NetBSD/sys/kern/kern_subr.c

1446 lines
33 KiB
C

/* $NetBSD: kern_subr.c,v 1.158 2007/06/03 07:47:50 dsl Exp $ */
/*-
* Copyright (c) 1997, 1998, 1999, 2002 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, and by Luke Mewburn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_subr.c 8.4 (Berkeley) 2/14/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_subr.c,v 1.158 2007/06/03 07:47:50 dsl Exp $");
#include "opt_ddb.h"
#include "opt_md.h"
#include "opt_syscall_debug.h"
#include "opt_ktrace.h"
#include "opt_ptrace.h"
#include "opt_systrace.h"
#include "opt_powerhook.h"
#include "opt_tftproot.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/device.h>
#include <sys/reboot.h>
#include <sys/conf.h>
#include <sys/disklabel.h>
#include <sys/queue.h>
#include <sys/systrace.h>
#include <sys/ktrace.h>
#include <sys/ptrace.h>
#include <sys/fcntl.h>
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <net/if.h>
/* XXX these should eventually move to subr_autoconf.c */
static struct device *finddevice(const char *);
static struct device *getdisk(char *, int, int, dev_t *, int);
static struct device *parsedisk(char *, int, int, dev_t *);
/*
* A generic linear hook.
*/
struct hook_desc {
LIST_ENTRY(hook_desc) hk_list;
void (*hk_fn)(void *);
void *hk_arg;
};
typedef LIST_HEAD(, hook_desc) hook_list_t;
MALLOC_DEFINE(M_IOV, "iov", "large iov's");
#ifdef TFTPROOT
int tftproot_dhcpboot(struct device *);
#endif
void
uio_setup_sysspace(struct uio *uio)
{
uio->uio_vmspace = vmspace_kernel();
}
int
uiomove(void *buf, size_t n, struct uio *uio)
{
struct vmspace *vm = uio->uio_vmspace;
struct iovec *iov;
u_int cnt;
int error = 0;
char *cp = buf;
#ifdef MULTIPROCESSOR
int hold_count;
#endif
KERNEL_UNLOCK_ALL(NULL, &hold_count);
ASSERT_SLEEPABLE(NULL, "uiomove");
#ifdef DIAGNOSTIC
if (uio->uio_rw != UIO_READ && uio->uio_rw != UIO_WRITE)
panic("uiomove: mode");
#endif
while (n > 0 && uio->uio_resid) {
iov = uio->uio_iov;
cnt = iov->iov_len;
if (cnt == 0) {
KASSERT(uio->uio_iovcnt > 0);
uio->uio_iov++;
uio->uio_iovcnt--;
continue;
}
if (cnt > n)
cnt = n;
if (!VMSPACE_IS_KERNEL_P(vm)) {
if (curcpu()->ci_schedstate.spc_flags &
SPCF_SHOULDYIELD)
preempt();
}
if (uio->uio_rw == UIO_READ) {
error = copyout_vmspace(vm, cp, iov->iov_base,
cnt);
} else {
error = copyin_vmspace(vm, iov->iov_base, cp,
cnt);
}
if (error) {
break;
}
iov->iov_base = (char *)iov->iov_base + cnt;
iov->iov_len -= cnt;
uio->uio_resid -= cnt;
uio->uio_offset += cnt;
cp += cnt;
KDASSERT(cnt <= n);
n -= cnt;
}
KERNEL_LOCK(hold_count, NULL);
return (error);
}
/*
* Wrapper for uiomove() that validates the arguments against a known-good
* kernel buffer.
*/
int
uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
{
size_t offset;
if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
(offset = uio->uio_offset) != uio->uio_offset)
return (EINVAL);
if (offset >= buflen)
return (0);
return (uiomove((char *)buf + offset, buflen - offset, uio));
}
/*
* Give next character to user as result of read.
*/
int
ureadc(int c, struct uio *uio)
{
struct iovec *iov;
if (uio->uio_resid <= 0)
panic("ureadc: non-positive resid");
again:
if (uio->uio_iovcnt <= 0)
panic("ureadc: non-positive iovcnt");
iov = uio->uio_iov;
if (iov->iov_len <= 0) {
uio->uio_iovcnt--;
uio->uio_iov++;
goto again;
}
if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
if (subyte(iov->iov_base, c) < 0)
return (EFAULT);
} else {
*(char *)iov->iov_base = c;
}
iov->iov_base = (char *)iov->iov_base + 1;
iov->iov_len--;
uio->uio_resid--;
uio->uio_offset++;
return (0);
}
/*
* Like copyin(), but operates on an arbitrary vmspace.
*/
int
copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
{
struct iovec iov;
struct uio uio;
int error;
if (len == 0)
return (0);
if (VMSPACE_IS_KERNEL_P(vm)) {
return kcopy(uaddr, kaddr, len);
}
if (__predict_true(vm == curproc->p_vmspace)) {
return copyin(uaddr, kaddr, len);
}
iov.iov_base = kaddr;
iov.iov_len = len;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_offset = (off_t)(intptr_t)uaddr;
uio.uio_resid = len;
uio.uio_rw = UIO_READ;
UIO_SETUP_SYSSPACE(&uio);
error = uvm_io(&vm->vm_map, &uio);
return (error);
}
/*
* Like copyout(), but operates on an arbitrary vmspace.
*/
int
copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
{
struct iovec iov;
struct uio uio;
int error;
if (len == 0)
return (0);
if (VMSPACE_IS_KERNEL_P(vm)) {
return kcopy(kaddr, uaddr, len);
}
if (__predict_true(vm == curproc->p_vmspace)) {
return copyout(kaddr, uaddr, len);
}
iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
iov.iov_len = len;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_offset = (off_t)(intptr_t)uaddr;
uio.uio_resid = len;
uio.uio_rw = UIO_WRITE;
UIO_SETUP_SYSSPACE(&uio);
error = uvm_io(&vm->vm_map, &uio);
return (error);
}
/*
* Like copyin(), but operates on an arbitrary process.
*/
int
copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
{
struct vmspace *vm;
int error;
error = proc_vmspace_getref(p, &vm);
if (error) {
return error;
}
error = copyin_vmspace(vm, uaddr, kaddr, len);
uvmspace_free(vm);
return error;
}
/*
* Like copyout(), but operates on an arbitrary process.
*/
int
copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
{
struct vmspace *vm;
int error;
error = proc_vmspace_getref(p, &vm);
if (error) {
return error;
}
error = copyout_vmspace(vm, kaddr, uaddr, len);
uvmspace_free(vm);
return error;
}
/*
* Like copyin(), except it operates on kernel addresses when the FKIOCTL
* flag is passed in `ioctlflags' from the ioctl call.
*/
int
ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
{
if (ioctlflags & FKIOCTL)
return kcopy(src, dst, len);
return copyin(src, dst, len);
}
/*
* Like copyout(), except it operates on kernel addresses when the FKIOCTL
* flag is passed in `ioctlflags' from the ioctl call.
*/
int
ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
{
if (ioctlflags & FKIOCTL)
return kcopy(src, dst, len);
return copyout(src, dst, len);
}
/*
* General routine to allocate a hash table.
* Allocate enough memory to hold at least `elements' list-head pointers.
* Return a pointer to the allocated space and set *hashmask to a pattern
* suitable for masking a value to use as an index into the returned array.
*/
void *
hashinit(u_int elements, enum hashtype htype, struct malloc_type *mtype,
int mflags, u_long *hashmask)
{
u_long hashsize, i;
LIST_HEAD(, generic) *hashtbl_list;
TAILQ_HEAD(, generic) *hashtbl_tailq;
size_t esize;
void *p;
if (elements == 0)
panic("hashinit: bad cnt");
for (hashsize = 1; hashsize < elements; hashsize <<= 1)
continue;
switch (htype) {
case HASH_LIST:
esize = sizeof(*hashtbl_list);
break;
case HASH_TAILQ:
esize = sizeof(*hashtbl_tailq);
break;
default:
#ifdef DIAGNOSTIC
panic("hashinit: invalid table type");
#else
return NULL;
#endif
}
if ((p = malloc(hashsize * esize, mtype, mflags)) == NULL)
return (NULL);
switch (htype) {
case HASH_LIST:
hashtbl_list = p;
for (i = 0; i < hashsize; i++)
LIST_INIT(&hashtbl_list[i]);
break;
case HASH_TAILQ:
hashtbl_tailq = p;
for (i = 0; i < hashsize; i++)
TAILQ_INIT(&hashtbl_tailq[i]);
break;
}
*hashmask = hashsize - 1;
return (p);
}
/*
* Free memory from hash table previosly allocated via hashinit().
*/
void
hashdone(void *hashtbl, struct malloc_type *mtype)
{
free(hashtbl, mtype);
}
static void *
hook_establish(hook_list_t *list, void (*fn)(void *), void *arg)
{
struct hook_desc *hd;
hd = malloc(sizeof(*hd), M_DEVBUF, M_NOWAIT);
if (hd == NULL)
return (NULL);
hd->hk_fn = fn;
hd->hk_arg = arg;
LIST_INSERT_HEAD(list, hd, hk_list);
return (hd);
}
static void
hook_disestablish(hook_list_t *list, void *vhook)
{
#ifdef DIAGNOSTIC
struct hook_desc *hd;
LIST_FOREACH(hd, list, hk_list) {
if (hd == vhook)
break;
}
if (hd == NULL)
panic("hook_disestablish: hook %p not established", vhook);
#endif
LIST_REMOVE((struct hook_desc *)vhook, hk_list);
free(vhook, M_DEVBUF);
}
static void
hook_destroy(hook_list_t *list)
{
struct hook_desc *hd;
while ((hd = LIST_FIRST(list)) != NULL) {
LIST_REMOVE(hd, hk_list);
free(hd, M_DEVBUF);
}
}
static void
hook_proc_run(hook_list_t *list, struct proc *p)
{
struct hook_desc *hd;
for (hd = LIST_FIRST(list); hd != NULL; hd = LIST_NEXT(hd, hk_list)) {
((void (*)(struct proc *, void *))*hd->hk_fn)(p,
hd->hk_arg);
}
}
/*
* "Shutdown hook" types, functions, and variables.
*
* Should be invoked immediately before the
* system is halted or rebooted, i.e. after file systems unmounted,
* after crash dump done, etc.
*
* Each shutdown hook is removed from the list before it's run, so that
* it won't be run again.
*/
static hook_list_t shutdownhook_list;
void *
shutdownhook_establish(void (*fn)(void *), void *arg)
{
return hook_establish(&shutdownhook_list, fn, arg);
}
void
shutdownhook_disestablish(void *vhook)
{
hook_disestablish(&shutdownhook_list, vhook);
}
/*
* Run shutdown hooks. Should be invoked immediately before the
* system is halted or rebooted, i.e. after file systems unmounted,
* after crash dump done, etc.
*
* Each shutdown hook is removed from the list before it's run, so that
* it won't be run again.
*/
void
doshutdownhooks(void)
{
struct hook_desc *dp;
while ((dp = LIST_FIRST(&shutdownhook_list)) != NULL) {
LIST_REMOVE(dp, hk_list);
(*dp->hk_fn)(dp->hk_arg);
#if 0
/*
* Don't bother freeing the hook structure,, since we may
* be rebooting because of a memory corruption problem,
* and this might only make things worse. It doesn't
* matter, anyway, since the system is just about to
* reboot.
*/
free(dp, M_DEVBUF);
#endif
}
}
/*
* "Mountroot hook" types, functions, and variables.
*/
static hook_list_t mountroothook_list;
void *
mountroothook_establish(void (*fn)(struct device *), struct device *dev)
{
return hook_establish(&mountroothook_list, (void (*)(void *))fn, dev);
}
void
mountroothook_disestablish(void *vhook)
{
hook_disestablish(&mountroothook_list, vhook);
}
void
mountroothook_destroy(void)
{
hook_destroy(&mountroothook_list);
}
void
domountroothook(void)
{
struct hook_desc *hd;
LIST_FOREACH(hd, &mountroothook_list, hk_list) {
if (hd->hk_arg == (void *)root_device) {
(*hd->hk_fn)(hd->hk_arg);
return;
}
}
}
static hook_list_t exechook_list;
void *
exechook_establish(void (*fn)(struct proc *, void *), void *arg)
{
return hook_establish(&exechook_list, (void (*)(void *))fn, arg);
}
void
exechook_disestablish(void *vhook)
{
hook_disestablish(&exechook_list, vhook);
}
/*
* Run exec hooks.
*/
void
doexechooks(struct proc *p)
{
hook_proc_run(&exechook_list, p);
}
static hook_list_t exithook_list;
void *
exithook_establish(void (*fn)(struct proc *, void *), void *arg)
{
return hook_establish(&exithook_list, (void (*)(void *))fn, arg);
}
void
exithook_disestablish(void *vhook)
{
hook_disestablish(&exithook_list, vhook);
}
/*
* Run exit hooks.
*/
void
doexithooks(struct proc *p)
{
hook_proc_run(&exithook_list, p);
}
static hook_list_t forkhook_list;
void *
forkhook_establish(void (*fn)(struct proc *, struct proc *))
{
return hook_establish(&forkhook_list, (void (*)(void *))fn, NULL);
}
void
forkhook_disestablish(void *vhook)
{
hook_disestablish(&forkhook_list, vhook);
}
/*
* Run fork hooks.
*/
void
doforkhooks(struct proc *p2, struct proc *p1)
{
struct hook_desc *hd;
LIST_FOREACH(hd, &forkhook_list, hk_list) {
((void (*)(struct proc *, struct proc *))*hd->hk_fn)
(p2, p1);
}
}
/*
* "Power hook" types, functions, and variables.
* The list of power hooks is kept ordered with the last registered hook
* first.
* When running the hooks on power down the hooks are called in reverse
* registration order, when powering up in registration order.
*/
struct powerhook_desc {
CIRCLEQ_ENTRY(powerhook_desc) sfd_list;
void (*sfd_fn)(int, void *);
void *sfd_arg;
char sfd_name[16];
};
static CIRCLEQ_HEAD(, powerhook_desc) powerhook_list =
CIRCLEQ_HEAD_INITIALIZER(powerhook_list);
void *
powerhook_establish(const char *name, void (*fn)(int, void *), void *arg)
{
struct powerhook_desc *ndp;
ndp = (struct powerhook_desc *)
malloc(sizeof(*ndp), M_DEVBUF, M_NOWAIT);
if (ndp == NULL)
return (NULL);
ndp->sfd_fn = fn;
ndp->sfd_arg = arg;
strlcpy(ndp->sfd_name, name, sizeof(ndp->sfd_name));
CIRCLEQ_INSERT_HEAD(&powerhook_list, ndp, sfd_list);
return (ndp);
}
void
powerhook_disestablish(void *vhook)
{
#ifdef DIAGNOSTIC
struct powerhook_desc *dp;
CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list)
if (dp == vhook)
goto found;
panic("powerhook_disestablish: hook %p not established", vhook);
found:
#endif
CIRCLEQ_REMOVE(&powerhook_list, (struct powerhook_desc *)vhook,
sfd_list);
free(vhook, M_DEVBUF);
}
/*
* Run power hooks.
*/
void
dopowerhooks(int why)
{
struct powerhook_desc *dp;
#ifdef POWERHOOK_DEBUG
printf("dopowerhooks ");
switch (why) {
case PWR_RESUME:
printf("resume");
break;
case PWR_SOFTRESUME:
printf("softresume");
break;
case PWR_SUSPEND:
printf("suspend");
break;
case PWR_SOFTSUSPEND:
printf("softsuspend");
break;
case PWR_STANDBY:
printf("standby");
break;
}
printf(":");
#endif
if (why == PWR_RESUME || why == PWR_SOFTRESUME) {
CIRCLEQ_FOREACH_REVERSE(dp, &powerhook_list, sfd_list) {
#ifdef POWERHOOK_DEBUG
printf(" %s", dp->sfd_name);
#endif
(*dp->sfd_fn)(why, dp->sfd_arg);
}
} else {
CIRCLEQ_FOREACH(dp, &powerhook_list, sfd_list) {
#ifdef POWERHOOK_DEBUG
printf(" %s", dp->sfd_name);
#endif
(*dp->sfd_fn)(why, dp->sfd_arg);
}
}
#ifdef POWERHOOK_DEBUG
printf(".\n");
#endif
}
/*
* Determine the root device and, if instructed to, the root file system.
*/
#include "md.h"
#if NMD == 0
#undef MEMORY_DISK_HOOKS
#endif
#ifdef MEMORY_DISK_HOOKS
static struct device fakemdrootdev[NMD];
extern struct cfdriver md_cd;
#endif
#ifdef MEMORY_DISK_IS_ROOT
#define BOOT_FROM_MEMORY_HOOKS 1
#endif
/*
* The device and wedge that we booted from. If booted_wedge is NULL,
* the we might consult booted_partition.
*/
struct device *booted_device;
struct device *booted_wedge;
int booted_partition;
/*
* Use partition letters if it's a disk class but not a wedge.
* XXX Check for wedge is kinda gross.
*/
#define DEV_USES_PARTITIONS(dv) \
(device_class((dv)) == DV_DISK && \
!device_is_a((dv), "dk"))
void
setroot(struct device *bootdv, int bootpartition)
{
struct device *dv;
int len;
#ifdef MEMORY_DISK_HOOKS
int i;
#endif
dev_t nrootdev;
dev_t ndumpdev = NODEV;
char buf[128];
const char *rootdevname;
const char *dumpdevname;
struct device *rootdv = NULL; /* XXX gcc -Wuninitialized */
struct device *dumpdv = NULL;
struct ifnet *ifp;
const char *deffsname;
struct vfsops *vops;
#ifdef TFTPROOT
if (tftproot_dhcpboot(bootdv) != 0)
boothowto |= RB_ASKNAME;
#endif
#ifdef MEMORY_DISK_HOOKS
for (i = 0; i < NMD; i++) {
fakemdrootdev[i].dv_class = DV_DISK;
fakemdrootdev[i].dv_cfdata = NULL;
fakemdrootdev[i].dv_cfdriver = &md_cd;
fakemdrootdev[i].dv_unit = i;
fakemdrootdev[i].dv_parent = NULL;
snprintf(fakemdrootdev[i].dv_xname,
sizeof(fakemdrootdev[i].dv_xname), "md%d", i);
}
#endif /* MEMORY_DISK_HOOKS */
#ifdef MEMORY_DISK_IS_ROOT
bootdv = &fakemdrootdev[0];
bootpartition = 0;
#endif
/*
* If NFS is specified as the file system, and we found
* a DV_DISK boot device (or no boot device at all), then
* find a reasonable network interface for "rootspec".
*/
vops = vfs_getopsbyname("nfs");
if (vops != NULL && vops->vfs_mountroot == mountroot &&
rootspec == NULL &&
(bootdv == NULL || device_class(bootdv) != DV_IFNET)) {
IFNET_FOREACH(ifp) {
if ((ifp->if_flags &
(IFF_LOOPBACK|IFF_POINTOPOINT)) == 0)
break;
}
if (ifp == NULL) {
/*
* Can't find a suitable interface; ask the
* user.
*/
boothowto |= RB_ASKNAME;
} else {
/*
* Have a suitable interface; behave as if
* the user specified this interface.
*/
rootspec = (const char *)ifp->if_xname;
}
}
/*
* If wildcarded root and we the boot device wasn't determined,
* ask the user.
*/
if (rootspec == NULL && bootdv == NULL)
boothowto |= RB_ASKNAME;
top:
if (boothowto & RB_ASKNAME) {
struct device *defdumpdv;
for (;;) {
printf("root device");
if (bootdv != NULL) {
printf(" (default %s", bootdv->dv_xname);
if (DEV_USES_PARTITIONS(bootdv))
printf("%c", bootpartition + 'a');
printf(")");
}
printf(": ");
len = cngetsn(buf, sizeof(buf));
if (len == 0 && bootdv != NULL) {
strlcpy(buf, bootdv->dv_xname, sizeof(buf));
len = strlen(buf);
}
if (len > 0 && buf[len - 1] == '*') {
buf[--len] = '\0';
dv = getdisk(buf, len, 1, &nrootdev, 0);
if (dv != NULL) {
rootdv = dv;
break;
}
}
dv = getdisk(buf, len, bootpartition, &nrootdev, 0);
if (dv != NULL) {
rootdv = dv;
break;
}
}
/*
* Set up the default dump device. If root is on
* a network device, there is no default dump
* device, since we don't support dumps to the
* network.
*/
if (DEV_USES_PARTITIONS(rootdv) == 0)
defdumpdv = NULL;
else
defdumpdv = rootdv;
for (;;) {
printf("dump device");
if (defdumpdv != NULL) {
/*
* Note, we know it's a disk if we get here.
*/
printf(" (default %sb)", defdumpdv->dv_xname);
}
printf(": ");
len = cngetsn(buf, sizeof(buf));
if (len == 0) {
if (defdumpdv != NULL) {
ndumpdev = MAKEDISKDEV(major(nrootdev),
DISKUNIT(nrootdev), 1);
}
dumpdv = defdumpdv;
break;
}
if (len == 4 && strcmp(buf, "none") == 0) {
dumpdv = NULL;
break;
}
dv = getdisk(buf, len, 1, &ndumpdev, 1);
if (dv != NULL) {
dumpdv = dv;
break;
}
}
rootdev = nrootdev;
dumpdev = ndumpdev;
for (vops = LIST_FIRST(&vfs_list); vops != NULL;
vops = LIST_NEXT(vops, vfs_list)) {
if (vops->vfs_mountroot != NULL &&
vops->vfs_mountroot == mountroot)
break;
}
if (vops == NULL) {
mountroot = NULL;
deffsname = "generic";
} else
deffsname = vops->vfs_name;
for (;;) {
printf("file system (default %s): ", deffsname);
len = cngetsn(buf, sizeof(buf));
if (len == 0)
break;
if (len == 4 && strcmp(buf, "halt") == 0)
cpu_reboot(RB_HALT, NULL);
else if (len == 6 && strcmp(buf, "reboot") == 0)
cpu_reboot(0, NULL);
#if defined(DDB)
else if (len == 3 && strcmp(buf, "ddb") == 0) {
console_debugger();
}
#endif
else if (len == 7 && strcmp(buf, "generic") == 0) {
mountroot = NULL;
break;
}
vops = vfs_getopsbyname(buf);
if (vops == NULL || vops->vfs_mountroot == NULL) {
printf("use one of: generic");
for (vops = LIST_FIRST(&vfs_list);
vops != NULL;
vops = LIST_NEXT(vops, vfs_list)) {
if (vops->vfs_mountroot != NULL)
printf(" %s", vops->vfs_name);
}
#if defined(DDB)
printf(" ddb");
#endif
printf(" halt reboot\n");
} else {
mountroot = vops->vfs_mountroot;
break;
}
}
} else if (rootspec == NULL) {
int majdev;
/*
* Wildcarded root; use the boot device.
*/
rootdv = bootdv;
majdev = devsw_name2blk(bootdv->dv_xname, NULL, 0);
if (majdev >= 0) {
/*
* Root is on a disk. `bootpartition' is root,
* unless the device does not use partitions.
*/
if (DEV_USES_PARTITIONS(bootdv))
rootdev = MAKEDISKDEV(majdev,
device_unit(bootdv),
bootpartition);
else
rootdev = makedev(majdev, device_unit(bootdv));
}
} else {
/*
* `root on <dev> ...'
*/
/*
* If it's a network interface, we can bail out
* early.
*/
dv = finddevice(rootspec);
if (dv != NULL && device_class(dv) == DV_IFNET) {
rootdv = dv;
goto haveroot;
}
rootdevname = devsw_blk2name(major(rootdev));
if (rootdevname == NULL) {
printf("unknown device major 0x%x\n", rootdev);
boothowto |= RB_ASKNAME;
goto top;
}
memset(buf, 0, sizeof(buf));
snprintf(buf, sizeof(buf), "%s%d", rootdevname,
DISKUNIT(rootdev));
rootdv = finddevice(buf);
if (rootdv == NULL) {
printf("device %s (0x%x) not configured\n",
buf, rootdev);
boothowto |= RB_ASKNAME;
goto top;
}
}
haveroot:
root_device = rootdv;
switch (device_class(rootdv)) {
case DV_IFNET:
case DV_DISK:
aprint_normal("root on %s", rootdv->dv_xname);
if (DEV_USES_PARTITIONS(rootdv))
aprint_normal("%c", DISKPART(rootdev) + 'a');
break;
default:
printf("can't determine root device\n");
boothowto |= RB_ASKNAME;
goto top;
}
/*
* Now configure the dump device.
*
* If we haven't figured out the dump device, do so, with
* the following rules:
*
* (a) We already know dumpdv in the RB_ASKNAME case.
*
* (b) If dumpspec is set, try to use it. If the device
* is not available, punt.
*
* (c) If dumpspec is not set, the dump device is
* wildcarded or unspecified. If the root device
* is DV_IFNET, punt. Otherwise, use partition b
* of the root device.
*/
if (boothowto & RB_ASKNAME) { /* (a) */
if (dumpdv == NULL)
goto nodumpdev;
} else if (dumpspec != NULL) { /* (b) */
if (strcmp(dumpspec, "none") == 0 || dumpdev == NODEV) {
/*
* Operator doesn't want a dump device.
* Or looks like they tried to pick a network
* device. Oops.
*/
goto nodumpdev;
}
dumpdevname = devsw_blk2name(major(dumpdev));
if (dumpdevname == NULL)
goto nodumpdev;
memset(buf, 0, sizeof(buf));
snprintf(buf, sizeof(buf), "%s%d", dumpdevname,
DISKUNIT(dumpdev));
dumpdv = finddevice(buf);
if (dumpdv == NULL) {
/*
* Device not configured.
*/
goto nodumpdev;
}
} else { /* (c) */
if (DEV_USES_PARTITIONS(rootdv) == 0)
goto nodumpdev;
else {
dumpdv = rootdv;
dumpdev = MAKEDISKDEV(major(rootdev),
device_unit(dumpdv), 1);
}
}
aprint_normal(" dumps on %s", dumpdv->dv_xname);
if (DEV_USES_PARTITIONS(dumpdv))
aprint_normal("%c", DISKPART(dumpdev) + 'a');
aprint_normal("\n");
return;
nodumpdev:
dumpdev = NODEV;
aprint_normal("\n");
}
static struct device *
finddevice(const char *name)
{
struct device *dv;
#if defined(BOOT_FROM_MEMORY_HOOKS)
int j;
#endif /* BOOT_FROM_MEMORY_HOOKS */
#ifdef BOOT_FROM_MEMORY_HOOKS
for (j = 0; j < NMD; j++) {
if (strcmp(name, fakemdrootdev[j].dv_xname) == 0) {
dv = &fakemdrootdev[j];
return (dv);
}
}
#endif /* BOOT_FROM_MEMORY_HOOKS */
for (dv = TAILQ_FIRST(&alldevs); dv != NULL;
dv = TAILQ_NEXT(dv, dv_list))
if (strcmp(dv->dv_xname, name) == 0)
break;
return (dv);
}
static struct device *
getdisk(char *str, int len, int defpart, dev_t *devp, int isdump)
{
struct device *dv;
#ifdef MEMORY_DISK_HOOKS
int i;
#endif
if ((dv = parsedisk(str, len, defpart, devp)) == NULL) {
printf("use one of:");
#ifdef MEMORY_DISK_HOOKS
if (isdump == 0)
for (i = 0; i < NMD; i++)
printf(" %s[a-%c]", fakemdrootdev[i].dv_xname,
'a' + MAXPARTITIONS - 1);
#endif
TAILQ_FOREACH(dv, &alldevs, dv_list) {
if (DEV_USES_PARTITIONS(dv))
printf(" %s[a-%c]", dv->dv_xname,
'a' + MAXPARTITIONS - 1);
else if (device_class(dv) == DV_DISK)
printf(" %s", dv->dv_xname);
if (isdump == 0 && device_class(dv) == DV_IFNET)
printf(" %s", dv->dv_xname);
}
if (isdump)
printf(" none");
#if defined(DDB)
printf(" ddb");
#endif
printf(" halt reboot\n");
}
return (dv);
}
static struct device *
parsedisk(char *str, int len, int defpart, dev_t *devp)
{
struct device *dv;
char *cp, c;
int majdev, part;
#ifdef MEMORY_DISK_HOOKS
int i;
#endif
if (len == 0)
return (NULL);
if (len == 4 && strcmp(str, "halt") == 0)
cpu_reboot(RB_HALT, NULL);
else if (len == 6 && strcmp(str, "reboot") == 0)
cpu_reboot(0, NULL);
#if defined(DDB)
else if (len == 3 && strcmp(str, "ddb") == 0)
console_debugger();
#endif
cp = str + len - 1;
c = *cp;
if (c >= 'a' && c <= ('a' + MAXPARTITIONS - 1)) {
part = c - 'a';
*cp = '\0';
} else
part = defpart;
#ifdef MEMORY_DISK_HOOKS
for (i = 0; i < NMD; i++)
if (strcmp(str, fakemdrootdev[i].dv_xname) == 0) {
dv = &fakemdrootdev[i];
goto gotdisk;
}
#endif
dv = finddevice(str);
if (dv != NULL) {
if (device_class(dv) == DV_DISK) {
#ifdef MEMORY_DISK_HOOKS
gotdisk:
#endif
majdev = devsw_name2blk(dv->dv_xname, NULL, 0);
if (majdev < 0)
panic("parsedisk");
if (DEV_USES_PARTITIONS(dv))
*devp = MAKEDISKDEV(majdev, device_unit(dv),
part);
else
*devp = makedev(majdev, device_unit(dv));
}
if (device_class(dv) == DV_IFNET)
*devp = NODEV;
}
*cp = c;
return (dv);
}
/*
* snprintf() `bytes' into `buf', reformatting it so that the number,
* plus a possible `x' + suffix extension) fits into len bytes (including
* the terminating NUL).
* Returns the number of bytes stored in buf, or -1 if there was a problem.
* E.g, given a len of 9 and a suffix of `B':
* bytes result
* ----- ------
* 99999 `99999 B'
* 100000 `97 kB'
* 66715648 `65152 kB'
* 252215296 `240 MB'
*/
int
humanize_number(char *buf, size_t len, uint64_t bytes, const char *suffix,
int divisor)
{
/* prefixes are: (none), kilo, Mega, Giga, Tera, Peta, Exa */
const char *prefixes;
int r;
uint64_t umax;
size_t i, suffixlen;
if (buf == NULL || suffix == NULL)
return (-1);
if (len > 0)
buf[0] = '\0';
suffixlen = strlen(suffix);
/* check if enough room for `x y' + suffix + `\0' */
if (len < 4 + suffixlen)
return (-1);
if (divisor == 1024) {
/*
* binary multiplies
* XXX IEC 60027-2 recommends Ki, Mi, Gi...
*/
prefixes = " KMGTPE";
} else
prefixes = " kMGTPE"; /* SI for decimal multiplies */
umax = 1;
for (i = 0; i < len - suffixlen - 3; i++)
umax *= 10;
for (i = 0; bytes >= umax && prefixes[i + 1]; i++)
bytes /= divisor;
r = snprintf(buf, len, "%qu%s%c%s", (unsigned long long)bytes,
i == 0 ? "" : " ", prefixes[i], suffix);
return (r);
}
int
format_bytes(char *buf, size_t len, uint64_t bytes)
{
int rv;
size_t nlen;
rv = humanize_number(buf, len, bytes, "B", 1024);
if (rv != -1) {
/* nuke the trailing ` B' if it exists */
nlen = strlen(buf) - 2;
if (strcmp(&buf[nlen], " B") == 0)
buf[nlen] = '\0';
}
return (rv);
}
/*
* Return true if system call tracing is enabled for the specified process.
*/
bool
trace_is_enabled(struct proc *p)
{
#ifdef SYSCALL_DEBUG
return (true);
#endif
#ifdef KTRACE
if (ISSET(p->p_traceflag, (KTRFAC_SYSCALL | KTRFAC_SYSRET)))
return (true);
#endif
#ifdef SYSTRACE
if (ISSET(p->p_flag, PK_SYSTRACE))
return (true);
#endif
#ifdef PTRACE
if (ISSET(p->p_slflag, PSL_SYSCALL))
return (true);
#endif
return (false);
}
/*
* Start trace of particular system call. If process is being traced,
* this routine is called by MD syscall dispatch code just before
* a system call is actually executed.
* MD caller guarantees the passed 'code' is within the supported
* system call number range for emulation the process runs under.
*/
int
trace_enter(struct lwp *l, register_t code,
register_t realcode, const struct sysent *callp, void *args)
{
#if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
struct proc *p = l->l_proc;
#ifdef SYSCALL_DEBUG
scdebug_call(l, code, args);
#endif /* SYSCALL_DEBUG */
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSCALL))
ktrsyscall(l, code, realcode, callp, args);
#endif /* KTRACE */
#ifdef PTRACE
if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
(PSL_SYSCALL|PSL_TRACED))
process_stoptrace(l);
#endif
#ifdef SYSTRACE
if (ISSET(p->p_flag, PK_SYSTRACE)) {
int error;
KERNEL_LOCK(1, l);
error = systrace_enter(l, code, args);
KERNEL_UNLOCK_ONE(l);
return error;
}
#endif
#endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
return 0;
}
/*
* End trace of particular system call. If process is being traced,
* this routine is called by MD syscall dispatch code just after
* a system call finishes.
* MD caller guarantees the passed 'code' is within the supported
* system call number range for emulation the process runs under.
*/
void
trace_exit(struct lwp *l, register_t code, void *args, register_t rval[],
int error)
{
#if defined(SYSCALL_DEBUG) || defined(KTRACE) || defined(PTRACE) || defined(SYSTRACE)
struct proc *p = l->l_proc;
#ifdef SYSCALL_DEBUG
scdebug_ret(l, code, error, rval);
#endif /* SYSCALL_DEBUG */
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSRET))
ktrsysret(l, code, error, rval);
#endif /* KTRACE */
#ifdef PTRACE
if ((p->p_slflag & (PSL_SYSCALL|PSL_TRACED)) ==
(PSL_SYSCALL|PSL_TRACED))
process_stoptrace(l);
#endif
#ifdef SYSTRACE
if (ISSET(p->p_flag, PK_SYSTRACE)) {
KERNEL_LOCK(1, l);
systrace_exit(l, code, args, rval, error);
KERNEL_UNLOCK_ONE(l);
}
#endif
#endif /* SYSCALL_DEBUG || {K,P,SYS}TRACE */
}