1223 lines
28 KiB
C
1223 lines
28 KiB
C
/* $NetBSD: pk_subr.c,v 1.21 2001/06/19 07:37:16 jdolecek Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1984 University of British Columbia.
|
|
* Copyright (c) 1992 Computer Science Department IV,
|
|
* University of Erlangen-Nuremberg, Germany.
|
|
* Copyright (c) 1991, 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by the
|
|
* Laboratory for Computation Vision and the Computer Science Department
|
|
* of the University of British Columbia and the Computer Science
|
|
* Department (IV) of the University of Erlangen-Nuremberg, Germany.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)pk_subr.c 8.1 (Berkeley) 6/10/93
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netccitt/dll.h>
|
|
#include <netccitt/x25.h>
|
|
#include <netccitt/x25err.h>
|
|
#include <netccitt/pk.h>
|
|
#include <netccitt/pk_var.h>
|
|
#include <netccitt/pk_extern.h>
|
|
|
|
#include <machine/stdarg.h>
|
|
|
|
int pk_sendspace = 1024 * 2 + 8;
|
|
int pk_recvspace = 1024 * 2 + 8;
|
|
|
|
struct pklcd_q pklcd_q = {&pklcd_q, &pklcd_q};
|
|
|
|
const struct x25bitslice x25_bitslice[] = {
|
|
/* mask, shift value */
|
|
{0xf0, 0x4},
|
|
{0xf, 0x0},
|
|
{0x80, 0x7},
|
|
{0x40, 0x6},
|
|
{0x30, 0x4},
|
|
{0xe0, 0x5},
|
|
{0x10, 0x4},
|
|
{0xe, 0x1},
|
|
{0x1, 0x0}
|
|
};
|
|
|
|
|
|
static struct x25_ifaddr *pk_ifwithaddr __P((struct sockaddr_x25 *));
|
|
static void pk_reset __P((struct pklcd *, int));
|
|
|
|
/*
|
|
* Attach X.25 protocol to socket, allocate logical channel descripter and
|
|
* buffer space, and enter LISTEN state if we are to accept IN-COMMING CALL
|
|
* packets.
|
|
*
|
|
*/
|
|
|
|
struct pklcd *
|
|
pk_attach(so)
|
|
struct socket *so;
|
|
{
|
|
struct pklcd *lcp;
|
|
int error = ENOBUFS;
|
|
|
|
MALLOC(lcp, struct pklcd *, sizeof(*lcp), M_PCB, M_NOWAIT);
|
|
if (lcp) {
|
|
bzero((caddr_t) lcp, sizeof(*lcp));
|
|
insque(&lcp->lcd_q, &pklcd_q);
|
|
lcp->lcd_state = READY;
|
|
lcp->lcd_send = pk_output;
|
|
if (so) {
|
|
error = soreserve(so, pk_sendspace, pk_recvspace);
|
|
lcp->lcd_so = so;
|
|
if (so->so_options & SO_ACCEPTCONN)
|
|
lcp->lcd_state = LISTEN;
|
|
} else
|
|
sbreserve(&lcp->lcd_sb, pk_sendspace);
|
|
}
|
|
if (so) {
|
|
so->so_pcb = lcp;
|
|
so->so_error = error;
|
|
}
|
|
return (lcp);
|
|
}
|
|
|
|
/*
|
|
* Disconnect X.25 protocol from socket.
|
|
*/
|
|
void
|
|
pk_disconnect(lcp)
|
|
struct pklcd *lcp;
|
|
{
|
|
struct socket *so = lcp->lcd_so;
|
|
|
|
switch (lcp->lcd_state) {
|
|
case LISTEN:
|
|
TAILQ_REMOVE(&pk_listenhead, lcp, lcd_listen);
|
|
pk_close(lcp);
|
|
break;
|
|
|
|
case READY:
|
|
pk_acct(lcp);
|
|
pk_close(lcp);
|
|
break;
|
|
|
|
case SENT_CLEAR:
|
|
case RECEIVED_CLEAR:
|
|
break;
|
|
|
|
default:
|
|
pk_acct(lcp);
|
|
if (so) {
|
|
soisdisconnecting(so);
|
|
sbflush(&so->so_rcv);
|
|
}
|
|
pk_clear(lcp, 241, 0); /* Normal Disconnect */
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Close an X.25 Logical Channel. Discard all space held by the connection
|
|
* and internal descriptors. Wake up any sleepers.
|
|
*/
|
|
|
|
void
|
|
pk_close(lcp)
|
|
struct pklcd *lcp;
|
|
{
|
|
struct socket *so = lcp->lcd_so;
|
|
|
|
/*
|
|
* If the X.25 connection is torn down due to link
|
|
* level failure (e.g. LLC2 FRMR) and at the same the user
|
|
* level is still filling up the socket send buffer that
|
|
* send buffer is locked. An attempt to sbflush () that send
|
|
* buffer will lead us into - no, not temptation but - panic!
|
|
* So - we'll just check wether the send buffer is locked
|
|
* and if that's the case we'll mark the lcp as zombie and
|
|
* have the pk_timer () do the cleaning ...
|
|
*/
|
|
|
|
if (so && so->so_snd.sb_flags & SB_LOCK)
|
|
lcp->lcd_state = LCN_ZOMBIE;
|
|
else
|
|
pk_freelcd(lcp);
|
|
|
|
if (so == NULL)
|
|
return;
|
|
|
|
so->so_pcb = 0;
|
|
soisdisconnected(so);
|
|
#if 0
|
|
sofree (so); /* gak!!! you can't do that here */
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Create a template to be used to send X.25 packets on a logical channel. It
|
|
* allocates an mbuf and fills in a skeletal packet depending on its type.
|
|
* This packet is passed to pk_output where the remainer of the packet is
|
|
* filled in.
|
|
*/
|
|
|
|
struct mbuf *
|
|
pk_template(lcn, type)
|
|
int lcn, type;
|
|
{
|
|
struct mbuf *m;
|
|
struct x25_packet *xp;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_HEADER);
|
|
if (m == 0)
|
|
panic("pk_template");
|
|
m->m_act = 0;
|
|
|
|
/*
|
|
* Efficiency hack: leave a four byte gap at the beginning
|
|
* of the packet level header with the hope that this will
|
|
* be enough room for the link level to insert its header.
|
|
*/
|
|
m->m_data += max_linkhdr;
|
|
m->m_pkthdr.len = m->m_len = PKHEADERLN;
|
|
|
|
xp = mtod(m, struct x25_packet *);
|
|
*(long *) xp = 0; /* ugly, but fast */
|
|
/* xp->q_bit = 0; */
|
|
X25SBITS(xp->bits, fmt_identifier, 1);
|
|
/* xp->lc_group_number = 0; */
|
|
|
|
SET_LCN(xp, lcn);
|
|
xp->packet_type = type;
|
|
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* This routine restarts all the virtual circuits. Actually, the virtual
|
|
* circuits are not "restarted" as such. Instead, any active switched circuit
|
|
* is simply returned to READY state.
|
|
*/
|
|
|
|
void
|
|
pk_restart(pkp, restart_cause)
|
|
struct pkcb *pkp;
|
|
int restart_cause;
|
|
{
|
|
struct mbuf *m;
|
|
struct pklcd *lcp;
|
|
int i;
|
|
|
|
/* Restart all logical channels. */
|
|
if (pkp->pk_chan == 0)
|
|
return;
|
|
|
|
/*
|
|
* Don't do this if we're doing a restart issued from
|
|
* inside pk_connect () --- which is only done if and
|
|
* only if the X.25 link is down, i.e. a RESTART needs
|
|
* to be done to get it up.
|
|
*/
|
|
if (!(pkp->pk_dxerole & DTE_CONNECTPENDING)) {
|
|
for (i = 1; i <= pkp->pk_maxlcn; ++i)
|
|
if ((lcp = pkp->pk_chan[i]) != NULL) {
|
|
if (lcp->lcd_so) {
|
|
lcp->lcd_so->so_error = ENETRESET;
|
|
pk_close(lcp);
|
|
} else {
|
|
pk_flush(lcp);
|
|
lcp->lcd_state = READY;
|
|
if (lcp->lcd_upper)
|
|
(*lcp->lcd_upper)(NULL, lcp);
|
|
}
|
|
}
|
|
}
|
|
if (restart_cause < 0)
|
|
return;
|
|
|
|
pkp->pk_state = DTE_SENT_RESTART;
|
|
pkp->pk_dxerole &= ~(DTE_PLAYDCE | DTE_PLAYDTE);
|
|
lcp = pkp->pk_chan[0];
|
|
m = lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_RESTART);
|
|
m->m_pkthdr.len = m->m_len += 2;
|
|
mtod(m, struct x25_packet *)->packet_data = 0; /* DTE only */
|
|
mtod(m, octet *)[4] = restart_cause;
|
|
pk_output(lcp);
|
|
}
|
|
|
|
|
|
/*
|
|
* This procedure frees up the Logical Channel Descripter.
|
|
*/
|
|
|
|
void
|
|
pk_freelcd(lcp)
|
|
struct pklcd *lcp;
|
|
{
|
|
if (lcp == NULL)
|
|
return;
|
|
|
|
if (lcp->lcd_lcn > 0)
|
|
lcp->lcd_pkp->pk_chan[lcp->lcd_lcn] = NULL;
|
|
|
|
pk_flush(lcp);
|
|
remque(&lcp->lcd_q);
|
|
free((caddr_t) lcp, M_PCB);
|
|
}
|
|
|
|
static struct x25_ifaddr *
|
|
pk_ifwithaddr(sx)
|
|
struct sockaddr_x25 *sx;
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa;
|
|
struct x25_ifaddr *ia;
|
|
char *addr = sx->x25_addr;
|
|
|
|
for (ifp = ifnet.tqh_first; ifp != 0; ifp = ifp->if_list.tqe_next)
|
|
for (ifa = ifp->if_addrlist.tqh_first; ifa != 0;
|
|
ifa = ifa->ifa_list.tqe_next)
|
|
if (ifa->ifa_addr->sa_family == AF_CCITT) {
|
|
ia = (struct x25_ifaddr *) ifa;
|
|
if (bcmp(addr, ia->ia_xc.xc_addr.x25_addr,
|
|
16) == 0)
|
|
return (ia);
|
|
|
|
}
|
|
return ((struct x25_ifaddr *) 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Bind a address and protocol value to a socket. The important part is the
|
|
* protocol value - the first four characters of the Call User Data field.
|
|
*/
|
|
|
|
#define XTRACTPKP(rt) ((rt)->rt_flags & RTF_GATEWAY ? \
|
|
((rt)->rt_llinfo ? \
|
|
(struct pkcb *) ((struct rtentry *)((rt)->rt_llinfo))->rt_llinfo : \
|
|
(struct pkcb *) NULL) : \
|
|
(struct pkcb *)((rt)->rt_llinfo))
|
|
|
|
int
|
|
pk_bind(lcp, nam)
|
|
struct pklcd *lcp;
|
|
struct mbuf *nam;
|
|
{
|
|
struct pklcd *pp;
|
|
struct sockaddr_x25 *sa;
|
|
|
|
if (nam == NULL)
|
|
return (EADDRNOTAVAIL);
|
|
if (lcp->lcd_ceaddr) /* XXX */
|
|
return (EADDRINUSE);
|
|
if (pk_checksockaddr(nam))
|
|
return (EINVAL);
|
|
sa = mtod(nam, struct sockaddr_x25 *);
|
|
|
|
/*
|
|
* If the user wishes to accept calls only from a particular
|
|
* net (net != 0), make sure the net is known
|
|
*/
|
|
|
|
if (sa->x25_addr[0]) {
|
|
if (!pk_ifwithaddr(sa))
|
|
return (ENETUNREACH);
|
|
} else if (sa->x25_net) {
|
|
if (!ifa_ifwithnet((struct sockaddr *) sa))
|
|
return (ENETUNREACH);
|
|
}
|
|
/*
|
|
* For ISO's sake permit default listeners, but only one such . . .
|
|
*/
|
|
for (pp = pk_listenhead.tqh_first; pp; pp = pp->lcd_listen.tqe_next) {
|
|
struct sockaddr_x25 *sa2 = pp->lcd_ceaddr;
|
|
if ((sa2->x25_udlen == sa->x25_udlen) &&
|
|
(sa2->x25_udlen == 0 ||
|
|
(bcmp(sa2->x25_udata, sa->x25_udata,
|
|
min(sa2->x25_udlen, sa->x25_udlen)) == 0)))
|
|
return (EADDRINUSE);
|
|
}
|
|
lcp->lcd_laddr = *sa;
|
|
lcp->lcd_ceaddr = &lcp->lcd_laddr;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Include a bound control block in the list of listeners.
|
|
*/
|
|
int
|
|
pk_listen(lcp)
|
|
struct pklcd *lcp;
|
|
{
|
|
if (lcp->lcd_ceaddr == 0)
|
|
return (EDESTADDRREQ);
|
|
|
|
lcp->lcd_state = LISTEN;
|
|
/*
|
|
* Add default listener at end, any others at start.
|
|
*/
|
|
if (lcp->lcd_ceaddr->x25_udlen == 0) {
|
|
TAILQ_INSERT_TAIL(&pk_listenhead, lcp, lcd_listen);
|
|
} else {
|
|
TAILQ_INSERT_HEAD(&pk_listenhead, lcp, lcd_listen);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Include a listening control block for the benefit of other protocols.
|
|
*/
|
|
int
|
|
pk_protolisten(spi, spilen, callee)
|
|
int spi;
|
|
int spilen;
|
|
int (*callee) __P((struct mbuf *, void *));
|
|
{
|
|
struct pklcd *lcp = pk_attach((struct socket *) 0);
|
|
struct mbuf *nam;
|
|
struct sockaddr_x25 *sa;
|
|
int error = ENOBUFS;
|
|
|
|
if (lcp) {
|
|
if ((nam = m_getclr(M_DONTWAIT, MT_SONAME)) != NULL) {
|
|
sa = mtod(nam, struct sockaddr_x25 *);
|
|
sa->x25_family = AF_CCITT;
|
|
sa->x25_len = nam->m_len = sizeof(*sa);
|
|
sa->x25_udlen = spilen;
|
|
sa->x25_udata[0] = spi;
|
|
lcp->lcd_upper = callee;
|
|
lcp->lcd_flags = X25_MBS_HOLD;
|
|
if ((error = pk_bind(lcp, nam)) == 0)
|
|
error = pk_listen(lcp);
|
|
(void) m_free(nam);
|
|
}
|
|
if (error)
|
|
pk_freelcd(lcp);
|
|
}
|
|
return error; /* Hopefully Zero ! */
|
|
}
|
|
|
|
/*
|
|
* Associate a logical channel descriptor with a network.
|
|
* Fill in the default network specific parameters and then
|
|
* set any parameters explicitly specified by the user or
|
|
* by the remote DTE.
|
|
*/
|
|
|
|
void
|
|
pk_assoc(pkp, lcp, sa)
|
|
struct pkcb *pkp;
|
|
struct pklcd *lcp;
|
|
struct sockaddr_x25 *sa;
|
|
{
|
|
|
|
lcp->lcd_pkp = pkp;
|
|
lcp->lcd_packetsize = pkp->pk_xcp->xc_psize;
|
|
lcp->lcd_windowsize = pkp->pk_xcp->xc_pwsize;
|
|
lcp->lcd_rsn = MODULUS - 1;
|
|
pkp->pk_chan[lcp->lcd_lcn] = lcp;
|
|
|
|
if (sa->x25_opts.op_psize)
|
|
lcp->lcd_packetsize = sa->x25_opts.op_psize;
|
|
else
|
|
sa->x25_opts.op_psize = lcp->lcd_packetsize;
|
|
if (sa->x25_opts.op_wsize)
|
|
lcp->lcd_windowsize = sa->x25_opts.op_wsize;
|
|
else
|
|
sa->x25_opts.op_wsize = lcp->lcd_windowsize;
|
|
sa->x25_net = pkp->pk_xcp->xc_addr.x25_net;
|
|
lcp->lcd_flags |= sa->x25_opts.op_flags;
|
|
lcp->lcd_stime = time.tv_sec;
|
|
}
|
|
|
|
int
|
|
pk_connect(lcp, sa)
|
|
struct pklcd *lcp;
|
|
struct sockaddr_x25 *sa;
|
|
{
|
|
struct pkcb *pkp;
|
|
struct rtentry *rt;
|
|
struct rtentry *nrt;
|
|
|
|
if (sa->x25_addr[0] == '\0')
|
|
return (EDESTADDRREQ);
|
|
|
|
/*
|
|
* Is the destination address known?
|
|
*/
|
|
if (!(rt = rtalloc1((struct sockaddr *) sa, 1)))
|
|
return (ENETUNREACH);
|
|
|
|
if (!(pkp = XTRACTPKP(rt)))
|
|
pkp = pk_newlink((struct x25_ifaddr *) (rt->rt_ifa),
|
|
(caddr_t) 0);
|
|
|
|
/*
|
|
* Have we entered the LLC address?
|
|
*/
|
|
if ((nrt = npaidb_enter((struct sockaddr_dl *) rt->rt_gateway,
|
|
rt_key(rt), rt, 0)) != NULL)
|
|
pkp->pk_llrt = nrt;
|
|
|
|
/*
|
|
* Have we allocated an LLC2 link yet?
|
|
*/
|
|
if (pkp->pk_llnext == (caddr_t) 0 && pkp->pk_llctlinput) {
|
|
struct dll_ctlinfo ctlinfo;
|
|
|
|
ctlinfo.dlcti_rt = rt;
|
|
ctlinfo.dlcti_pcb = (caddr_t) pkp;
|
|
ctlinfo.dlcti_conf =
|
|
(struct dllconfig *) (&((struct x25_ifaddr *) (rt->rt_ifa))->ia_xc);
|
|
pkp->pk_llnext =
|
|
(*pkp->pk_llctlinput)(PRC_CONNECT_REQUEST,
|
|
NULL, &ctlinfo);
|
|
}
|
|
if (pkp->pk_state != DTE_READY && pkp->pk_state != DTE_WAITING)
|
|
return (ENETDOWN);
|
|
if ((lcp->lcd_lcn = pk_getlcn(pkp)) == 0)
|
|
return (EMFILE);
|
|
|
|
lcp->lcd_faddr = *sa;
|
|
lcp->lcd_ceaddr = &lcp->lcd_faddr;
|
|
pk_assoc(pkp, lcp, lcp->lcd_ceaddr);
|
|
|
|
/*
|
|
* If the link is not up yet, initiate an X.25 RESTART
|
|
*/
|
|
if (pkp->pk_state == DTE_WAITING) {
|
|
pkp->pk_dxerole |= DTE_CONNECTPENDING;
|
|
pk_ctlinput(PRC_LINKUP, NULL, pkp);
|
|
if (lcp->lcd_so)
|
|
soisconnecting(lcp->lcd_so);
|
|
return 0;
|
|
}
|
|
if (lcp->lcd_so)
|
|
soisconnecting(lcp->lcd_so);
|
|
lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_CALL);
|
|
pk_callrequest(lcp, lcp->lcd_ceaddr, pkp->pk_xcp);
|
|
return (*pkp->pk_ia->ia_start) (lcp);
|
|
}
|
|
|
|
/*
|
|
* Complete all pending X.25 call requests --- this gets called after
|
|
* the X.25 link has been restarted.
|
|
*/
|
|
#define RESHUFFLELCN(maxlcn, lcn) ((maxlcn) - (lcn) + 1)
|
|
|
|
void
|
|
pk_callcomplete(pkp)
|
|
struct pkcb *pkp;
|
|
{
|
|
struct pklcd *lcp;
|
|
int i;
|
|
int ni;
|
|
|
|
|
|
if (pkp->pk_dxerole & DTE_CONNECTPENDING)
|
|
pkp->pk_dxerole &= ~DTE_CONNECTPENDING;
|
|
else
|
|
return;
|
|
|
|
if (pkp->pk_chan == 0)
|
|
return;
|
|
|
|
/*
|
|
* We pretended to be a DTE for allocating lcns, if
|
|
* it turns out that we are in reality performing as a
|
|
* DCE we need to reshuffle the lcps.
|
|
*
|
|
* /+---------------+-------- -
|
|
* / | a (maxlcn-1) | \
|
|
* / +---------------+ \
|
|
* +--- * | b (maxlcn-2) | \
|
|
* | \ +---------------+ \
|
|
* r | \ | c (maxlcn-3) | \
|
|
* e | \+---------------+ |
|
|
* s | | . |
|
|
* h | | . | m
|
|
* u | | . | a
|
|
* f | | . | x
|
|
* f | | . | l
|
|
* l | /+---------------+ | c
|
|
* e | / | c' ( 3 ) | | n
|
|
* | / +---------------+ |
|
|
* +--> * | b' ( 2 ) | /
|
|
* \ +---------------+ /
|
|
* \ | a' ( 1 ) | /
|
|
* \+---------------+ /
|
|
* | 0 | /
|
|
* +---------------+-------- -
|
|
*
|
|
*/
|
|
if (pkp->pk_dxerole & DTE_PLAYDCE) {
|
|
/* Sigh, reshuffle it */
|
|
for (i = pkp->pk_maxlcn; i > 0; --i)
|
|
if (pkp->pk_chan[i]) {
|
|
ni = RESHUFFLELCN(pkp->pk_maxlcn, i);
|
|
pkp->pk_chan[ni] = pkp->pk_chan[i];
|
|
pkp->pk_chan[i] = NULL;
|
|
pkp->pk_chan[ni]->lcd_lcn = ni;
|
|
}
|
|
}
|
|
for (i = 1; i <= pkp->pk_maxlcn; ++i)
|
|
if ((lcp = pkp->pk_chan[i]) != NULL) {
|
|
/*
|
|
* if (lcp->lcd_so) soisconnecting (lcp->lcd_so);
|
|
*/
|
|
lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_CALL);
|
|
pk_callrequest(lcp, lcp->lcd_ceaddr, pkp->pk_xcp);
|
|
(*pkp->pk_ia->ia_start) (lcp);
|
|
}
|
|
}
|
|
|
|
struct bcdinfo {
|
|
octet *cp;
|
|
unsigned posn;
|
|
};
|
|
|
|
/*
|
|
* Build the rest of the CALL REQUEST packet. Fill in calling address,
|
|
* facilities fields and the user data field.
|
|
*/
|
|
|
|
void
|
|
pk_callrequest(lcp, sa, xcp)
|
|
struct pklcd *lcp;
|
|
struct sockaddr_x25 *sa;
|
|
struct x25config *xcp;
|
|
{
|
|
struct x25_calladdr *a;
|
|
struct mbuf *m = lcp->lcd_template;
|
|
struct x25_packet *xp = mtod(m, struct x25_packet *);
|
|
struct bcdinfo b;
|
|
|
|
if (lcp->lcd_flags & X25_DBIT)
|
|
X25SBITS(xp->bits, d_bit, 1);
|
|
a = (struct x25_calladdr *) & xp->packet_data;
|
|
b.cp = (octet *) a->address_field;
|
|
b.posn = 0;
|
|
X25SBITS(a->addrlens, called_addrlen, to_bcd(&b, sa, xcp));
|
|
X25SBITS(a->addrlens, calling_addrlen, to_bcd(&b, &xcp->xc_addr, xcp));
|
|
if (b.posn & 0x01)
|
|
*b.cp++ &= 0xf0;
|
|
m->m_pkthdr.len = m->m_len += b.cp - (octet *) a;
|
|
|
|
if (lcp->lcd_facilities) {
|
|
m->m_pkthdr.len +=
|
|
(m->m_next = lcp->lcd_facilities)->m_pkthdr.len;
|
|
lcp->lcd_facilities = 0;
|
|
} else
|
|
pk_build_facilities(m, sa, (int) xcp->xc_type);
|
|
|
|
m_copyback(m, m->m_pkthdr.len, sa->x25_udlen, sa->x25_udata);
|
|
}
|
|
|
|
void
|
|
pk_build_facilities(m, sa, type)
|
|
struct mbuf *m;
|
|
struct sockaddr_x25 *sa;
|
|
int type;
|
|
{
|
|
octet *cp;
|
|
octet *fcp;
|
|
int revcharge;
|
|
|
|
cp = mtod(m, octet *) + m->m_len;
|
|
fcp = cp + 1;
|
|
revcharge = sa->x25_opts.op_flags & X25_REVERSE_CHARGE ? 1 : 0;
|
|
/*
|
|
* This is specific to Datapac X.25(1976) DTEs. International
|
|
* calls must have the "hi priority" bit on.
|
|
*/
|
|
if (type == X25_1976 && sa->x25_opts.op_psize == X25_PS128)
|
|
revcharge |= 02;
|
|
if (revcharge) {
|
|
*fcp++ = FACILITIES_REVERSE_CHARGE;
|
|
*fcp++ = revcharge;
|
|
}
|
|
switch (type) {
|
|
case X25_1980:
|
|
case X25_1984:
|
|
*fcp++ = FACILITIES_PACKETSIZE;
|
|
*fcp++ = sa->x25_opts.op_psize;
|
|
*fcp++ = sa->x25_opts.op_psize;
|
|
|
|
*fcp++ = FACILITIES_WINDOWSIZE;
|
|
*fcp++ = sa->x25_opts.op_wsize;
|
|
*fcp++ = sa->x25_opts.op_wsize;
|
|
}
|
|
*cp = fcp - cp - 1;
|
|
m->m_pkthdr.len = (m->m_len += *cp + 1);
|
|
}
|
|
|
|
int
|
|
to_bcd(b, sa, xcp)
|
|
struct bcdinfo *b;
|
|
struct sockaddr_x25 *sa;
|
|
struct x25config *xcp;
|
|
{
|
|
char *x = sa->x25_addr;
|
|
unsigned start = b->posn;
|
|
/*
|
|
* The nodnic and prepnd0 stuff looks tedious,
|
|
* but it does allow full X.121 addresses to be used,
|
|
* which is handy for routing info (& OSI type 37 addresses).
|
|
*/
|
|
if (xcp->xc_addr.x25_net && (xcp->xc_nodnic || xcp->xc_prepnd0)) {
|
|
char dnicname[sizeof(long) * NBBY / 3 + 2];
|
|
char *p = dnicname;
|
|
|
|
sprintf(p, "%d", xcp->xc_addr.x25_net & 0x7fff);
|
|
for (; *p; p++) /* *p == 0 means dnic matched */
|
|
if ((*p ^ *x++) & 0x0f)
|
|
break;
|
|
if (*p || xcp->xc_nodnic == 0)
|
|
x = sa->x25_addr;
|
|
if (*p && xcp->xc_prepnd0) {
|
|
if ((b->posn)++ & 0x01)
|
|
(b->cp)++;
|
|
else
|
|
*(b->cp) = 0;
|
|
}
|
|
}
|
|
while (*x)
|
|
if ((b->posn)++ & 0x01)
|
|
*(b->cp)++ |= *x++ & 0x0F;
|
|
else
|
|
*(b->cp) = *x++ << 4;
|
|
return ((b->posn) - start);
|
|
}
|
|
|
|
/*
|
|
* This routine gets the first available logical channel number. The search
|
|
* is - from the highest number to lowest number if playing DTE, and - from
|
|
* lowest to highest number if playing DCE.
|
|
*/
|
|
|
|
int
|
|
pk_getlcn(pkp)
|
|
struct pkcb *pkp;
|
|
{
|
|
int i;
|
|
|
|
if (pkp->pk_chan == 0)
|
|
return (0);
|
|
if (pkp->pk_dxerole & DTE_PLAYDCE) {
|
|
for (i = 1; i <= pkp->pk_maxlcn; ++i)
|
|
if (pkp->pk_chan[i] == NULL)
|
|
break;
|
|
} else {
|
|
for (i = pkp->pk_maxlcn; i > 0; --i)
|
|
if (pkp->pk_chan[i] == NULL)
|
|
break;
|
|
}
|
|
i = (i > pkp->pk_maxlcn ? 0 : i);
|
|
return (i);
|
|
}
|
|
|
|
/*
|
|
* This procedure sends a CLEAR request packet. The lc state is set to
|
|
* "SENT_CLEAR".
|
|
*/
|
|
|
|
void
|
|
pk_clear(lcp, diagnostic, abortive)
|
|
struct pklcd *lcp;
|
|
int diagnostic;
|
|
int abortive;
|
|
{
|
|
struct mbuf *m = pk_template(lcp->lcd_lcn, X25_CLEAR);
|
|
|
|
m->m_len += 2;
|
|
m->m_pkthdr.len += 2;
|
|
mtod(m, struct x25_packet *)->packet_data = 0;
|
|
mtod(m, octet *)[4] = diagnostic;
|
|
if (lcp->lcd_facilities) {
|
|
m->m_next = lcp->lcd_facilities;
|
|
m->m_pkthdr.len += m->m_next->m_len;
|
|
lcp->lcd_facilities = 0;
|
|
}
|
|
if (abortive)
|
|
lcp->lcd_template = m;
|
|
else {
|
|
struct socket *so = lcp->lcd_so;
|
|
struct sockbuf *sb = so ? &so->so_snd : &lcp->lcd_sb;
|
|
sbappendrecord(sb, m);
|
|
}
|
|
pk_output(lcp);
|
|
|
|
}
|
|
|
|
/*
|
|
* This procedure generates RNR's or RR's to inhibit or enable
|
|
* inward data flow, if the current state changes (blocked ==> open or
|
|
* vice versa), or if forced to generate one. One forces RNR's to ack data.
|
|
*/
|
|
void
|
|
pk_flowcontrol(lcp, inhibit, forced)
|
|
struct pklcd *lcp;
|
|
int inhibit;
|
|
int forced;
|
|
{
|
|
inhibit = (inhibit != 0);
|
|
if (lcp == 0 || lcp->lcd_state != DATA_TRANSFER ||
|
|
(forced == 0 && lcp->lcd_rxrnr_condition == inhibit))
|
|
return;
|
|
lcp->lcd_rxrnr_condition = inhibit;
|
|
lcp->lcd_template =
|
|
pk_template(lcp->lcd_lcn, inhibit ? X25_RNR : X25_RR);
|
|
pk_output(lcp);
|
|
}
|
|
|
|
/*
|
|
* This procedure sends a RESET request packet. It re-intializes virtual
|
|
* circuit.
|
|
*/
|
|
|
|
static void
|
|
pk_reset(lcp, diagnostic)
|
|
struct pklcd *lcp;
|
|
int diagnostic;
|
|
{
|
|
struct mbuf *m;
|
|
struct socket *so = lcp->lcd_so;
|
|
|
|
if (lcp->lcd_state != DATA_TRANSFER)
|
|
return;
|
|
|
|
if (so)
|
|
so->so_error = ECONNRESET;
|
|
lcp->lcd_reset_condition = TRUE;
|
|
|
|
/* Reset all the control variables for the channel. */
|
|
pk_flush(lcp);
|
|
lcp->lcd_window_condition = lcp->lcd_rnr_condition =
|
|
lcp->lcd_intrconf_pending = FALSE;
|
|
lcp->lcd_rsn = MODULUS - 1;
|
|
lcp->lcd_ssn = 0;
|
|
lcp->lcd_output_window = lcp->lcd_input_window =
|
|
lcp->lcd_last_transmitted_pr = 0;
|
|
m = lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_RESET);
|
|
m->m_pkthdr.len = m->m_len += 2;
|
|
mtod(m, struct x25_packet *)->packet_data = 0;
|
|
mtod(m, octet *)[4] = diagnostic;
|
|
pk_output(lcp);
|
|
|
|
}
|
|
|
|
/*
|
|
* This procedure frees all data queued for output or delivery on a
|
|
* virtual circuit.
|
|
*/
|
|
void
|
|
pk_flush(lcp)
|
|
struct pklcd *lcp;
|
|
{
|
|
struct socket *so;
|
|
|
|
if (lcp->lcd_template)
|
|
m_freem(lcp->lcd_template);
|
|
|
|
if (lcp->lcd_cps) {
|
|
m_freem(lcp->lcd_cps);
|
|
lcp->lcd_cps = 0;
|
|
}
|
|
if (lcp->lcd_facilities) {
|
|
m_freem(lcp->lcd_facilities);
|
|
lcp->lcd_facilities = 0;
|
|
}
|
|
if ((so = lcp->lcd_so) != NULL)
|
|
sbflush(&so->so_snd);
|
|
else
|
|
sbflush(&lcp->lcd_sb);
|
|
}
|
|
|
|
/*
|
|
* This procedure handles all local protocol procedure errors.
|
|
*/
|
|
|
|
void
|
|
pk_procerror(error, lcp, errstr, diagnostic)
|
|
int error;
|
|
struct pklcd *lcp;
|
|
char *errstr;
|
|
int diagnostic;
|
|
{
|
|
|
|
pk_message(lcp->lcd_lcn, lcp->lcd_pkp->pk_xcp, "%s", errstr);
|
|
|
|
switch (error) {
|
|
case PK_CLEAR:
|
|
if (lcp->lcd_so) {
|
|
lcp->lcd_so->so_error = ECONNABORTED;
|
|
soisdisconnecting(lcp->lcd_so);
|
|
}
|
|
pk_clear(lcp, diagnostic, 1);
|
|
break;
|
|
|
|
case PK_RESET:
|
|
pk_reset(lcp, diagnostic);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This procedure is called during the DATA TRANSFER state to check and
|
|
* process the P(R) values received in the DATA, RR OR RNR packets.
|
|
*/
|
|
|
|
int
|
|
pk_ack(lcp, pr)
|
|
struct pklcd *lcp;
|
|
unsigned pr;
|
|
{
|
|
struct socket *so = lcp->lcd_so;
|
|
|
|
if (lcp->lcd_output_window == pr)
|
|
return (PACKET_OK);
|
|
if (lcp->lcd_output_window < lcp->lcd_ssn) {
|
|
if (pr < lcp->lcd_output_window || pr > lcp->lcd_ssn) {
|
|
pk_procerror(PK_RESET, lcp,
|
|
"p(r) flow control error", 2);
|
|
return (ERROR_PACKET);
|
|
}
|
|
} else {
|
|
if (pr < lcp->lcd_output_window && pr > lcp->lcd_ssn) {
|
|
pk_procerror(PK_RESET, lcp,
|
|
"p(r) flow control error #2", 2);
|
|
return (ERROR_PACKET);
|
|
}
|
|
}
|
|
|
|
lcp->lcd_output_window = pr; /* Rotate window. */
|
|
if (lcp->lcd_window_condition == TRUE)
|
|
lcp->lcd_window_condition = FALSE;
|
|
|
|
if (so && sb_notify(&(so->so_snd)))
|
|
sowwakeup(so);
|
|
|
|
return (PACKET_OK);
|
|
}
|
|
|
|
/*
|
|
* This procedure decodes the X.25 level 3 packet returning a code to be used
|
|
* in switchs or arrays.
|
|
*/
|
|
|
|
int
|
|
pk_decode(xp)
|
|
struct x25_packet *xp;
|
|
{
|
|
int type;
|
|
|
|
if (X25GBITS(xp->bits, fmt_identifier) != 1)
|
|
return (PK_INVALID_PACKET);
|
|
#ifdef ancient_history
|
|
/*
|
|
* Make sure that the logical channel group number is 0. This
|
|
* restriction may be removed at some later date.
|
|
*/
|
|
if (xp->lc_group_number != 0)
|
|
return (PK_INVALID_PACKET);
|
|
#endif
|
|
/*
|
|
* Test for data packet first.
|
|
*/
|
|
if (!(xp->packet_type & DATA_PACKET_DESIGNATOR))
|
|
return (PK_DATA);
|
|
|
|
/*
|
|
* Test if flow control packet (RR or RNR).
|
|
*/
|
|
if (!(xp->packet_type & RR_OR_RNR_PACKET_DESIGNATOR))
|
|
switch (xp->packet_type & 0x1f) {
|
|
case X25_RR:
|
|
return (PK_RR);
|
|
case X25_RNR:
|
|
return (PK_RNR);
|
|
case X25_REJECT:
|
|
return (PK_REJECT);
|
|
}
|
|
|
|
/*
|
|
* Determine the rest of the packet types.
|
|
*/
|
|
switch (xp->packet_type) {
|
|
case X25_CALL:
|
|
type = PK_CALL;
|
|
break;
|
|
|
|
case X25_CALL_ACCEPTED:
|
|
type = PK_CALL_ACCEPTED;
|
|
break;
|
|
|
|
case X25_CLEAR:
|
|
type = PK_CLEAR;
|
|
break;
|
|
|
|
case X25_CLEAR_CONFIRM:
|
|
type = PK_CLEAR_CONF;
|
|
break;
|
|
|
|
case X25_INTERRUPT:
|
|
type = PK_INTERRUPT;
|
|
break;
|
|
|
|
case X25_INTERRUPT_CONFIRM:
|
|
type = PK_INTERRUPT_CONF;
|
|
break;
|
|
|
|
case X25_RESET:
|
|
type = PK_RESET;
|
|
break;
|
|
|
|
case X25_RESET_CONFIRM:
|
|
type = PK_RESET_CONF;
|
|
break;
|
|
|
|
case X25_RESTART:
|
|
type = PK_RESTART;
|
|
break;
|
|
|
|
case X25_RESTART_CONFIRM:
|
|
type = PK_RESTART_CONF;
|
|
break;
|
|
|
|
case X25_DIAGNOSTIC:
|
|
type = PK_DIAG_TYPE;
|
|
break;
|
|
|
|
default:
|
|
type = PK_INVALID_PACKET;
|
|
}
|
|
return (type);
|
|
}
|
|
|
|
/*
|
|
* A restart packet has been received. Print out the reason for the restart.
|
|
*/
|
|
|
|
void
|
|
pk_restartcause(pkp, xp)
|
|
struct pkcb *pkp;
|
|
struct x25_packet *xp;
|
|
{
|
|
struct x25config *xcp = pkp->pk_xcp;
|
|
int lcn = LCN(xp);
|
|
|
|
switch (xp->packet_data) {
|
|
case X25_RESTART_LOCAL_PROCEDURE_ERROR:
|
|
pk_message(lcn, xcp, "restart: local procedure error");
|
|
break;
|
|
|
|
case X25_RESTART_NETWORK_CONGESTION:
|
|
pk_message(lcn, xcp, "restart: network congestion");
|
|
break;
|
|
|
|
case X25_RESTART_NETWORK_OPERATIONAL:
|
|
pk_message(lcn, xcp, "restart: network operational");
|
|
break;
|
|
|
|
default:
|
|
pk_message(lcn, xcp, "restart: unknown cause");
|
|
}
|
|
}
|
|
|
|
#define MAXRESETCAUSE 7
|
|
|
|
int Reset_cause[] = {
|
|
EXRESET, EXROUT, 0, EXRRPE, 0, EXRLPE, 0, EXRNCG
|
|
};
|
|
|
|
/*
|
|
* A reset packet has arrived. Return the cause to the user.
|
|
*/
|
|
|
|
void
|
|
pk_resetcause(pkp, xp)
|
|
struct pkcb *pkp;
|
|
struct x25_packet *xp;
|
|
{
|
|
struct pklcd *lcp =
|
|
pkp->pk_chan[LCN(xp)];
|
|
int code = xp->packet_data;
|
|
|
|
if (code > MAXRESETCAUSE)
|
|
code = 7; /* EXRNCG */
|
|
|
|
pk_message(LCN(xp), lcp->lcd_pkp->pk_xcp,
|
|
"reset code 0x%x, diagnostic 0x%x",
|
|
xp->packet_data, 4[(u_char *) xp]);
|
|
|
|
if (lcp->lcd_so)
|
|
lcp->lcd_so->so_error = Reset_cause[code];
|
|
}
|
|
|
|
#define MAXCLEARCAUSE 25
|
|
|
|
int Clear_cause[] = {
|
|
EXCLEAR, EXCBUSY, 0, EXCINV, 0, EXCNCG, 0,
|
|
0, 0, EXCOUT, 0, EXCAB, 0, EXCNOB, 0, 0, 0, EXCRPE,
|
|
0, EXCLPE, 0, 0, 0, 0, 0, EXCRRC
|
|
};
|
|
|
|
/*
|
|
* A clear packet has arrived. Return the cause to the user.
|
|
*/
|
|
void
|
|
pk_clearcause(pkp, xp)
|
|
struct pkcb *pkp;
|
|
struct x25_packet *xp;
|
|
{
|
|
struct pklcd *lcp =
|
|
pkp->pk_chan[LCN(xp)];
|
|
int code = xp->packet_data;
|
|
|
|
if (code > MAXCLEARCAUSE)
|
|
code = 5; /* EXRNCG */
|
|
if (lcp->lcd_so)
|
|
lcp->lcd_so->so_error = Clear_cause[code];
|
|
}
|
|
|
|
char *
|
|
format_ntn(xcp)
|
|
struct x25config *xcp;
|
|
{
|
|
|
|
return (xcp->xc_addr.x25_addr);
|
|
}
|
|
|
|
/* VARARGS1 */
|
|
void
|
|
#if __STDC__
|
|
pk_message(int lcn, struct x25config * xcp, char * fmt,...)
|
|
#else
|
|
pk_message(lcn, xcp, fmt, va_alist)
|
|
int lcn;
|
|
struct x25config *xcp;
|
|
char *fmt;
|
|
va_dcl
|
|
#endif
|
|
{
|
|
va_list ap;
|
|
|
|
if (lcn)
|
|
if (!PQEMPTY)
|
|
printf("X.25(%s): lcn %d: ", format_ntn(xcp), lcn);
|
|
else
|
|
printf("X.25: lcn %d: ", lcn);
|
|
else if (!PQEMPTY)
|
|
printf("X.25(%s): ", format_ntn(xcp));
|
|
else
|
|
printf("X.25: ");
|
|
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
printf("\n");
|
|
va_end(ap);
|
|
}
|
|
|
|
int
|
|
pk_fragment(lcp, m0, qbit, mbit, wait)
|
|
struct mbuf *m0;
|
|
struct pklcd *lcp;
|
|
int qbit, mbit, wait;
|
|
{
|
|
struct mbuf *m = m0;
|
|
struct x25_packet *xp;
|
|
struct sockbuf *sb;
|
|
struct mbuf *head = 0, *next, **mp = &head;
|
|
int totlen, psize = 1 << (lcp->lcd_packetsize);
|
|
|
|
if (m == 0)
|
|
return 0;
|
|
if ((m->m_flags & M_PKTHDR) == 0)
|
|
panic("pk_fragment");
|
|
totlen = m->m_pkthdr.len;
|
|
m->m_act = 0;
|
|
sb = lcp->lcd_so ? &lcp->lcd_so->so_snd : &lcp->lcd_sb;
|
|
do {
|
|
if (totlen > psize) {
|
|
if ((next = m_split(m, psize, wait)) == 0)
|
|
goto abort;
|
|
totlen -= psize;
|
|
} else
|
|
next = 0;
|
|
M_PREPEND(m, PKHEADERLN, wait);
|
|
if (m == 0)
|
|
goto abort;
|
|
*mp = m;
|
|
mp = &m->m_act;
|
|
*mp = 0;
|
|
xp = mtod(m, struct x25_packet *);
|
|
0[(char *) xp] = 0;
|
|
if (qbit)
|
|
X25SBITS(xp->bits, q_bit, 1);
|
|
if (lcp->lcd_flags & X25_DBIT)
|
|
X25SBITS(xp->bits, d_bit, 1);
|
|
X25SBITS(xp->bits, fmt_identifier, 1);
|
|
xp->packet_type = X25_DATA;
|
|
SET_LCN(xp, lcp->lcd_lcn);
|
|
if (next || (mbit && (totlen == psize ||
|
|
(lcp->lcd_flags & X25_DBIT))))
|
|
SMBIT(xp, 1);
|
|
} while ((m = next) != NULL);
|
|
for (m = head; m; m = next) {
|
|
next = m->m_act;
|
|
m->m_act = 0;
|
|
sbappendrecord(sb, m);
|
|
}
|
|
return 0;
|
|
abort:
|
|
if (wait)
|
|
panic("pk_fragment null mbuf after wait");
|
|
if (next)
|
|
m_freem(next);
|
|
for (m = head; m; m = next) {
|
|
next = m->m_act;
|
|
m_freem(m);
|
|
}
|
|
return ENOBUFS;
|
|
}
|