312 lines
11 KiB
Groff
312 lines
11 KiB
Groff
.\" $NetBSD: SSL_CTX_set_tmp_rsa_callback.3,v 1.11 2006/11/13 22:02:00 christos Exp $
|
|
.\"
|
|
.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.32
|
|
.\"
|
|
.\" Standard preamble:
|
|
.\" ========================================================================
|
|
.de Sh \" Subsection heading
|
|
.br
|
|
.if t .Sp
|
|
.ne 5
|
|
.PP
|
|
\fB\\$1\fR
|
|
.PP
|
|
..
|
|
.de Sp \" Vertical space (when we can't use .PP)
|
|
.if t .sp .5v
|
|
.if n .sp
|
|
..
|
|
.de Vb \" Begin verbatim text
|
|
.ft CW
|
|
.nf
|
|
.ne \\$1
|
|
..
|
|
.de Ve \" End verbatim text
|
|
.ft R
|
|
.fi
|
|
..
|
|
.\" Set up some character translations and predefined strings. \*(-- will
|
|
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
|
|
.\" double quote, and \*(R" will give a right double quote. | will give a
|
|
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
|
|
.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
|
|
.\" expand to `' in nroff, nothing in troff, for use with C<>.
|
|
.tr \(*W-|\(bv\*(Tr
|
|
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
|
|
.ie n \{\
|
|
. ds -- \(*W-
|
|
. ds PI pi
|
|
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
|
|
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
|
|
. ds L" ""
|
|
. ds R" ""
|
|
. ds C` ""
|
|
. ds C' ""
|
|
'br\}
|
|
.el\{\
|
|
. ds -- \|\(em\|
|
|
. ds PI \(*p
|
|
. ds L" ``
|
|
. ds R" ''
|
|
'br\}
|
|
.\"
|
|
.\" If the F register is turned on, we'll generate index entries on stderr for
|
|
.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
|
|
.\" entries marked with X<> in POD. Of course, you'll have to process the
|
|
.\" output yourself in some meaningful fashion.
|
|
.if \nF \{\
|
|
. de IX
|
|
. tm Index:\\$1\t\\n%\t"\\$2"
|
|
..
|
|
. nr % 0
|
|
. rr F
|
|
.\}
|
|
.\"
|
|
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
|
|
.\" way too many mistakes in technical documents.
|
|
.hy 0
|
|
.if n .na
|
|
.\"
|
|
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
|
|
.\" Fear. Run. Save yourself. No user-serviceable parts.
|
|
. \" fudge factors for nroff and troff
|
|
.if n \{\
|
|
. ds #H 0
|
|
. ds #V .8m
|
|
. ds #F .3m
|
|
. ds #[ \f1
|
|
. ds #] \fP
|
|
.\}
|
|
.if t \{\
|
|
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
|
|
. ds #V .6m
|
|
. ds #F 0
|
|
. ds #[ \&
|
|
. ds #] \&
|
|
.\}
|
|
. \" simple accents for nroff and troff
|
|
.if n \{\
|
|
. ds ' \&
|
|
. ds ` \&
|
|
. ds ^ \&
|
|
. ds , \&
|
|
. ds ~ ~
|
|
. ds /
|
|
.\}
|
|
.if t \{\
|
|
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
|
|
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
|
|
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
|
|
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
|
|
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
|
|
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
|
|
.\}
|
|
. \" troff and (daisy-wheel) nroff accents
|
|
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
|
|
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
|
|
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
|
|
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
|
|
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
|
|
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
|
|
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
|
|
.ds ae a\h'-(\w'a'u*4/10)'e
|
|
.ds Ae A\h'-(\w'A'u*4/10)'E
|
|
. \" corrections for vroff
|
|
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
|
|
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
|
|
. \" for low resolution devices (crt and lpr)
|
|
.if \n(.H>23 .if \n(.V>19 \
|
|
\{\
|
|
. ds : e
|
|
. ds 8 ss
|
|
. ds o a
|
|
. ds d- d\h'-1'\(ga
|
|
. ds D- D\h'-1'\(hy
|
|
. ds th \o'bp'
|
|
. ds Th \o'LP'
|
|
. ds ae ae
|
|
. ds Ae AE
|
|
.\}
|
|
.rm #[ #] #H #V #F C
|
|
.\" ========================================================================
|
|
.\"
|
|
.IX Title "SSL_CTX_set_tmp_rsa_callback 3"
|
|
.TH SSL_CTX_set_tmp_rsa_callback 3 "2002-06-09" "0.9.8d" "OpenSSL"
|
|
.SH "NAME"
|
|
SSL_CTX_set_tmp_rsa_callback, SSL_CTX_set_tmp_rsa, SSL_CTX_need_tmp_rsa, SSL_set_tmp_rsa_callback, SSL_set_tmp_rsa, SSL_need_tmp_rsa \- handle RSA keys for ephemeral key exchange
|
|
.SH "LIBRARY"
|
|
libcrypto, -lcrypto
|
|
.SH "SYNOPSIS"
|
|
.IX Header "SYNOPSIS"
|
|
.Vb 1
|
|
\& #include <openssl/ssl.h>
|
|
.Ve
|
|
.PP
|
|
.Vb 4
|
|
\& void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx,
|
|
\& RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));
|
|
\& long SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, RSA *rsa);
|
|
\& long SSL_CTX_need_tmp_rsa(SSL_CTX *ctx);
|
|
.Ve
|
|
.PP
|
|
.Vb 4
|
|
\& void SSL_set_tmp_rsa_callback(SSL_CTX *ctx,
|
|
\& RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));
|
|
\& long SSL_set_tmp_rsa(SSL *ssl, RSA *rsa)
|
|
\& long SSL_need_tmp_rsa(SSL *ssl)
|
|
.Ve
|
|
.PP
|
|
.Vb 1
|
|
\& RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));
|
|
.Ve
|
|
.SH "DESCRIPTION"
|
|
.IX Header "DESCRIPTION"
|
|
\&\fISSL_CTX_set_tmp_rsa_callback()\fR sets the callback function for \fBctx\fR to be
|
|
used when a temporary/ephemeral \s-1RSA\s0 key is required to \fBtmp_rsa_callback\fR.
|
|
The callback is inherited by all \s-1SSL\s0 objects newly created from \fBctx\fR
|
|
with <\fISSL_new\fR\|(3)|\fISSL_new\fR\|(3)>. Already created \s-1SSL\s0 objects are not affected.
|
|
.PP
|
|
\&\fISSL_CTX_set_tmp_rsa()\fR sets the temporary/ephemeral \s-1RSA\s0 key to be used to be
|
|
\&\fBrsa\fR. The key is inherited by all \s-1SSL\s0 objects newly created from \fBctx\fR
|
|
with <\fISSL_new\fR\|(3)|\fISSL_new\fR\|(3)>. Already created \s-1SSL\s0 objects are not affected.
|
|
.PP
|
|
\&\fISSL_CTX_need_tmp_rsa()\fR returns 1, if a temporary/ephemeral \s-1RSA\s0 key is needed
|
|
for RSA-based strength-limited 'exportable' ciphersuites because a \s-1RSA\s0 key
|
|
with a keysize larger than 512 bits is installed.
|
|
.PP
|
|
\&\fISSL_set_tmp_rsa_callback()\fR sets the callback only for \fBssl\fR.
|
|
.PP
|
|
\&\fISSL_set_tmp_rsa()\fR sets the key only for \fBssl\fR.
|
|
.PP
|
|
\&\fISSL_need_tmp_rsa()\fR returns 1, if a temporary/ephemeral \s-1RSA\s0 key is needed,
|
|
for RSA-based strength-limited 'exportable' ciphersuites because a \s-1RSA\s0 key
|
|
with a keysize larger than 512 bits is installed.
|
|
.PP
|
|
These functions apply to \s-1SSL/TLS\s0 servers only.
|
|
.SH "NOTES"
|
|
.IX Header "NOTES"
|
|
When using a cipher with \s-1RSA\s0 authentication, an ephemeral \s-1RSA\s0 key exchange
|
|
can take place. In this case the session data are negotiated using the
|
|
ephemeral/temporary \s-1RSA\s0 key and the \s-1RSA\s0 key supplied and certified
|
|
by the certificate chain is only used for signing.
|
|
.PP
|
|
Under previous export restrictions, ciphers with \s-1RSA\s0 keys shorter (512 bits)
|
|
than the usual key length of 1024 bits were created. To use these ciphers
|
|
with \s-1RSA\s0 keys of usual length, an ephemeral key exchange must be performed,
|
|
as the normal (certified) key cannot be directly used.
|
|
.PP
|
|
Using ephemeral \s-1RSA\s0 key exchange yields forward secrecy, as the connection
|
|
can only be decrypted, when the \s-1RSA\s0 key is known. By generating a temporary
|
|
\&\s-1RSA\s0 key inside the server application that is lost when the application
|
|
is left, it becomes impossible for an attacker to decrypt past sessions,
|
|
even if he gets hold of the normal (certified) \s-1RSA\s0 key, as this key was
|
|
used for signing only. The downside is that creating a \s-1RSA\s0 key is
|
|
computationally expensive.
|
|
.PP
|
|
Additionally, the use of ephemeral \s-1RSA\s0 key exchange is only allowed in
|
|
the \s-1TLS\s0 standard, when the \s-1RSA\s0 key can be used for signing only, that is
|
|
for export ciphers. Using ephemeral \s-1RSA\s0 key exchange for other purposes
|
|
violates the standard and can break interoperability with clients.
|
|
It is therefore strongly recommended to not use ephemeral \s-1RSA\s0 key
|
|
exchange and use \s-1EDH\s0 (Ephemeral Diffie\-Hellman) key exchange instead
|
|
in order to achieve forward secrecy (see
|
|
\&\fISSL_CTX_set_tmp_dh_callback\fR\|(3)).
|
|
.PP
|
|
On OpenSSL servers ephemeral \s-1RSA\s0 key exchange is therefore disabled by default
|
|
and must be explicitly enabled using the \s-1SSL_OP_EPHEMERAL_RSA\s0 option of
|
|
\&\fISSL_CTX_set_options\fR\|(3), violating the \s-1TLS/SSL\s0
|
|
standard. When ephemeral \s-1RSA\s0 key exchange is required for export ciphers,
|
|
it will automatically be used without this option!
|
|
.PP
|
|
An application may either directly specify the key or can supply the key via
|
|
a callback function. The callback approach has the advantage, that the
|
|
callback may generate the key only in case it is actually needed. As the
|
|
generation of a \s-1RSA\s0 key is however costly, it will lead to a significant
|
|
delay in the handshake procedure. Another advantage of the callback function
|
|
is that it can supply keys of different size (e.g. for \s-1SSL_OP_EPHEMERAL_RSA\s0
|
|
usage) while the explicit setting of the key is only useful for key size of
|
|
512 bits to satisfy the export restricted ciphers and does give away key length
|
|
if a longer key would be allowed.
|
|
.PP
|
|
The \fBtmp_rsa_callback\fR is called with the \fBkeylength\fR needed and
|
|
the \fBis_export\fR information. The \fBis_export\fR flag is set, when the
|
|
ephemeral \s-1RSA\s0 key exchange is performed with an export cipher.
|
|
.SH "EXAMPLES"
|
|
.IX Header "EXAMPLES"
|
|
Generate temporary \s-1RSA\s0 keys to prepare ephemeral \s-1RSA\s0 key exchange. As the
|
|
generation of a \s-1RSA\s0 key costs a lot of computer time, they saved for later
|
|
reuse. For demonstration purposes, two keys for 512 bits and 1024 bits
|
|
respectively are generated.
|
|
.PP
|
|
.Vb 4
|
|
\& ...
|
|
\& /* Set up ephemeral RSA stuff */
|
|
\& RSA *rsa_512 = NULL;
|
|
\& RSA *rsa_1024 = NULL;
|
|
.Ve
|
|
.PP
|
|
.Vb 3
|
|
\& rsa_512 = RSA_generate_key(512,RSA_F4,NULL,NULL);
|
|
\& if (rsa_512 == NULL)
|
|
\& evaluate_error_queue();
|
|
.Ve
|
|
.PP
|
|
.Vb 3
|
|
\& rsa_1024 = RSA_generate_key(1024,RSA_F4,NULL,NULL);
|
|
\& if (rsa_1024 == NULL)
|
|
\& evaluate_error_queue();
|
|
.Ve
|
|
.PP
|
|
.Vb 1
|
|
\& ...
|
|
.Ve
|
|
.PP
|
|
.Vb 3
|
|
\& RSA *tmp_rsa_callback(SSL *s, int is_export, int keylength)
|
|
\& {
|
|
\& RSA *rsa_tmp=NULL;
|
|
.Ve
|
|
.PP
|
|
.Vb 24
|
|
\& switch (keylength) {
|
|
\& case 512:
|
|
\& if (rsa_512)
|
|
\& rsa_tmp = rsa_512;
|
|
\& else { /* generate on the fly, should not happen in this example */
|
|
\& rsa_tmp = RSA_generate_key(keylength,RSA_F4,NULL,NULL);
|
|
\& rsa_512 = rsa_tmp; /* Remember for later reuse */
|
|
\& }
|
|
\& break;
|
|
\& case 1024:
|
|
\& if (rsa_1024)
|
|
\& rsa_tmp=rsa_1024;
|
|
\& else
|
|
\& should_not_happen_in_this_example();
|
|
\& break;
|
|
\& default:
|
|
\& /* Generating a key on the fly is very costly, so use what is there */
|
|
\& if (rsa_1024)
|
|
\& rsa_tmp=rsa_1024;
|
|
\& else
|
|
\& rsa_tmp=rsa_512; /* Use at least a shorter key */
|
|
\& }
|
|
\& return(rsa_tmp);
|
|
\& }
|
|
.Ve
|
|
.SH "RETURN VALUES"
|
|
.IX Header "RETURN VALUES"
|
|
\&\fISSL_CTX_set_tmp_rsa_callback()\fR and \fISSL_set_tmp_rsa_callback()\fR do not return
|
|
diagnostic output.
|
|
.PP
|
|
\&\fISSL_CTX_set_tmp_rsa()\fR and \fISSL_set_tmp_rsa()\fR do return 1 on success and 0
|
|
on failure. Check the error queue to find out the reason of failure.
|
|
.PP
|
|
\&\fISSL_CTX_need_tmp_rsa()\fR and \fISSL_need_tmp_rsa()\fR return 1 if a temporary
|
|
\&\s-1RSA\s0 key is needed and 0 otherwise.
|
|
.SH "SEE ALSO"
|
|
.IX Header "SEE ALSO"
|
|
\&\fIssl\fR\|(3), \fISSL_CTX_set_cipher_list\fR\|(3),
|
|
\&\fISSL_CTX_set_options\fR\|(3),
|
|
\&\fISSL_CTX_set_tmp_dh_callback\fR\|(3),
|
|
\&\fISSL_new\fR\|(3), \fIciphers\fR\|(1)
|