NetBSD/sys/arch/powerpc/oea/altivec.c
garbled 9792283735 SMP support for ofppc. (finally) Much thanks to Matt Thomas for help in
figuring out all the crazy nuances of getting this working, and to
Michael Lorenz for testing/fixing my changes on macppc.  Tested with a
quad-proc 7044-270.
Summary of changes:

Bumped CPU_MAXNUM to 16 on ofppc.
Added md_* routines to ofppc/cpu.c, to sync the timebase, and awaken the CPUs.
Fixed a bug in the test for a 64bit bridge cpu early in locore.S
Added code to set the interrupt priority for all CPUs with an openpic.
Change rtas to probe before cpus, to allow use of the rtas freeze/thaw
timebase code routines.
Fix CPU_INFO_FOREACH macro to iterate through detected cpus, not CPU_MAXNUM.
Change most uses of ci_cpuid to ci_index, to deal with CPUs that do not allow
writing to SPR_PIR.  Don't write SPR_PIR unless the secondary cpu identifies
itself as 0.
Change the hatchstack/interrupt stack allocations to allocate a 8192byte
interrupt stack, and a 4096 byte hatch stack, align them to 16 bytes, and
allocate them no lower than 0x10000.  Allocate them separately to prevent the
hatch stack corrupting the interrupt stack later on.
If the CPU is a 64bit cpu, copy SPR_ASR in cpu_hatch()
Set the idle stack to ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_sp.
Add OF_start_cpu().  Add a routine to ofwoea_initppc to spin up secondary
procs early, and place them into a spinloop waiting for the hatch routines
to be ready.
Modify the ipi routines to deal with openpics that reverse byte order on read
from an ipi register. (such as on the 7044)
Change the rtas setup to allocate the rtas physical base address above
the kernel, to avoid mucking up the hatch/interrupt stacks.
2008-04-08 02:33:03 +00:00

407 lines
11 KiB
C

/* $NetBSD: altivec.c,v 1.14 2008/04/08 02:33:03 garbled Exp $ */
/*
* Copyright (C) 1996 Wolfgang Solfrank.
* Copyright (C) 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: altivec.c,v 1.14 2008/04/08 02:33:03 garbled Exp $");
#include "opt_multiprocessor.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/user.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <uvm/uvm_extern.h>
#include <powerpc/altivec.h>
#include <powerpc/spr.h>
#include <powerpc/psl.h>
#ifdef MULTIPROCESSOR
#include <arch/powerpc/pic/picvar.h>
#include <arch/powerpc/pic/ipivar.h>
static void mp_save_vec_lwp(struct lwp *);
#endif
void
enable_vec(void)
{
struct cpu_info *ci = curcpu();
struct lwp *l = curlwp;
struct pcb *pcb = &l->l_addr->u_pcb;
struct trapframe *tf = trapframe(l);
struct vreg *vr = &pcb->pcb_vr;
register_t msr;
KASSERT(pcb->pcb_veccpu == NULL);
pcb->pcb_flags |= PCB_ALTIVEC;
/*
* Enable AltiVec temporarily (and disable interrupts).
*/
msr = mfmsr();
mtmsr((msr & ~PSL_EE) | PSL_VEC);
__asm volatile ("isync");
if (ci->ci_veclwp) {
save_vec_cpu();
}
KASSERT(curcpu()->ci_veclwp == NULL);
/*
* Restore VSCR by first loading it into a vector and then into VSCR.
* (this needs to done before loading the user's vector registers
* since we need to use a scratch vector register)
*/
__asm volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
:: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
/*
* VRSAVE will be restored when trap frame returns
*/
tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
#define LVX(n,vr) __asm /*volatile*/("lvx %2,%0,%1" \
:: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
/*
* Load all 32 vector registers
*/
LVX( 0,vr); LVX( 1,vr); LVX( 2,vr); LVX( 3,vr);
LVX( 4,vr); LVX( 5,vr); LVX( 6,vr); LVX( 7,vr);
LVX( 8,vr); LVX( 9,vr); LVX(10,vr); LVX(11,vr);
LVX(12,vr); LVX(13,vr); LVX(14,vr); LVX(15,vr);
LVX(16,vr); LVX(17,vr); LVX(18,vr); LVX(19,vr);
LVX(20,vr); LVX(21,vr); LVX(22,vr); LVX(23,vr);
LVX(24,vr); LVX(25,vr); LVX(26,vr); LVX(27,vr);
LVX(28,vr); LVX(29,vr); LVX(30,vr); LVX(31,vr);
__asm volatile ("isync");
/*
* Enable AltiVec when we return to user-mode.
* Record the new ownership of the AltiVec unit.
*/
curcpu()->ci_veclwp = l;
pcb->pcb_veccpu = curcpu();
pcb->pcb_flags |= PCB_OWNALTIVEC;
__asm volatile ("sync");
/*
* Restore MSR (turn off AltiVec)
*/
mtmsr(msr);
}
void
save_vec_cpu(void)
{
struct cpu_info *ci = curcpu();
struct lwp *l;
struct pcb *pcb;
struct vreg *vr;
struct trapframe *tf;
register_t msr;
/*
* Turn on AltiVEC, turn off interrupts.
*/
msr = mfmsr();
mtmsr((msr & ~PSL_EE) | PSL_VEC);
__asm volatile ("isync");
l = ci->ci_veclwp;
if (l == NULL)
goto out;
pcb = &l->l_addr->u_pcb;
vr = &pcb->pcb_vr;
tf = trapframe(l);
#define STVX(n,vr) __asm /*volatile*/("stvx %2,%0,%1" \
:: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
/*
* Save the vector registers.
*/
STVX( 0,vr); STVX( 1,vr); STVX( 2,vr); STVX( 3,vr);
STVX( 4,vr); STVX( 5,vr); STVX( 6,vr); STVX( 7,vr);
STVX( 8,vr); STVX( 9,vr); STVX(10,vr); STVX(11,vr);
STVX(12,vr); STVX(13,vr); STVX(14,vr); STVX(15,vr);
STVX(16,vr); STVX(17,vr); STVX(18,vr); STVX(19,vr);
STVX(20,vr); STVX(21,vr); STVX(22,vr); STVX(23,vr);
STVX(24,vr); STVX(25,vr); STVX(26,vr); STVX(27,vr);
STVX(28,vr); STVX(29,vr); STVX(30,vr); STVX(31,vr);
/*
* Save VSCR (this needs to be done after save the vector registers
* since we need to use one as scratch).
*/
__asm volatile("mfvscr %2; stvewx %2,%0,%1" \
:: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
/*
* Save VRSAVE
*/
vr->vrsave = tf->tf_xtra[TF_VRSAVE];
/*
* Note that we aren't using any CPU resources and stop any
* data streams.
*/
pcb->pcb_veccpu = NULL;
ci->ci_veclwp = NULL;
__asm volatile ("dssall; sync");
out:
/*
* Restore MSR (turn off AltiVec)
*/
mtmsr(msr);
}
#ifdef MULTIPROCESSOR
/*
* Save a process's AltiVEC state to its PCB. The state may be in any CPU.
* The process must either be curproc or traced by curproc (and stopped).
* (The point being that the process must not run on another CPU during
* this function).
*/
static void
mp_save_vec_lwp(struct lwp *l)
{
struct pcb *pcb = &l->l_addr->u_pcb;
struct cpu_info *veccpu;
int i;
/*
* Send an IPI to the other CPU with the data and wait for that CPU
* to flush the data. Note that the other CPU might have switched
* to a different proc's AltiVEC state by the time it receives the IPI,
* but that will only result in an unnecessary reload.
*/
veccpu = pcb->pcb_veccpu;
if (veccpu == NULL)
return;
ppc_send_ipi(veccpu->ci_index, PPC_IPI_FLUSH_VEC);
/* Wait for flush. */
for (i = 0; i < 0x3fffffff; i++)
if (pcb->pcb_veccpu == NULL)
return;
aprint_error("mp_save_vec_lwp{%d} pid = %d.%d, veccpu->ci_cpuid = %d\n",
cpu_number(), l->l_proc->p_pid, l->l_lid, veccpu->ci_cpuid);
panic("mp_save_vec_lwp: timed out");
}
#endif /*MULTIPROCESSOR*/
/*
* Save a process's AltiVEC state to its PCB. The state may be in any CPU.
* The process must either be curproc or traced by curproc (and stopped).
* (The point being that the process must not run on another CPU during
* this function).
*/
void
save_vec_lwp(struct lwp *l, int discard)
{
struct pcb * const pcb = &l->l_addr->u_pcb;
struct cpu_info * const ci = curcpu();
/*
* If it's already in the PCB, there's nothing to do.
*/
if (pcb->pcb_veccpu == NULL)
return;
/*
* If we simply need to discard the information, then don't
* to save anything.
*/
if (discard) {
#ifndef MULTIPROCESSOR
KASSERT(ci == pcb->pcb_veccpu);
#endif
KASSERT(l == pcb->pcb_veccpu->ci_veclwp);
pcb->pcb_veccpu->ci_veclwp = NULL;
pcb->pcb_veccpu = NULL;
pcb->pcb_flags &= ~PCB_OWNALTIVEC;
return;
}
/*
* If the state is in the current CPU, just flush the current CPU's
* state.
*/
if (l == ci->ci_veclwp) {
save_vec_cpu();
return;
}
#ifdef MULTIPROCESSOR
/*
* It must be on another CPU, flush it from there.
*/
mp_save_vec_lwp(l);
#endif
}
#define ZERO_VEC 19
void
vzeropage(paddr_t pa)
{
const paddr_t ea = pa + PAGE_SIZE;
uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
register_t omsr, msr;
__asm volatile("mfmsr %0" : "=r"(omsr) :);
/*
* Turn on AltiVec, turn off interrupts.
*/
msr = (omsr & ~PSL_EE) | PSL_VEC;
__asm volatile("sync; mtmsr %0; isync" :: "r"(msr));
/*
* Save the VEC register we are going to use before we disable
* relocation.
*/
__asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
__asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
/*
* Zero the page using a single cache line.
*/
__asm volatile(
" sync ;"
" mfmsr %[msr];"
" rlwinm %[msr],%[msr],0,28,26;" /* Clear PSL_DR */
" mtmsr %[msr];" /* Turn off DMMU */
" isync;"
"1: stvx %[zv], %[pa], %[off0];"
" stvxl %[zv], %[pa], %[off16];"
" stvx %[zv], %[pa], %[off32];"
" stvxl %[zv], %[pa], %[off48];"
" addi %[pa], %[pa], 64;"
" cmplw %[pa], %[ea];"
" blt+ 1b;"
" ori %[msr], %[msr], 0x10;" /* Set PSL_DR */
" sync;"
" mtmsr %[msr];" /* Turn on DMMU */
" isync;"
:: [msr] "r"(msr), [pa] "b"(pa), [ea] "b"(ea),
[off0] "r"(0), [off16] "r"(16), [off32] "r"(32), [off48] "r"(48),
[zv] "n"(ZERO_VEC));
/*
* Restore VEC register (now that we can access the stack again).
*/
__asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
/*
* Restore old MSR (AltiVec OFF).
*/
__asm volatile("sync; mtmsr %0; isync" :: "r"(omsr));
}
#define LO_VEC 16
#define HI_VEC 17
void
vcopypage(paddr_t dst, paddr_t src)
{
const paddr_t edst = dst + PAGE_SIZE;
uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
register_t omsr, msr;
__asm volatile("mfmsr %0" : "=r"(omsr) :);
/*
* Turn on AltiVec, turn off interrupts.
*/
msr = (omsr & ~PSL_EE) | PSL_VEC;
__asm volatile("sync; mtmsr %0; isync" :: "r"(msr));
/*
* Save the VEC registers we will be using before we disable
* relocation.
*/
__asm("stvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
__asm("stvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
/*
* Copy the page using a single cache line, with DMMU
* disabled. On most PPCs, two vector registers occupy one
* cache line.
*/
__asm volatile(
" sync ;"
" mfmsr %[msr];"
" rlwinm %[msr],%[msr],0,28,26;" /* Clear PSL_DR */
" mtmsr %[msr];" /* Turn off DMMU */
" isync;"
"1: lvx %[lv], %[src], %[off0];"
" stvx %[lv], %[dst], %[off0];"
" lvxl %[hv], %[src], %[off16];"
" stvxl %[hv], %[dst], %[off16];"
" addi %[src], %[src], 32;"
" addi %[dst], %[dst], 32;"
" cmplw %[dst], %[edst];"
" blt+ 1b;"
" ori %[msr], %[msr], 0x10;" /* Set PSL_DR */
" sync;"
" mtmsr %[msr];" /* Turn on DMMU */
" isync;"
:: [msr] "r"(msr), [src] "b"(src), [dst] "b"(dst),
[edst] "b"(edst), [off0] "r"(0), [off16] "r"(16),
[lv] "n"(LO_VEC), [hv] "n"(HI_VEC));
/*
* Restore VEC registers (now that we can access the stack again).
*/
__asm("lvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
__asm("lvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
/*
* Restore old MSR (AltiVec OFF).
*/
__asm volatile("sync; mtmsr %0; isync" :: "r"(omsr));
}