_ch =
|
|
kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
|
|
callout_init(ifp->if_slowtimo_ch, 0);
|
|
callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
|
|
if_slowtimo(ifp);
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
|
|
}
|
|
|
|
/*
|
|
* Deprecated. Use if_initialize and if_register instead.
|
|
* See the above comment of if_initialize.
|
|
*/
|
|
void
|
|
if_attach(ifnet_t *ifp)
|
|
{
|
|
if_initialize(ifp);
|
|
if_register(ifp);
|
|
}
|
|
|
|
void
|
|
if_attachdomain(void)
|
|
{
|
|
struct ifnet *ifp;
|
|
int s;
|
|
|
|
s = splnet();
|
|
IFNET_FOREACH(ifp)
|
|
if_attachdomain1(ifp);
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
if_attachdomain1(struct ifnet *ifp)
|
|
{
|
|
struct domain *dp;
|
|
int s;
|
|
|
|
s = splnet();
|
|
|
|
/* address family dependent data region */
|
|
memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
|
|
DOMAIN_FOREACH(dp) {
|
|
if (dp->dom_ifattach != NULL)
|
|
ifp->if_afdata[dp->dom_family] =
|
|
(*dp->dom_ifattach)(ifp);
|
|
}
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Deactivate an interface. This points all of the procedure
|
|
* handles at error stubs. May be called from interrupt context.
|
|
*/
|
|
void
|
|
if_deactivate(struct ifnet *ifp)
|
|
{
|
|
int s;
|
|
|
|
s = splnet();
|
|
|
|
ifp->if_output = if_nulloutput;
|
|
ifp->if_input = if_nullinput;
|
|
ifp->if_start = if_nullstart;
|
|
ifp->if_ioctl = if_nullioctl;
|
|
ifp->if_init = if_nullinit;
|
|
ifp->if_stop = if_nullstop;
|
|
ifp->if_slowtimo = if_nullslowtimo;
|
|
ifp->if_drain = if_nulldrain;
|
|
|
|
/* No more packets may be enqueued. */
|
|
ifp->if_snd.ifq_maxlen = 0;
|
|
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
|
|
{
|
|
struct ifaddr *ifa, *nifa;
|
|
|
|
IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
|
|
if (ifa->ifa_addr->sa_family != family)
|
|
continue;
|
|
(*purgeaddr)(ifa);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Detach an interface from the list of "active" interfaces,
|
|
* freeing any resources as we go along.
|
|
*
|
|
* NOTE: This routine must be called with a valid thread context,
|
|
* as it may block.
|
|
*/
|
|
void
|
|
if_detach(struct ifnet *ifp)
|
|
{
|
|
struct socket so;
|
|
struct ifaddr *ifa;
|
|
#ifdef IFAREF_DEBUG
|
|
struct ifaddr *last_ifa = NULL;
|
|
#endif
|
|
struct domain *dp;
|
|
const struct protosw *pr;
|
|
int s, i, family, purged;
|
|
uint64_t xc;
|
|
|
|
/*
|
|
* XXX It's kind of lame that we have to have the
|
|
* XXX socket structure...
|
|
*/
|
|
memset(&so, 0, sizeof(so));
|
|
|
|
s = splnet();
|
|
|
|
ifindex2ifnet[ifp->if_index] = NULL;
|
|
TAILQ_REMOVE(&ifnet_list, ifp, if_list);
|
|
|
|
if (ifp->if_slowtimo != NULL) {
|
|
ifp->if_slowtimo = NULL;
|
|
callout_halt(ifp->if_slowtimo_ch, NULL);
|
|
callout_destroy(ifp->if_slowtimo_ch);
|
|
kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
|
|
}
|
|
|
|
/*
|
|
* Do an if_down() to give protocols a chance to do something.
|
|
*/
|
|
if_down(ifp);
|
|
|
|
#ifdef ALTQ
|
|
if (ALTQ_IS_ENABLED(&ifp->if_snd))
|
|
altq_disable(&ifp->if_snd);
|
|
if (ALTQ_IS_ATTACHED(&ifp->if_snd))
|
|
altq_detach(&ifp->if_snd);
|
|
#endif
|
|
|
|
if (ifp->if_snd.ifq_lock)
|
|
mutex_obj_free(ifp->if_snd.ifq_lock);
|
|
|
|
sysctl_teardown(&ifp->if_sysctl_log);
|
|
|
|
#if NCARP > 0
|
|
/* Remove the interface from any carp group it is a part of. */
|
|
if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
|
|
carp_ifdetach(ifp);
|
|
#endif
|
|
|
|
/*
|
|
* Rip all the addresses off the interface. This should make
|
|
* all of the routes go away.
|
|
*
|
|
* pr_usrreq calls can remove an arbitrary number of ifaddrs
|
|
* from the list, including our "cursor", ifa. For safety,
|
|
* and to honor the TAILQ abstraction, I just restart the
|
|
* loop after each removal. Note that the loop will exit
|
|
* when all of the remaining ifaddrs belong to the AF_LINK
|
|
* family. I am counting on the historical fact that at
|
|
* least one pr_usrreq in each address domain removes at
|
|
* least one ifaddr.
|
|
*/
|
|
again:
|
|
IFADDR_FOREACH(ifa, ifp) {
|
|
family = ifa->ifa_addr->sa_family;
|
|
#ifdef IFAREF_DEBUG
|
|
printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
|
|
ifa, family, ifa->ifa_refcnt);
|
|
if (last_ifa != NULL && ifa == last_ifa)
|
|
panic("if_detach: loop detected");
|
|
last_ifa = ifa;
|
|
#endif
|
|
if (family == AF_LINK)
|
|
continue;
|
|
dp = pffinddomain(family);
|
|
#ifdef DIAGNOSTIC
|
|
if (dp == NULL)
|
|
panic("if_detach: no domain for AF %d",
|
|
family);
|
|
#endif
|
|
/*
|
|
* XXX These PURGEIF calls are redundant with the
|
|
* purge-all-families calls below, but are left in for
|
|
* now both to make a smaller change, and to avoid
|
|
* unplanned interactions with clearing of
|
|
* ifp->if_addrlist.
|
|
*/
|
|
purged = 0;
|
|
for (pr = dp->dom_protosw;
|
|
pr < dp->dom_protoswNPROTOSW; pr++) {
|
|
so.so_proto = pr;
|
|
if (pr->pr_usrreqs) {
|
|
(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
|
|
purged = 1;
|
|
}
|
|
}
|
|
if (purged == 0) {
|
|
/*
|
|
* XXX What's really the best thing to do
|
|
* XXX here? --thorpej@NetBSD.org
|
|
*/
|
|
printf("if_detach: WARNING: AF %d not purged\n",
|
|
family);
|
|
ifa_remove(ifp, ifa);
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
if_free_sadl(ifp);
|
|
|
|
/* Walk the routing table looking for stragglers. */
|
|
for (i = 0; i <= AF_MAX; i++) {
|
|
while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
|
|
continue;
|
|
}
|
|
|
|
DOMAIN_FOREACH(dp) {
|
|
if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
|
|
{
|
|
void *p = ifp->if_afdata[dp->dom_family];
|
|
if (p) {
|
|
ifp->if_afdata[dp->dom_family] = NULL;
|
|
(*dp->dom_ifdetach)(ifp, p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* One would expect multicast memberships (INET and
|
|
* INET6) on UDP sockets to be purged by the PURGEIF
|
|
* calls above, but if all addresses were removed from
|
|
* the interface prior to destruction, the calls will
|
|
* not be made (e.g. ppp, for which pppd(8) generally
|
|
* removes addresses before destroying the interface).
|
|
* Because there is no invariant that multicast
|
|
* memberships only exist for interfaces with IPv4
|
|
* addresses, we must call PURGEIF regardless of
|
|
* addresses. (Protocols which might store ifnet
|
|
* pointers are marked with PR_PURGEIF.)
|
|
*/
|
|
for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
|
|
so.so_proto = pr;
|
|
if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
|
|
(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
|
|
}
|
|
}
|
|
|
|
(void)pfil_run_hooks(if_pfil,
|
|
(struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
|
|
(void)pfil_head_destroy(ifp->if_pfil);
|
|
|
|
/* Announce that the interface is gone. */
|
|
rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
|
|
|
|
ifioctl_detach(ifp);
|
|
|
|
/*
|
|
* remove packets that came from ifp, from software interrupt queues.
|
|
*/
|
|
DOMAIN_FOREACH(dp) {
|
|
for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
|
|
struct ifqueue *iq = dp->dom_ifqueues[i];
|
|
if (iq == NULL)
|
|
break;
|
|
dp->dom_ifqueues[i] = NULL;
|
|
if_detach_queues(ifp, iq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* IP queues have to be processed separately: net-queue barrier
|
|
* ensures that the packets are dequeued while a cross-call will
|
|
* ensure that the interrupts have completed. FIXME: not quite..
|
|
*/
|
|
#ifdef INET
|
|
pktq_barrier(ip_pktq);
|
|
#endif
|
|
#ifdef INET6
|
|
if (in6_present)
|
|
pktq_barrier(ip6_pktq);
|
|
#endif
|
|
xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
|
|
xc_wait(xc);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
|
|
{
|
|
struct mbuf *m, *prev, *next;
|
|
|
|
prev = NULL;
|
|
for (m = q->ifq_head; m != NULL; m = next) {
|
|
KASSERT((m->m_flags & M_PKTHDR) != 0);
|
|
|
|
next = m->m_nextpkt;
|
|
if (m->m_pkthdr.rcvif != ifp) {
|
|
prev = m;
|
|
continue;
|
|
}
|
|
|
|
if (prev != NULL)
|
|
prev->m_nextpkt = m->m_nextpkt;
|
|
else
|
|
q->ifq_head = m->m_nextpkt;
|
|
if (q->ifq_tail == m)
|
|
q->ifq_tail = prev;
|
|
q->ifq_len--;
|
|
|
|
m->m_nextpkt = NULL;
|
|
m_freem(m);
|
|
IF_DROP(q);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Callback for a radix tree walk to delete all references to an
|
|
* ifnet.
|
|
*/
|
|
static int
|
|
if_rt_walktree(struct rtentry *rt, void *v)
|
|
{
|
|
struct ifnet *ifp = (struct ifnet *)v;
|
|
int error;
|
|
struct rtentry *retrt;
|
|
|
|
if (rt->rt_ifp != ifp)
|
|
return 0;
|
|
|
|
/* Delete the entry. */
|
|
error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
|
|
rt_mask(rt), rt->rt_flags, &retrt);
|
|
if (error == 0) {
|
|
KASSERT(retrt == rt);
|
|
KASSERT((retrt->rt_flags & RTF_UP) == 0);
|
|
retrt->rt_ifp = NULL;
|
|
rtfree(retrt);
|
|
} else {
|
|
printf("%s: warning: unable to delete rtentry @ %p, "
|
|
"error = %d\n", ifp->if_xname, rt, error);
|
|
}
|
|
return ERESTART;
|
|
}
|
|
|
|
/*
|
|
* Create a clone network interface.
|
|
*/
|
|
static int
|
|
if_clone_create(const char *name)
|
|
{
|
|
struct if_clone *ifc;
|
|
int unit;
|
|
|
|
ifc = if_clone_lookup(name, &unit);
|
|
if (ifc == NULL)
|
|
return EINVAL;
|
|
|
|
if (ifunit(name) != NULL)
|
|
return EEXIST;
|
|
|
|
return (*ifc->ifc_create)(ifc, unit);
|
|
}
|
|
|
|
/*
|
|
* Destroy a clone network interface.
|
|
*/
|
|
static int
|
|
if_clone_destroy(const char *name)
|
|
{
|
|
struct if_clone *ifc;
|
|
struct ifnet *ifp;
|
|
|
|
ifc = if_clone_lookup(name, NULL);
|
|
if (ifc == NULL)
|
|
return EINVAL;
|
|
|
|
ifp = ifunit(name);
|
|
if (ifp == NULL)
|
|
return ENXIO;
|
|
|
|
if (ifc->ifc_destroy == NULL)
|
|
return EOPNOTSUPP;
|
|
|
|
return (*ifc->ifc_destroy)(ifp);
|
|
}
|
|
|
|
/*
|
|
* Look up a network interface cloner.
|
|
*/
|
|
static struct if_clone *
|
|
if_clone_lookup(const char *name, int *unitp)
|
|
{
|
|
struct if_clone *ifc;
|
|
const char *cp;
|
|
char *dp, ifname[IFNAMSIZ + 3];
|
|
int unit;
|
|
|
|
strcpy(ifname, "if_");
|
|
/* separate interface name from unit */
|
|
for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
|
|
*cp && (*cp < '0' || *cp > '9');)
|
|
*dp++ = *cp++;
|
|
|
|
if (cp == name || cp - name == IFNAMSIZ || !*cp)
|
|
return NULL; /* No name or unit number */
|
|
*dp++ = '\0';
|
|
|
|
again:
|
|
LIST_FOREACH(ifc, &if_cloners, ifc_list) {
|
|
if (strcmp(ifname + 3, ifc->ifc_name) == 0)
|
|
break;
|
|
}
|
|
|
|
if (ifc == NULL) {
|
|
if (*ifname == '\0' ||
|
|
module_autoload(ifname, MODULE_CLASS_DRIVER))
|
|
return NULL;
|
|
*ifname = '\0';
|
|
goto again;
|
|
}
|
|
|
|
unit = 0;
|
|
while (cp - name < IFNAMSIZ && *cp) {
|
|
if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
|
|
/* Bogus unit number. */
|
|
return NULL;
|
|
}
|
|
unit = (unit * 10) + (*cp++ - '0');
|
|
}
|
|
|
|
if (unitp != NULL)
|
|
*unitp = unit;
|
|
return ifc;
|
|
}
|
|
|
|
/*
|
|
* Register a network interface cloner.
|
|
*/
|
|
void
|
|
if_clone_attach(struct if_clone *ifc)
|
|
{
|
|
|
|
LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
|
|
if_cloners_count++;
|
|
}
|
|
|
|
/*
|
|
* Unregister a network interface cloner.
|
|
*/
|
|
void
|
|
if_clone_detach(struct if_clone *ifc)
|
|
{
|
|
|
|
LIST_REMOVE(ifc, ifc_list);
|
|
if_cloners_count--;
|
|
}
|
|
|
|
/*
|
|
* Provide list of interface cloners to userspace.
|
|
*/
|
|
int
|
|
if_clone_list(int buf_count, char *buffer, int *total)
|
|
{
|
|
char outbuf[IFNAMSIZ], *dst;
|
|
struct if_clone *ifc;
|
|
int count, error = 0;
|
|
|
|
*total = if_cloners_count;
|
|
if ((dst = buffer) == NULL) {
|
|
/* Just asking how many there are. */
|
|
return 0;
|
|
}
|
|
|
|
if (buf_count < 0)
|
|
return EINVAL;
|
|
|
|
count = (if_cloners_count < buf_count) ?
|
|
if_cloners_count : buf_count;
|
|
|
|
for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
|
|
ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
|
|
(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
|
|
if (outbuf[sizeof(outbuf) - 1] != '\0')
|
|
return ENAMETOOLONG;
|
|
error = copyout(outbuf, dst, sizeof(outbuf));
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
void
|
|
ifaref(struct ifaddr *ifa)
|
|
{
|
|
ifa->ifa_refcnt++;
|
|
}
|
|
|
|
void
|
|
ifafree(struct ifaddr *ifa)
|
|
{
|
|
KASSERT(ifa != NULL);
|
|
KASSERT(ifa->ifa_refcnt > 0);
|
|
|
|
if (--ifa->ifa_refcnt == 0) {
|
|
free(ifa, M_IFADDR);
|
|
}
|
|
}
|
|
|
|
void
|
|
ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
|
|
{
|
|
ifa->ifa_ifp = ifp;
|
|
TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
|
|
ifaref(ifa);
|
|
}
|
|
|
|
void
|
|
ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
|
|
{
|
|
KASSERT(ifa->ifa_ifp == ifp);
|
|
TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
|
|
ifafree(ifa);
|
|
}
|
|
|
|
static inline int
|
|
equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
|
|
{
|
|
return sockaddr_cmp(sa1, sa2) == 0;
|
|
}
|
|
|
|
/*
|
|
* Locate an interface based on a complete address.
|
|
*/
|
|
/*ARGSUSED*/
|
|
struct ifaddr *
|
|
ifa_ifwithaddr(const struct sockaddr *addr)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa;
|
|
|
|
IFNET_FOREACH(ifp) {
|
|
if (ifp->if_output == if_nulloutput)
|
|
continue;
|
|
IFADDR_FOREACH(ifa, ifp) {
|
|
if (ifa->ifa_addr->sa_family != addr->sa_family)
|
|
continue;
|
|
if (equal(addr, ifa->ifa_addr))
|
|
return ifa;
|
|
if ((ifp->if_flags & IFF_BROADCAST) &&
|
|
ifa->ifa_broadaddr &&
|
|
/* IP6 doesn't have broadcast */
|
|
ifa->ifa_broadaddr->sa_len != 0 &&
|
|
equal(ifa->ifa_broadaddr, addr))
|
|
return ifa;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Locate the point to point interface with a given destination address.
|
|
*/
|
|
/*ARGSUSED*/
|
|
struct ifaddr *
|
|
ifa_ifwithdstaddr(const struct sockaddr *addr)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa;
|
|
|
|
IFNET_FOREACH(ifp) {
|
|
if (ifp->if_output == if_nulloutput)
|
|
continue;
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
|
|
continue;
|
|
IFADDR_FOREACH(ifa, ifp) {
|
|
if (ifa->ifa_addr->sa_family != addr->sa_family ||
|
|
ifa->ifa_dstaddr == NULL)
|
|
continue;
|
|
if (equal(addr, ifa->ifa_dstaddr))
|
|
return ifa;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Find an interface on a specific network. If many, choice
|
|
* is most specific found.
|
|
*/
|
|
struct ifaddr *
|
|
ifa_ifwithnet(const struct sockaddr *addr)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa;
|
|
const struct sockaddr_dl *sdl;
|
|
struct ifaddr *ifa_maybe = 0;
|
|
u_int af = addr->sa_family;
|
|
const char *addr_data = addr->sa_data, *cplim;
|
|
|
|
if (af == AF_LINK) {
|
|
sdl = satocsdl(addr);
|
|
if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
|
|
ifindex2ifnet[sdl->sdl_index] &&
|
|
ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) {
|
|
return ifindex2ifnet[sdl->sdl_index]->if_dl;
|
|
}
|
|
}
|
|
#ifdef NETATALK
|
|
if (af == AF_APPLETALK) {
|
|
const struct sockaddr_at *sat, *sat2;
|
|
sat = (const struct sockaddr_at *)addr;
|
|
IFNET_FOREACH(ifp) {
|
|
if (ifp->if_output == if_nulloutput)
|
|
continue;
|
|
ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
|
|
if (ifa == NULL)
|
|
continue;
|
|
sat2 = (struct sockaddr_at *)ifa->ifa_addr;
|
|
if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
|
|
return ifa; /* exact match */
|
|
if (ifa_maybe == NULL) {
|
|
/* else keep the if with the right range */
|
|
ifa_maybe = ifa;
|
|
}
|
|
}
|
|
return ifa_maybe;
|
|
}
|
|
#endif
|
|
IFNET_FOREACH(ifp) {
|
|
if (ifp->if_output == if_nulloutput)
|
|
continue;
|
|
IFADDR_FOREACH(ifa, ifp) {
|
|
const char *cp, *cp2, *cp3;
|
|
|
|
if (ifa->ifa_addr->sa_family != af ||
|
|
ifa->ifa_netmask == NULL)
|
|
next: continue;
|
|
cp = addr_data;
|
|
cp2 = ifa->ifa_addr->sa_data;
|
|
cp3 = ifa->ifa_netmask->sa_data;
|
|
cplim = (const char *)ifa->ifa_netmask +
|
|
ifa->ifa_netmask->sa_len;
|
|
while (cp3 < cplim) {
|
|
if ((*cp++ ^ *cp2++) & *cp3++) {
|
|
/* want to continue for() loop */
|
|
goto next;
|
|
}
|
|
}
|
|
if (ifa_maybe == NULL ||
|
|
rn_refines((void *)ifa->ifa_netmask,
|
|
(void *)ifa_maybe->ifa_netmask))
|
|
ifa_maybe = ifa;
|
|
}
|
|
}
|
|
return ifa_maybe;
|
|
}
|
|
|
|
/*
|
|
* Find the interface of the addresss.
|
|
*/
|
|
struct ifaddr *
|
|
ifa_ifwithladdr(const struct sockaddr *addr)
|
|
{
|
|
struct ifaddr *ia;
|
|
|
|
if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
|
|
(ia = ifa_ifwithnet(addr)))
|
|
return ia;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Find an interface using a specific address family
|
|
*/
|
|
struct ifaddr *
|
|
ifa_ifwithaf(int af)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa;
|
|
|
|
IFNET_FOREACH(ifp) {
|
|
if (ifp->if_output == if_nulloutput)
|
|
continue;
|
|
IFADDR_FOREACH(ifa, ifp) {
|
|
if (ifa->ifa_addr->sa_family == af)
|
|
return ifa;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Find an interface address specific to an interface best matching
|
|
* a given address.
|
|
*/
|
|
struct ifaddr *
|
|
ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
const char *cp, *cp2, *cp3;
|
|
const char *cplim;
|
|
struct ifaddr *ifa_maybe = 0;
|
|
u_int af = addr->sa_family;
|
|
|
|
if (ifp->if_output == if_nulloutput)
|
|
return NULL;
|
|
|
|
if (af >= AF_MAX)
|
|
return NULL;
|
|
|
|
IFADDR_FOREACH(ifa, ifp) {
|
|
if (ifa->ifa_addr->sa_family != af)
|
|
continue;
|
|
ifa_maybe = ifa;
|
|
if (ifa->ifa_netmask == NULL) {
|
|
if (equal(addr, ifa->ifa_addr) ||
|
|
(ifa->ifa_dstaddr &&
|
|
equal(addr, ifa->ifa_dstaddr)))
|
|
return ifa;
|
|
continue;
|
|
}
|
|
cp = addr->sa_data;
|
|
cp2 = ifa->ifa_addr->sa_data;
|
|
cp3 = ifa->ifa_netmask->sa_data;
|
|
cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
|
|
for (; cp3 < cplim; cp3++) {
|
|
if ((*cp++ ^ *cp2++) & *cp3)
|
|
break;
|
|
}
|
|
if (cp3 == cplim)
|
|
return ifa;
|
|
}
|
|
return ifa_maybe;
|
|
}
|
|
|
|
/*
|
|
* Default action when installing a route with a Link Level gateway.
|
|
* Lookup an appropriate real ifa to point to.
|
|
* This should be moved to /sys/net/link.c eventually.
|
|
*/
|
|
void
|
|
link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
|
|
{
|
|
struct ifaddr *ifa;
|
|
const struct sockaddr *dst;
|
|
struct ifnet *ifp;
|
|
|
|
if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
|
|
(ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
|
|
return;
|
|
if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
|
|
rt_replace_ifa(rt, ifa);
|
|
if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
|
|
ifa->ifa_rtrequest(cmd, rt, info);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle a change in the interface link state.
|
|
* XXX: We should listen to the routing socket in-kernel rather
|
|
* than calling in6_if_link_* functions directly from here.
|
|
*/
|
|
void
|
|
if_link_state_change(struct ifnet *ifp, int link_state)
|
|
{
|
|
int s;
|
|
int old_link_state;
|
|
struct domain *dp;
|
|
|
|
s = splnet();
|
|
if (ifp->if_link_state == link_state) {
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
old_link_state = ifp->if_link_state;
|
|
ifp->if_link_state = link_state;
|
|
#ifdef DEBUG
|
|
log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
|
|
link_state == LINK_STATE_UP ? "UP" :
|
|
link_state == LINK_STATE_DOWN ? "DOWN" :
|
|
"UNKNOWN",
|
|
old_link_state == LINK_STATE_UP ? "UP" :
|
|
old_link_state == LINK_STATE_DOWN ? "DOWN" :
|
|
"UNKNOWN");
|
|
#endif
|
|
|
|
/*
|
|
* When going from UNKNOWN to UP, we need to mark existing
|
|
* addresses as tentative and restart DAD as we may have
|
|
* erroneously not found a duplicate.
|
|
*
|
|
* This needs to happen before rt_ifmsg to avoid a race where
|
|
* listeners would have an address and expect it to work right
|
|
* away.
|
|
*/
|
|
if (link_state == LINK_STATE_UP &&
|
|
old_link_state == LINK_STATE_UNKNOWN)
|
|
{
|
|
DOMAIN_FOREACH(dp) {
|
|
if (dp->dom_if_link_state_change != NULL)
|
|
dp->dom_if_link_state_change(ifp,
|
|
LINK_STATE_DOWN);
|
|
}
|
|
}
|
|
|
|
/* Notify that the link state has changed. */
|
|
rt_ifmsg(ifp);
|
|
|
|
#if NCARP > 0
|
|
if (ifp->if_carp)
|
|
carp_carpdev_state(ifp);
|
|
#endif
|
|
|
|
DOMAIN_FOREACH(dp) {
|
|
if (dp->dom_if_link_state_change != NULL)
|
|
dp->dom_if_link_state_change(ifp, link_state);
|
|
}
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Default action when installing a local route on a point-to-point
|
|
* interface.
|
|
*/
|
|
void
|
|
p2p_rtrequest(int req, struct rtentry *rt,
|
|
__unused const struct rt_addrinfo *info)
|
|
{
|
|
struct ifnet *ifp = rt->rt_ifp;
|
|
struct ifaddr *ifa, *lo0ifa;
|
|
|
|
switch (req) {
|
|
case RTM_ADD:
|
|
if ((rt->rt_flags & RTF_LOCAL) == 0)
|
|
break;
|
|
|
|
IFADDR_FOREACH(ifa, ifp) {
|
|
if (equal(rt_getkey(rt), ifa->ifa_addr))
|
|
break;
|
|
}
|
|
if (ifa == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Ensure lo0 has an address of the same family.
|
|
*/
|
|
IFADDR_FOREACH(lo0ifa, lo0ifp) {
|
|
if (lo0ifa->ifa_addr->sa_family ==
|
|
ifa->ifa_addr->sa_family)
|
|
break;
|
|
}
|
|
if (lo0ifa == NULL)
|
|
break;
|
|
|
|
rt->rt_ifp = lo0ifp;
|
|
rt->rt_flags &= ~RTF_LLINFO;
|
|
|
|
/*
|
|
* Make sure to set rt->rt_ifa to the interface
|
|
* address we are using, otherwise we will have trouble
|
|
* with source address selection.
|
|
*/
|
|
if (ifa != rt->rt_ifa)
|
|
rt_replace_ifa(rt, ifa);
|
|
break;
|
|
case RTM_DELETE:
|
|
case RTM_RESOLVE:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark an interface down and notify protocols of
|
|
* the transition.
|
|
* NOTE: must be called at splsoftnet or equivalent.
|
|
*/
|
|
void
|
|
if_down(struct ifnet *ifp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct domain *dp;
|
|
|
|
ifp->if_flags &= ~IFF_UP;
|
|
nanotime(&ifp->if_lastchange);
|
|
IFADDR_FOREACH(ifa, ifp)
|
|
pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
|
|
IFQ_PURGE(&ifp->if_snd);
|
|
#if NCARP > 0
|
|
if (ifp->if_carp)
|
|
carp_carpdev_state(ifp);
|
|
#endif
|
|
rt_ifmsg(ifp);
|
|
DOMAIN_FOREACH(dp) {
|
|
if (dp->dom_if_down)
|
|
dp->dom_if_down(ifp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark an interface up and notify protocols of
|
|
* the transition.
|
|
* NOTE: must be called at splsoftnet or equivalent.
|
|
*/
|
|
void
|
|
if_up(struct ifnet *ifp)
|
|
{
|
|
#ifdef notyet
|
|
struct ifaddr *ifa;
|
|
#endif
|
|
struct domain *dp;
|
|
|
|
ifp->if_flags |= IFF_UP;
|
|
nanotime(&ifp->if_lastchange);
|
|
#ifdef notyet
|
|
/* this has no effect on IP, and will kill all ISO connections XXX */
|
|
IFADDR_FOREACH(ifa, ifp)
|
|
pfctlinput(PRC_IFUP, ifa->ifa_addr);
|
|
#endif
|
|
#if NCARP > 0
|
|
if (ifp->if_carp)
|
|
carp_carpdev_state(ifp);
|
|
#endif
|
|
rt_ifmsg(ifp);
|
|
DOMAIN_FOREACH(dp) {
|
|
if (dp->dom_if_up)
|
|
dp->dom_if_up(ifp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle interface slowtimo timer routine. Called
|
|
* from softclock, we decrement timer (if set) and
|
|
* call the appropriate interface routine on expiration.
|
|
*/
|
|
static void
|
|
if_slowtimo(void *arg)
|
|
{
|
|
void (*slowtimo)(struct ifnet *);
|
|
struct ifnet *ifp = arg;
|
|
int s;
|
|
|
|
slowtimo = ifp->if_slowtimo;
|
|
if (__predict_false(slowtimo == NULL))
|
|
return;
|
|
|
|
s = splnet();
|
|
if (ifp->if_timer != 0 && --ifp->if_timer == 0)
|
|
(*slowtimo)(ifp);
|
|
|
|
splx(s);
|
|
|
|
if (__predict_true(ifp->if_slowtimo != NULL))
|
|
callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
|
|
}
|
|
|
|
/*
|
|
* Set/clear promiscuous mode on interface ifp based on the truth value
|
|
* of pswitch. The calls are reference counted so that only the first
|
|
* "on" request actually has an effect, as does the final "off" request.
|
|
* Results are undefined if the "off" and "on" requests are not matched.
|
|
*/
|
|
int
|
|
ifpromisc(struct ifnet *ifp, int pswitch)
|
|
{
|
|
int pcount, ret;
|
|
short nflags;
|
|
|
|
pcount = ifp->if_pcount;
|
|
if (pswitch) {
|
|
/*
|
|
* Allow the device to be "placed" into promiscuous
|
|
* mode even if it is not configured up. It will
|
|
* consult IFF_PROMISC when it is brought up.
|
|
*/
|
|
if (ifp->if_pcount++ != 0)
|
|
return 0;
|
|
nflags = ifp->if_flags | IFF_PROMISC;
|
|
} else {
|
|
if (--ifp->if_pcount > 0)
|
|
return 0;
|
|
nflags = ifp->if_flags & ~IFF_PROMISC;
|
|
}
|
|
ret = if_flags_set(ifp, nflags);
|
|
/* Restore interface state if not successful. */
|
|
if (ret != 0) {
|
|
ifp->if_pcount = pcount;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Map interface name to
|
|
* interface structure pointer.
|
|
*/
|
|
struct ifnet *
|
|
ifunit(const char *name)
|
|
{
|
|
struct ifnet *ifp;
|
|
const char *cp = name;
|
|
u_int unit = 0;
|
|
u_int i;
|
|
|
|
/*
|
|
* If the entire name is a number, treat it as an ifindex.
|
|
*/
|
|
for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
|
|
unit = unit * 10 + (*cp - '0');
|
|
}
|
|
|
|
/*
|
|
* If the number took all of the name, then it's a valid ifindex.
|
|
*/
|
|
if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
|
|
if (unit >= if_indexlim)
|
|
return NULL;
|
|
ifp = ifindex2ifnet[unit];
|
|
if (ifp == NULL || ifp->if_output == if_nulloutput)
|
|
return NULL;
|
|
return ifp;
|
|
}
|
|
|
|
IFNET_FOREACH(ifp) {
|
|
if (ifp->if_output == if_nulloutput)
|
|
continue;
|
|
if (strcmp(ifp->if_xname, name) == 0)
|
|
return ifp;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
ifnet_t *
|
|
if_byindex(u_int idx)
|
|
{
|
|
return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
|
|
}
|
|
|
|
/* common */
|
|
int
|
|
ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
int s;
|
|
struct ifreq *ifr;
|
|
struct ifcapreq *ifcr;
|
|
struct ifdatareq *ifdr;
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFCAP:
|
|
ifcr = data;
|
|
if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
|
|
return EINVAL;
|
|
|
|
if (ifcr->ifcr_capenable == ifp->if_capenable)
|
|
return 0;
|
|
|
|
ifp->if_capenable = ifcr->ifcr_capenable;
|
|
|
|
/* Pre-compute the checksum flags mask. */
|
|
ifp->if_csum_flags_tx = 0;
|
|
ifp->if_csum_flags_rx = 0;
|
|
if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
|
|
ifp->if_csum_flags_tx |= M_CSUM_IPv4;
|
|
}
|
|
if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
|
|
ifp->if_csum_flags_rx |= M_CSUM_IPv4;
|
|
}
|
|
|
|
if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
|
|
ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
|
|
}
|
|
if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
|
|
ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
|
|
}
|
|
|
|
if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
|
|
ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
|
|
}
|
|
if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
|
|
ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
|
|
}
|
|
|
|
if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
|
|
ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
|
|
}
|
|
if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
|
|
ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
|
|
}
|
|
|
|
if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
|
|
ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
|
|
}
|
|
if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
|
|
ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
|
|
}
|
|
if (ifp->if_flags & IFF_UP)
|
|
return ENETRESET;
|
|
return 0;
|
|
case SIOCSIFFLAGS:
|
|
ifr = data;
|
|
if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
|
|
s = splnet();
|
|
if_down(ifp);
|
|
splx(s);
|
|
}
|
|
if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
|
|
s = splnet();
|
|
if_up(ifp);
|
|
splx(s);
|
|
}
|
|
ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
|
|
(ifr->ifr_flags &~ IFF_CANTCHANGE);
|
|
break;
|
|
case SIOCGIFFLAGS:
|
|
ifr = data;
|
|
ifr->ifr_flags = ifp->if_flags;
|
|
break;
|
|
|
|
case SIOCGIFMETRIC:
|
|
ifr = data;
|
|
ifr->ifr_metric = ifp->if_metric;
|
|
break;
|
|
|
|
case SIOCGIFMTU:
|
|
ifr = data;
|
|
ifr->ifr_mtu = ifp->if_mtu;
|
|
break;
|
|
|
|
case SIOCGIFDLT:
|
|
ifr = data;
|
|
ifr->ifr_dlt = ifp->if_dlt;
|
|
break;
|
|
|
|
case SIOCGIFCAP:
|
|
ifcr = data;
|
|
ifcr->ifcr_capabilities = ifp->if_capabilities;
|
|
ifcr->ifcr_capenable = ifp->if_capenable;
|
|
break;
|
|
|
|
case SIOCSIFMETRIC:
|
|
ifr = data;
|
|
ifp->if_metric = ifr->ifr_metric;
|
|
break;
|
|
|
|
case SIOCGIFDATA:
|
|
ifdr = data;
|
|
ifdr->ifdr_data = ifp->if_data;
|
|
break;
|
|
|
|
case SIOCGIFINDEX:
|
|
ifr = data;
|
|
ifr->ifr_index = ifp->if_index;
|
|
break;
|
|
|
|
case SIOCZIFDATA:
|
|
ifdr = data;
|
|
ifdr->ifdr_data = ifp->if_data;
|
|
/*
|
|
* Assumes that the volatile counters that can be
|
|
* zero'ed are at the end of if_data.
|
|
*/
|
|
memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
|
|
offsetof(struct if_data, ifi_ipackets));
|
|
/*
|
|
* The memset() clears to the bottm of if_data. In the area,
|
|
* if_lastchange is included. Please be careful if new entry
|
|
* will be added into if_data or rewite this.
|
|
*
|
|
* And also, update if_lastchnage.
|
|
*/
|
|
getnanotime(&ifp->if_lastchange);
|
|
break;
|
|
case SIOCSIFMTU:
|
|
ifr = data;
|
|
if (ifp->if_mtu == ifr->ifr_mtu)
|
|
break;
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
/*
|
|
* If the link MTU changed, do network layer specific procedure.
|
|
*/
|
|
#ifdef INET6
|
|
if (in6_present)
|
|
nd6_setmtu(ifp);
|
|
#endif
|
|
return ENETRESET;
|
|
default:
|
|
return ENOTTY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
|
|
{
|
|
struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
|
|
struct ifaddr *ifa;
|
|
const struct sockaddr *any, *sa;
|
|
union {
|
|
struct sockaddr sa;
|
|
struct sockaddr_storage ss;
|
|
} u, v;
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFADDRPREF:
|
|
if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
|
|
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
|
|
NULL) != 0)
|
|
return EPERM;
|
|
case SIOCGIFADDRPREF:
|
|
break;
|
|
default:
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
/* sanity checks */
|
|
if (data == NULL || ifp == NULL) {
|
|
panic("invalid argument to %s", __func__);
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
/* address must be specified on ADD and DELETE */
|
|
sa = sstocsa(&ifap->ifap_addr);
|
|
if (sa->sa_family != sofamily(so))
|
|
return EINVAL;
|
|
if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
|
|
return EINVAL;
|
|
|
|
sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
|
|
|
|
IFADDR_FOREACH(ifa, ifp) {
|
|
if (ifa->ifa_addr->sa_family != sa->sa_family)
|
|
continue;
|
|
sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
|
|
if (sockaddr_cmp(&u.sa, &v.sa) == 0)
|
|
break;
|
|
}
|
|
if (ifa == NULL)
|
|
return EADDRNOTAVAIL;
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFADDRPREF:
|
|
ifa->ifa_preference = ifap->ifap_preference;
|
|
return 0;
|
|
case SIOCGIFADDRPREF:
|
|
/* fill in the if_laddrreq structure */
|
|
(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
|
|
sizeof(ifap->ifap_addr), ifa->ifa_addr);
|
|
ifap->ifap_preference = ifa->ifa_preference;
|
|
return 0;
|
|
default:
|
|
return EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ifnet_lock_enter(struct ifnet_lock *il)
|
|
{
|
|
uint64_t *nenter;
|
|
|
|
/* Before trying to acquire the mutex, increase the count of threads
|
|
* who have entered or who wait to enter the critical section.
|
|
* Avoid one costly locked memory transaction by keeping a count for
|
|
* each CPU.
|
|
*/
|
|
nenter = percpu_getref(il->il_nenter);
|
|
(*nenter)++;
|
|
percpu_putref(il->il_nenter);
|
|
mutex_enter(&il->il_lock);
|
|
}
|
|
|
|
static void
|
|
ifnet_lock_exit(struct ifnet_lock *il)
|
|
{
|
|
/* Increase the count of threads who have exited the critical
|
|
* section. Increase while we still hold the lock.
|
|
*/
|
|
il->il_nexit++;
|
|
mutex_exit(&il->il_lock);
|
|
}
|
|
|
|
/*
|
|
* Interface ioctls.
|
|
*/
|
|
static int
|
|
doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifreq *ifr;
|
|
int error = 0;
|
|
#if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
|
|
u_long ocmd = cmd;
|
|
#endif
|
|
short oif_flags;
|
|
#ifdef COMPAT_OIFREQ
|
|
struct ifreq ifrb;
|
|
struct oifreq *oifr = NULL;
|
|
#endif
|
|
int r;
|
|
|
|
switch (cmd) {
|
|
#ifdef COMPAT_OIFREQ
|
|
case OSIOCGIFCONF:
|
|
case OOSIOCGIFCONF:
|
|
return compat_ifconf(cmd, data);
|
|
#endif
|
|
#ifdef COMPAT_OIFDATA
|
|
case OSIOCGIFDATA:
|
|
case OSIOCZIFDATA:
|
|
return compat_ifdatareq(l, cmd, data);
|
|
#endif
|
|
case SIOCGIFCONF:
|
|
return ifconf(cmd, data);
|
|
case SIOCINITIFADDR:
|
|
return EPERM;
|
|
}
|
|
|
|
#ifdef COMPAT_OIFREQ
|
|
cmd = compat_cvtcmd(cmd);
|
|
if (cmd != ocmd) {
|
|
oifr = data;
|
|
data = ifr = &ifrb;
|
|
ifreqo2n(oifr, ifr);
|
|
} else
|
|
#endif
|
|
ifr = data;
|
|
|
|
ifp = ifunit(ifr->ifr_name);
|
|
|
|
switch (cmd) {
|
|
case SIOCIFCREATE:
|
|
case SIOCIFDESTROY:
|
|
if (l != NULL) {
|
|
error = kauth_authorize_network(l->l_cred,
|
|
KAUTH_NETWORK_INTERFACE,
|
|
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
|
|
(void *)cmd, NULL);
|
|
if (error != 0)
|
|
return error;
|
|
}
|
|
mutex_enter(&if_clone_mtx);
|
|
r = (cmd == SIOCIFCREATE) ?
|
|
if_clone_create(ifr->ifr_name) :
|
|
if_clone_destroy(ifr->ifr_name);
|
|
mutex_exit(&if_clone_mtx);
|
|
return r;
|
|
|
|
case SIOCIFGCLONERS:
|
|
{
|
|
struct if_clonereq *req = (struct if_clonereq *)data;
|
|
return if_clone_list(req->ifcr_count, req->ifcr_buffer,
|
|
&req->ifcr_total);
|
|
}
|
|
}
|
|
|
|
if (ifp == NULL)
|
|
return ENXIO;
|
|
|
|
switch (cmd) {
|
|
case SIOCALIFADDR:
|
|
case SIOCDLIFADDR:
|
|
case SIOCSIFADDRPREF:
|
|
case SIOCSIFFLAGS:
|
|
case SIOCSIFCAP:
|
|
case SIOCSIFMETRIC:
|
|
case SIOCZIFDATA:
|
|
case SIOCSIFMTU:
|
|
case SIOCSIFPHYADDR:
|
|
case SIOCDIFPHYADDR:
|
|
#ifdef INET6
|
|
case SIOCSIFPHYADDR_IN6:
|
|
#endif
|
|
case SIOCSLIFPHYADDR:
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
case SIOCSIFMEDIA:
|
|
case SIOCSDRVSPEC:
|
|
case SIOCG80211:
|
|
case SIOCS80211:
|
|
case SIOCS80211NWID:
|
|
case SIOCS80211NWKEY:
|
|
case SIOCS80211POWER:
|
|
case SIOCS80211BSSID:
|
|
case SIOCS80211CHANNEL:
|
|
case SIOCSLINKSTR:
|
|
if (l != NULL) {
|
|
error = kauth_authorize_network(l->l_cred,
|
|
KAUTH_NETWORK_INTERFACE,
|
|
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
|
|
(void *)cmd, NULL);
|
|
if (error != 0)
|
|
return error;
|
|
}
|
|
}
|
|
|
|
oif_flags = ifp->if_flags;
|
|
|
|
ifnet_lock_enter(ifp->if_ioctl_lock);
|
|
error = (*ifp->if_ioctl)(ifp, cmd, data);
|
|
if (error != ENOTTY)
|
|
;
|
|
else if (so->so_proto == NULL)
|
|
error = EOPNOTSUPP;
|
|
else {
|
|
#ifdef COMPAT_OSOCK
|
|
error = compat_ifioctl(so, ocmd, cmd, data, l);
|
|
#else
|
|
error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
|
|
cmd, data, ifp);
|
|
#endif
|
|
}
|
|
|
|
if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
int s = splnet();
|
|
if_up(ifp);
|
|
splx(s);
|
|
}
|
|
}
|
|
#ifdef COMPAT_OIFREQ
|
|
if (cmd != ocmd)
|
|
ifreqn2o(oifr, ifr);
|
|
#endif
|
|
|
|
ifnet_lock_exit(ifp->if_ioctl_lock);
|
|
return error;
|
|
}
|
|
|
|
/* This callback adds to the sum in `arg' the number of
|
|
* threads on `ci' who have entered or who wait to enter the
|
|
* critical section.
|
|
*/
|
|
static void
|
|
ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
|
|
{
|
|
uint64_t *sum = arg, *nenter = p;
|
|
|
|
*sum += *nenter;
|
|
}
|
|
|
|
/* Return the number of threads who have entered or who wait
|
|
* to enter the critical section on all CPUs.
|
|
*/
|
|
static uint64_t
|
|
ifnet_lock_entrances(struct ifnet_lock *il)
|
|
{
|
|
uint64_t sum = 0;
|
|
|
|
percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
|
|
|
|
return sum;
|
|
}
|
|
|
|
static int
|
|
ifioctl_attach(struct ifnet *ifp)
|
|
{
|
|
struct ifnet_lock *il;
|
|
|
|
/* If the driver has not supplied its own if_ioctl, then
|
|
* supply the default.
|
|
*/
|
|
if (ifp->if_ioctl == NULL)
|
|
ifp->if_ioctl = ifioctl_common;
|
|
|
|
/* Create an ifnet_lock for synchronizing ifioctls. */
|
|
if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
|
|
return ENOMEM;
|
|
|
|
il->il_nenter = percpu_alloc(sizeof(uint64_t));
|
|
if (il->il_nenter == NULL) {
|
|
kmem_free(il, sizeof(*il));
|
|
return ENOMEM;
|
|
}
|
|
|
|
mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
cv_init(&il->il_emptied, ifp->if_xname);
|
|
|
|
ifp->if_ioctl_lock = il;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This must not be called until after `ifp' has been withdrawn from the
|
|
* ifnet tables so that ifioctl() cannot get a handle on it by calling
|
|
* ifunit().
|
|
*/
|
|
static void
|
|
ifioctl_detach(struct ifnet *ifp)
|
|
{
|
|
struct ifnet_lock *il;
|
|
|
|
il = ifp->if_ioctl_lock;
|
|
mutex_enter(&il->il_lock);
|
|
/* Install if_nullioctl to make sure that any thread that
|
|
* subsequently enters the critical section will quit it
|
|
* immediately and signal the condition variable that we
|
|
* wait on, below.
|
|
*/
|
|
ifp->if_ioctl = if_nullioctl;
|
|
/* Sleep while threads are still in the critical section or
|
|
* wait to enter it.
|
|
*/
|
|
while (ifnet_lock_entrances(il) != il->il_nexit)
|
|
cv_wait(&il->il_emptied, &il->il_lock);
|
|
/* At this point, we are the only thread still in the critical
|
|
* section, and no new thread can get a handle on the ifioctl
|
|
* lock, so it is safe to free its memory.
|
|
*/
|
|
mutex_exit(&il->il_lock);
|
|
ifp->if_ioctl_lock = NULL;
|
|
percpu_free(il->il_nenter, sizeof(uint64_t));
|
|
il->il_nenter = NULL;
|
|
cv_destroy(&il->il_emptied);
|
|
mutex_destroy(&il->il_lock);
|
|
kmem_free(il, sizeof(*il));
|
|
}
|
|
|
|
/*
|
|
* Return interface configuration
|
|
* of system. List may be used
|
|
* in later ioctl's (above) to get
|
|
* other information.
|
|
*
|
|
* Each record is a struct ifreq. Before the addition of
|
|
* sockaddr_storage, the API rule was that sockaddr flavors that did
|
|
* not fit would extend beyond the struct ifreq, with the next struct
|
|
* ifreq starting sa_len beyond the struct sockaddr. Because the
|
|
* union in struct ifreq includes struct sockaddr_storage, every kind
|
|
* of sockaddr must fit. Thus, there are no longer any overlength
|
|
* records.
|
|
*
|
|
* Records are added to the user buffer if they fit, and ifc_len is
|
|
* adjusted to the length that was written. Thus, the user is only
|
|
* assured of getting the complete list if ifc_len on return is at
|
|
* least sizeof(struct ifreq) less than it was on entry.
|
|
*
|
|
* If the user buffer pointer is NULL, this routine copies no data and
|
|
* returns the amount of space that would be needed.
|
|
*
|
|
* Invariants:
|
|
* ifrp points to the next part of the user's buffer to be used. If
|
|
* ifrp != NULL, space holds the number of bytes remaining that we may
|
|
* write at ifrp. Otherwise, space holds the number of bytes that
|
|
* would have been written had there been adequate space.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static int
|
|
ifconf(u_long cmd, void *data)
|
|
{
|
|
struct ifconf *ifc = (struct ifconf *)data;
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa;
|
|
struct ifreq ifr, *ifrp = NULL;
|
|
int space = 0, error = 0;
|
|
const int sz = (int)sizeof(struct ifreq);
|
|
const bool docopy = ifc->ifc_req != NULL;
|
|
|
|
if (docopy) {
|
|
space = ifc->ifc_len;
|
|
ifrp = ifc->ifc_req;
|
|
}
|
|
|
|
IFNET_FOREACH(ifp) {
|
|
(void)strncpy(ifr.ifr_name, ifp->if_xname,
|
|
sizeof(ifr.ifr_name));
|
|
if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
|
|
return ENAMETOOLONG;
|
|
if (IFADDR_EMPTY(ifp)) {
|
|
/* Interface with no addresses - send zero sockaddr. */
|
|
memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
|
|
if (!docopy) {
|
|
space += sz;
|
|
continue;
|
|
}
|
|
if (space >= sz) {
|
|
error = copyout(&ifr, ifrp, sz);
|
|
if (error != 0)
|
|
return error;
|
|
ifrp++;
|
|
space -= sz;
|
|
}
|
|
}
|
|
|
|
IFADDR_FOREACH(ifa, ifp) {
|
|
struct sockaddr *sa = ifa->ifa_addr;
|
|
/* all sockaddrs must fit in sockaddr_storage */
|
|
KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
|
|
|
|
if (!docopy) {
|
|
space += sz;
|
|
continue;
|
|
}
|
|
memcpy(&ifr.ifr_space, sa, sa->sa_len);
|
|
if (space >= sz) {
|
|
error = copyout(&ifr, ifrp, sz);
|
|
if (error != 0)
|
|
return (error);
|
|
ifrp++; space -= sz;
|
|
}
|
|
}
|
|
}
|
|
if (docopy) {
|
|
KASSERT(0 <= space && space <= ifc->ifc_len);
|
|
ifc->ifc_len -= space;
|
|
} else {
|
|
KASSERT(space >= 0);
|
|
ifc->ifc_len = space;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
|
|
{
|
|
uint8_t len;
|
|
#ifdef COMPAT_OIFREQ
|
|
struct ifreq ifrb;
|
|
struct oifreq *oifr = NULL;
|
|
u_long ocmd = cmd;
|
|
cmd = compat_cvtcmd(cmd);
|
|
if (cmd != ocmd) {
|
|
oifr = (struct oifreq *)(void *)ifr;
|
|
ifr = &ifrb;
|
|
ifreqo2n(oifr, ifr);
|
|
len = sizeof(oifr->ifr_addr);
|
|
} else
|
|
#endif
|
|
len = sizeof(ifr->ifr_ifru.ifru_space);
|
|
|
|
if (len < sa->sa_len)
|
|
return EFBIG;
|
|
|
|
memset(&ifr->ifr_addr, 0, len);
|
|
sockaddr_copy(&ifr->ifr_addr, len, sa);
|
|
|
|
#ifdef COMPAT_OIFREQ
|
|
if (cmd != ocmd)
|
|
ifreqn2o(oifr, ifr);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Queue message on interface, and start output if interface
|
|
* not yet active.
|
|
*/
|
|
int
|
|
ifq_enqueue(struct ifnet *ifp, struct mbuf *m
|
|
ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
|
|
{
|
|
int len = m->m_pkthdr.len;
|
|
int mflags = m->m_flags;
|
|
int s = splnet();
|
|
int error;
|
|
|
|
IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
|
|
if (error != 0)
|
|
goto out;
|
|
ifp->if_obytes += len;
|
|
if (mflags & M_MCAST)
|
|
ifp->if_omcasts++;
|
|
if ((ifp->if_flags & IFF_OACTIVE) == 0)
|
|
(*ifp->if_start)(ifp);
|
|
out:
|
|
splx(s);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Queue message on interface, possibly using a second fast queue
|
|
*/
|
|
int
|
|
ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
|
|
ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
|
|
{
|
|
int error = 0;
|
|
|
|
if (ifq != NULL
|
|
#ifdef ALTQ
|
|
&& ALTQ_IS_ENABLED(&ifp->if_snd) == 0
|
|
#endif
|
|
) {
|
|
if (IF_QFULL(ifq)) {
|
|
IF_DROP(&ifp->if_snd);
|
|
m_freem(m);
|
|
if (error == 0)
|
|
error = ENOBUFS;
|
|
} else
|
|
IF_ENQUEUE(ifq, m);
|
|
} else
|
|
IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
|
|
if (error != 0) {
|
|
++ifp->if_oerrors;
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
|
|
{
|
|
int rc;
|
|
|
|
if (ifp->if_initaddr != NULL)
|
|
rc = (*ifp->if_initaddr)(ifp, ifa, src);
|
|
else if (src ||
|
|
(rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
|
|
rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
if_do_dad(struct ifnet *ifp)
|
|
{
|
|
if ((ifp->if_flags & IFF_LOOPBACK) != 0)
|
|
return 0;
|
|
|
|
switch (ifp->if_type) {
|
|
case IFT_FAITH:
|
|
/*
|
|
* These interfaces do not have the IFF_LOOPBACK flag,
|
|
* but loop packets back. We do not have to do DAD on such
|
|
* interfaces. We should even omit it, because loop-backed
|
|
* responses would confuse the DAD procedure.
|
|
*/
|
|
return 0;
|
|
default:
|
|
/*
|
|
* Our DAD routine requires the interface up and running.
|
|
* However, some interfaces can be up before the RUNNING
|
|
* status. Additionaly, users may try to assign addresses
|
|
* before the interface becomes up (or running).
|
|
* We simply skip DAD in such a case as a work around.
|
|
* XXX: we should rather mark "tentative" on such addresses,
|
|
* and do DAD after the interface becomes ready.
|
|
*/
|
|
if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
|
|
(IFF_UP|IFF_RUNNING))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int
|
|
if_flags_set(ifnet_t *ifp, const short flags)
|
|
{
|
|
int rc;
|
|
|
|
if (ifp->if_setflags != NULL)
|
|
rc = (*ifp->if_setflags)(ifp, flags);
|
|
else {
|
|
short cantflags, chgdflags;
|
|
struct ifreq ifr;
|
|
|
|
chgdflags = ifp->if_flags ^ flags;
|
|
cantflags = chgdflags & IFF_CANTCHANGE;
|
|
|
|
if (cantflags != 0)
|
|
ifp->if_flags ^= cantflags;
|
|
|
|
/* Traditionally, we do not call if_ioctl after
|
|
* setting/clearing only IFF_PROMISC if the interface
|
|
* isn't IFF_UP. Uphold that tradition.
|
|
*/
|
|
if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
|
|
return 0;
|
|
|
|
memset(&ifr, 0, sizeof(ifr));
|
|
|
|
ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
|
|
rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
|
|
|
|
if (rc != 0 && cantflags != 0)
|
|
ifp->if_flags ^= cantflags;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
|
|
{
|
|
int rc;
|
|
struct ifreq ifr;
|
|
|
|
if (ifp->if_mcastop != NULL)
|
|
rc = (*ifp->if_mcastop)(ifp, cmd, sa);
|
|
else {
|
|
ifreq_setaddr(cmd, &ifr, sa);
|
|
rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
|
|
struct ifaltq *ifq)
|
|
{
|
|
const struct sysctlnode *cnode, *rnode;
|
|
|
|
if (sysctl_createv(clog, 0, NULL, &rnode,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "interfaces",
|
|
SYSCTL_DESCR("Per-interface controls"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_NET, CTL_CREATE, CTL_EOL) != 0)
|
|
goto bad;
|
|
|
|
if (sysctl_createv(clog, 0, &rnode, &rnode,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, ifname,
|
|
SYSCTL_DESCR("Interface controls"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_CREATE, CTL_EOL) != 0)
|
|
goto bad;
|
|
|
|
if (sysctl_createv(clog, 0, &rnode, &rnode,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "sndq",
|
|
SYSCTL_DESCR("Interface output queue controls"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_CREATE, CTL_EOL) != 0)
|
|
goto bad;
|
|
|
|
if (sysctl_createv(clog, 0, &rnode, &cnode,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_INT, "len",
|
|
SYSCTL_DESCR("Current output queue length"),
|
|
NULL, 0, &ifq->ifq_len, 0,
|
|
CTL_CREATE, CTL_EOL) != 0)
|
|
goto bad;
|
|
|
|
if (sysctl_createv(clog, 0, &rnode, &cnode,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "maxlen",
|
|
SYSCTL_DESCR("Maximum allowed output queue length"),
|
|
NULL, 0, &ifq->ifq_maxlen, 0,
|
|
CTL_CREATE, CTL_EOL) != 0)
|
|
goto bad;
|
|
|
|
if (sysctl_createv(clog, 0, &rnode, &cnode,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_INT, "drops",
|
|
SYSCTL_DESCR("Packets dropped due to full output queue"),
|
|
NULL, 0, &ifq->ifq_drops, 0,
|
|
CTL_CREATE, CTL_EOL) != 0)
|
|
goto bad;
|
|
|
|
return;
|
|
bad:
|
|
printf("%s: could not attach sysctl nodes\n", ifname);
|
|
return;
|
|
}
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
|
|
#define SYSCTL_NET_PKTQ(q, cn, c) \
|
|
static int \
|
|
sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
|
|
{ \
|
|
return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
|
|
}
|
|
|
|
#if defined(INET)
|
|
static int
|
|
sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
|
|
{
|
|
return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
|
|
}
|
|
SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
|
|
SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
|
|
#endif
|
|
|
|
#if defined(INET6)
|
|
static int
|
|
sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
|
|
{
|
|
return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
|
|
}
|
|
SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
|
|
SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
|
|
#endif
|
|
|
|
static void
|
|
sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
|
|
{
|
|
sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
|
|
const char *pfname = NULL, *ipname = NULL;
|
|
int ipn = 0, qid = 0;
|
|
|
|
switch (pf) {
|
|
#if defined(INET)
|
|
case PF_INET:
|
|
len_func = sysctl_net_ip_pktq_items;
|
|
maxlen_func = sysctl_net_ip_pktq_maxlen;
|
|
drops_func = sysctl_net_ip_pktq_drops;
|
|
pfname = "inet", ipn = IPPROTO_IP;
|
|
ipname = "ip", qid = IPCTL_IFQ;
|
|
break;
|
|
#endif
|
|
#if defined(INET6)
|
|
case PF_INET6:
|
|
len_func = sysctl_net_ip6_pktq_items;
|
|
maxlen_func = sysctl_net_ip6_pktq_maxlen;
|
|
drops_func = sysctl_net_ip6_pktq_drops;
|
|
pfname = "inet6", ipn = IPPROTO_IPV6;
|
|
ipname = "ip6", qid = IPV6CTL_IFQ;
|
|
break;
|
|
#endif
|
|
default:
|
|
KASSERT(false);
|
|
}
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, pfname, NULL,
|
|
NULL, 0, NULL, 0,
|
|
CTL_NET, pf, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, ipname, NULL,
|
|
NULL, 0, NULL, 0,
|
|
CTL_NET, pf, ipn, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "ifq",
|
|
SYSCTL_DESCR("Protocol input queue controls"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_NET, pf, ipn, qid, CTL_EOL);
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_INT, "len",
|
|
SYSCTL_DESCR("Current input queue length"),
|
|
len_func, 0, NULL, 0,
|
|
CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "maxlen",
|
|
SYSCTL_DESCR("Maximum allowed input queue length"),
|
|
maxlen_func, 0, NULL, 0,
|
|
CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_INT, "drops",
|
|
SYSCTL_DESCR("Packets dropped due to full input queue"),
|
|
drops_func, 0, NULL, 0,
|
|
CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
|
|
}
|
|
#endif /* INET || INET6 */
|
|
|
|
static int
|
|
if_sdl_sysctl(SYSCTLFN_ARGS)
|
|
{
|
|
struct ifnet *ifp;
|
|
const struct sockaddr_dl *sdl;
|
|
|
|
if (namelen != 1)
|
|
return EINVAL;
|
|
|
|
ifp = if_byindex(name[0]);
|
|
if (ifp == NULL)
|
|
return ENODEV;
|
|
|
|
sdl = ifp->if_sadl;
|
|
if (sdl == NULL) {
|
|
*oldlenp = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (oldp == NULL) {
|
|
*oldlenp = sdl->sdl_alen;
|
|
return 0;
|
|
}
|
|
|
|
if (*oldlenp >= sdl->sdl_alen)
|
|
*oldlenp = sdl->sdl_alen;
|
|
return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
|
|
}
|
|
|
|
SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
|
|
{
|
|
const struct sysctlnode *rnode = NULL;
|
|
|
|
sysctl_createv(clog, 0, NULL, &rnode,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "sdl",
|
|
SYSCTL_DESCR("Get active link-layer address"),
|
|
if_sdl_sysctl, 0, NULL, 0,
|
|
CTL_NET, CTL_CREATE, CTL_EOL);
|
|
}
|