NetBSD/sys/dev/raidframe/rf_pq.c
oster 38a3987b69 RAIDframe, version 1.1, from the Parallel Data Laboratory at
Carnegie Mellon University.  Full RAID implementation, including
levels 0, 1, 4, 5, 6, parity logging, and a few other goodies.
Ported to NetBSD by Greg Oster.
1998-11-13 04:20:26 +00:00

1026 lines
29 KiB
C

/* $NetBSD: rf_pq.c,v 1.1 1998/11/13 04:20:32 oster Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Daniel Stodolsky
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* Code for RAID level 6 (P + Q) disk array architecture.
*
* :
* Log: rf_pq.c,v
* Revision 1.33 1996/11/05 21:10:40 jimz
* failed pda generalization
*
* Revision 1.32 1996/07/31 16:29:50 jimz
* "fix" math on 32-bit machines using RF_LONGSHIFT
* (may be incorrect)
*
* Revision 1.31 1996/07/31 15:35:01 jimz
* evenodd changes; bugfixes for double-degraded archs, generalize
* some formerly PQ-only functions
*
* Revision 1.30 1996/07/27 23:36:08 jimz
* Solaris port of simulator
*
* Revision 1.29 1996/07/22 19:52:16 jimz
* switched node params to RF_DagParam_t, a union of
* a 64-bit int and a void *, for better portability
* attempted hpux port, but failed partway through for
* lack of a single C compiler capable of compiling all
* source files
*
* Revision 1.28 1996/06/09 02:36:46 jimz
* lots of little crufty cleanup- fixup whitespace
* issues, comment #ifdefs, improve typing in some
* places (esp size-related)
*
* Revision 1.27 1996/06/07 21:33:04 jimz
* begin using consistent types for sector numbers,
* stripe numbers, row+col numbers, recon unit numbers
*
* Revision 1.26 1996/06/02 17:31:48 jimz
* Moved a lot of global stuff into array structure, where it belongs.
* Fixed up paritylogging, pss modules in this manner. Some general
* code cleanup. Removed lots of dead code, some dead files.
*
* Revision 1.25 1996/05/31 22:26:54 jimz
* fix a lot of mapping problems, memory allocation problems
* found some weird lock issues, fixed 'em
* more code cleanup
*
* Revision 1.24 1996/05/30 23:22:16 jimz
* bugfixes of serialization, timing problems
* more cleanup
*
* Revision 1.23 1996/05/30 12:59:18 jimz
* make etimer happier, more portable
*
* Revision 1.22 1996/05/27 18:56:37 jimz
* more code cleanup
* better typing
* compiles in all 3 environments
*
* Revision 1.21 1996/05/24 22:17:04 jimz
* continue code + namespace cleanup
* typed a bunch of flags
*
* Revision 1.20 1996/05/24 04:28:55 jimz
* release cleanup ckpt
*
* Revision 1.19 1996/05/23 21:46:35 jimz
* checkpoint in code cleanup (release prep)
* lots of types, function names have been fixed
*
* Revision 1.18 1996/05/23 00:33:23 jimz
* code cleanup: move all debug decls to rf_options.c, all extern
* debug decls to rf_options.h, all debug vars preceded by rf_
*
* Revision 1.17 1996/05/18 19:51:34 jimz
* major code cleanup- fix syntax, make some types consistent,
* add prototypes, clean out dead code, et cetera
*
* Revision 1.16 1996/05/17 14:52:04 wvcii
* added prototyping to QDelta()
* - changed buf params from volatile unsigned long * to char *
* changed QDelta for kernel
* - just bzero the buf since kernel doesn't include pq decode table
*
* Revision 1.15 1996/05/03 19:40:20 wvcii
* added includes for dag library
*
* Revision 1.14 1995/12/12 18:10:06 jimz
* MIN -> RF_MIN, MAX -> RF_MAX, ASSERT -> RF_ASSERT
* fix 80-column brain damage in comments
*
* Revision 1.13 1995/11/30 16:19:55 wvcii
* added copyright info
*
* Revision 1.12 1995/11/07 16:13:47 wvcii
* changed PQDagSelect prototype
* function no longer returns numHdrSucc, numTermAnt
* note: this file contains node functions which should be
* moved to rf_dagfuncs.c so that all node funcs are bundled together
*
* Revision 1.11 1995/10/04 03:50:33 wvcii
* removed panics, minor code cleanup in dag selection
*
*
*/
#include "rf_archs.h"
#include "rf_types.h"
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagffrd.h"
#include "rf_dagffwr.h"
#include "rf_dagdegrd.h"
#include "rf_dagdegwr.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_threadid.h"
#include "rf_etimer.h"
#include "rf_pqdeg.h"
#include "rf_general.h"
#include "rf_map.h"
#include "rf_pq.h"
#include "rf_sys.h"
RF_RedFuncs_t rf_pFuncs = { rf_RegularONPFunc, "Regular Old-New P", rf_SimpleONPFunc, "Simple Old-New P" };
RF_RedFuncs_t rf_pRecoveryFuncs = { rf_RecoveryPFunc, "Recovery P Func", rf_RecoveryPFunc, "Recovery P Func" };
int rf_RegularONPFunc(node)
RF_DagNode_t *node;
{
return(rf_RegularXorFunc(node));
}
/*
same as simpleONQ func, but the coefficient is always 1
*/
int rf_SimpleONPFunc(node)
RF_DagNode_t *node;
{
return(rf_SimpleXorFunc(node));
}
int rf_RecoveryPFunc(node)
RF_DagNode_t *node;
{
return(rf_RecoveryXorFunc(node));
}
int rf_RegularPFunc(node)
RF_DagNode_t *node;
{
return(rf_RegularXorFunc(node));
}
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
static void QDelta(char *dest, char *obuf, char *nbuf, unsigned length,
unsigned char coeff);
static void rf_InvertQ(unsigned long *qbuf, unsigned long *abuf,
unsigned length, unsigned coeff);
RF_RedFuncs_t rf_qFuncs = { rf_RegularONQFunc, "Regular Old-New Q", rf_SimpleONQFunc, "Simple Old-New Q" };
RF_RedFuncs_t rf_qRecoveryFuncs = { rf_RecoveryQFunc, "Recovery Q Func", rf_RecoveryQFunc, "Recovery Q Func" };
RF_RedFuncs_t rf_pqRecoveryFuncs = { rf_RecoveryPQFunc, "Recovery PQ Func", rf_RecoveryPQFunc, "Recovery PQ Func" };
void rf_PQDagSelect(
RF_Raid_t *raidPtr,
RF_IoType_t type,
RF_AccessStripeMap_t *asmap,
RF_VoidFuncPtr *createFunc)
{
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
unsigned ndfail = asmap->numDataFailed;
unsigned npfail = asmap->numParityFailed;
unsigned ntfail = npfail + ndfail;
RF_ASSERT(RF_IO_IS_R_OR_W(type));
if (ntfail > 2)
{
RF_ERRORMSG("more than two disks failed in a single group! Aborting I/O operation.\n");
/* *infoFunc = */ *createFunc = NULL;
return;
}
/* ok, we can do this I/O */
if (type == RF_IO_TYPE_READ)
{
switch (ndfail)
{
case 0:
/* fault free read */
*createFunc = rf_CreateFaultFreeReadDAG; /* same as raid 5 */
break;
case 1:
/* lost a single data unit */
/* two cases:
(1) parity is not lost.
do a normal raid 5 reconstruct read.
(2) parity is lost.
do a reconstruct read using "q".
*/
if (ntfail == 2) /* also lost redundancy */
{
if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY)
*createFunc = rf_PQ_110_CreateReadDAG;
else
*createFunc = rf_PQ_101_CreateReadDAG;
}
else
{
/* P and Q are ok. But is there a failure
in some unaccessed data unit?
*/
if (rf_NumFailedDataUnitsInStripe(raidPtr,asmap)==2)
*createFunc = rf_PQ_200_CreateReadDAG;
else
*createFunc = rf_PQ_100_CreateReadDAG;
}
break;
case 2:
/* lost two data units */
/* *infoFunc = PQOneTwo; */
*createFunc = rf_PQ_200_CreateReadDAG;
break;
}
return;
}
/* a write */
switch (ntfail)
{
case 0: /* fault free */
if (rf_suppressLocksAndLargeWrites ||
(((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
(asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
*createFunc = rf_PQCreateSmallWriteDAG;
}
else {
*createFunc = rf_PQCreateLargeWriteDAG;
}
break;
case 1: /* single disk fault */
if (npfail==1)
{
RF_ASSERT ((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q));
if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q)
{ /* q died, treat like normal mode raid5 write.*/
if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
|| rf_NumFailedDataUnitsInStripe(raidPtr,asmap))
*createFunc = rf_PQ_001_CreateSmallWriteDAG;
else
*createFunc = rf_PQ_001_CreateLargeWriteDAG;
}
else
{ /* parity died, small write only updating Q */
if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
|| rf_NumFailedDataUnitsInStripe(raidPtr,asmap))
*createFunc = rf_PQ_010_CreateSmallWriteDAG;
else
*createFunc = rf_PQ_010_CreateLargeWriteDAG;
}
}
else
{ /* data missing.
Do a P reconstruct write if only a single data unit
is lost in the stripe, otherwise a PQ reconstruct
write. */
if (rf_NumFailedDataUnitsInStripe(raidPtr,asmap)==2)
*createFunc = rf_PQ_200_CreateWriteDAG;
else
*createFunc = rf_PQ_100_CreateWriteDAG;
}
break;
case 2: /* two disk faults */
switch (npfail)
{
case 2: /* both p and q dead */
*createFunc = rf_PQ_011_CreateWriteDAG;
break;
case 1: /* either p or q and dead data */
RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA);
RF_ASSERT ((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q));
if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q)
*createFunc = rf_PQ_101_CreateWriteDAG;
else
*createFunc = rf_PQ_110_CreateWriteDAG;
break;
case 0: /* double data loss */
*createFunc = rf_PQ_200_CreateWriteDAG;
break;
}
break;
default: /* more than 2 disk faults */
*createFunc = NULL;
RF_PANIC();
}
return;
}
/*
Used as a stop gap info function
*/
static void PQOne(raidPtr, nSucc, nAnte, asmap)
RF_Raid_t *raidPtr;
int *nSucc;
int *nAnte;
RF_AccessStripeMap_t *asmap;
{
*nSucc = *nAnte = 1;
}
static void PQOneTwo(raidPtr, nSucc, nAnte, asmap)
RF_Raid_t *raidPtr;
int *nSucc;
int *nAnte;
RF_AccessStripeMap_t *asmap;
{
*nSucc = 1;
*nAnte = 2;
}
RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG)
{
rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2,
rf_RegularPQFunc, RF_FALSE);
}
int rf_RegularONQFunc(node)
RF_DagNode_t *node;
{
int np = node->numParams;
int d;
RF_Raid_t *raidPtr = (RF_Raid_t *)node->params[np-1].p;
int i;
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
RF_Etimer_t timer;
char *qbuf, *qpbuf;
char *obuf, *nbuf;
RF_PhysDiskAddr_t *old, *new;
unsigned long coeff;
unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
RF_ETIMER_START(timer);
d = (np-3)/4;
RF_ASSERT (4*d+3 == np);
qbuf = (char *) node->params[2*d+1].p; /* q buffer*/
for (i=0; i < d; i++)
{
old = (RF_PhysDiskAddr_t *) node->params[2*i].p;
obuf = (char *) node->params[2*i+1].p;
new = (RF_PhysDiskAddr_t *) node->params[2*(d+1+i)].p;
nbuf = (char *) node->params[2*(d+1+i)+1].p;
RF_ASSERT (new->numSector == old->numSector);
RF_ASSERT (new->raidAddress == old->raidAddress);
/* the stripe unit within the stripe tells us the coefficient to use
for the multiply. */
coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),new->raidAddress);
/* compute the data unit offset within the column, then add one */
coeff = (coeff % raidPtr->Layout.numDataCol);
qpbuf = qbuf + rf_RaidAddressToByte(raidPtr,old->startSector % secPerSU);
QDelta(qpbuf,obuf,nbuf, rf_RaidAddressToByte(raidPtr, old->numSector),coeff);
}
RF_ETIMER_STOP(timer);
RF_ETIMER_EVAL(timer);
tracerec->q_us += RF_ETIMER_VAL_US(timer);
rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no I/O in this node */
return(0);
}
/*
See the SimpleXORFunc for the difference between a simple and regular func.
These Q functions should be used for
new q = Q(data,old data,old q)
style updates and not for
q = ( new data, new data, .... )
computations.
The simple q takes 2(2d+1)+1 params, where d is the number
of stripes written. The order of params is
old data pda_0, old data buffer_0, old data pda_1, old data buffer_1, ... old data pda_d, old data buffer_d
[2d] old q pda_0, old q buffer
[2d_2] new data pda_0, new data buffer_0, ... new data pda_d, new data buffer_d
raidPtr
*/
int rf_SimpleONQFunc(node)
RF_DagNode_t *node;
{
int np = node->numParams;
int d;
RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np-1].p;
int i;
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
RF_Etimer_t timer;
char *qbuf;
char *obuf, *nbuf;
RF_PhysDiskAddr_t *old, *new;
unsigned long coeff;
RF_ETIMER_START(timer);
d = (np-3)/4;
RF_ASSERT (4*d+3 == np);
qbuf = (char *) node->params[2*d+1].p; /* q buffer*/
for (i=0; i < d; i++)
{
old = (RF_PhysDiskAddr_t *) node->params[2*i].p;
obuf = (char *) node->params[2*i+1].p;
new = (RF_PhysDiskAddr_t *) node->params[2*(d+1+i)].p;
nbuf = (char *) node->params[2*(d+1+i)+1].p;
RF_ASSERT (new->numSector == old->numSector);
RF_ASSERT (new->raidAddress == old->raidAddress);
/* the stripe unit within the stripe tells us the coefficient to use
for the multiply. */
coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),new->raidAddress);
/* compute the data unit offset within the column, then add one */
coeff = (coeff % raidPtr->Layout.numDataCol);
QDelta(qbuf,obuf,nbuf, rf_RaidAddressToByte(raidPtr, old->numSector),coeff);
}
RF_ETIMER_STOP(timer);
RF_ETIMER_EVAL(timer);
tracerec->q_us += RF_ETIMER_VAL_US(timer);
rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no I/O in this node */
return(0);
}
RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG)
{
rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_qFuncs);
}
static void RegularQSubr(node,qbuf)
RF_DagNode_t *node;
char *qbuf;
{
int np = node->numParams;
int d;
RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np-1].p;
unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
int i;
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
RF_Etimer_t timer;
char *obuf, *qpbuf;
RF_PhysDiskAddr_t *old;
unsigned long coeff;
RF_ETIMER_START(timer);
d = (np-1)/2;
RF_ASSERT (2*d+1 == np);
for (i=0; i < d; i++)
{
old = (RF_PhysDiskAddr_t *) node->params[2*i].p;
obuf = (char *) node->params[2*i+1].p;
coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),old->raidAddress);
/* compute the data unit offset within the column, then add one */
coeff = (coeff % raidPtr->Layout.numDataCol);
/* the input buffers may not all be aligned with the start of the
stripe. so shift by their sector offset within the stripe unit */
qpbuf = qbuf + rf_RaidAddressToByte(raidPtr,old->startSector % secPerSU);
rf_IncQ((unsigned long *)qpbuf,(unsigned long *)obuf,rf_RaidAddressToByte(raidPtr, old->numSector),coeff);
}
RF_ETIMER_STOP(timer);
RF_ETIMER_EVAL(timer);
tracerec->q_us += RF_ETIMER_VAL_US(timer);
}
/*
used in degraded writes.
*/
static void DegrQSubr(node)
RF_DagNode_t *node;
{
int np = node->numParams;
int d;
RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np-1].p;
unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
int i;
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
RF_Etimer_t timer;
char *qbuf = node->results[1];
char *obuf, *qpbuf;
RF_PhysDiskAddr_t *old;
unsigned long coeff;
unsigned fail_start;
int j;
old = (RF_PhysDiskAddr_t *)node->params[np-2].p;
fail_start = old->startSector % secPerSU;
RF_ETIMER_START(timer);
d = (np-2)/2;
RF_ASSERT (2*d+2 == np);
for (i=0; i < d; i++)
{
old = (RF_PhysDiskAddr_t *) node->params[2*i].p;
obuf = (char *) node->params[2*i+1].p;
coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),old->raidAddress);
/* compute the data unit offset within the column, then add one */
coeff = (coeff % raidPtr->Layout.numDataCol);
/* the input buffers may not all be aligned with the start of the
stripe. so shift by their sector offset within the stripe unit */
j = old->startSector % secPerSU;
RF_ASSERT(j >= fail_start);
qpbuf = qbuf + rf_RaidAddressToByte(raidPtr,j - fail_start);
rf_IncQ((unsigned long *)qpbuf,(unsigned long *)obuf,rf_RaidAddressToByte(raidPtr, old->numSector),coeff);
}
RF_ETIMER_STOP(timer);
RF_ETIMER_EVAL(timer);
tracerec->q_us += RF_ETIMER_VAL_US(timer);
}
/*
Called by large write code to compute the new parity and the new q.
structure of the params:
pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d ( d = numDataCol
raidPtr
for a total of 2d+1 arguments.
The result buffers results[0], results[1] are the buffers for the p and q,
respectively.
We compute Q first, then compute P. The P calculation may try to reuse
one of the input buffers for its output, so if we computed P first, we would
corrupt the input for the q calculation.
*/
int rf_RegularPQFunc(node)
RF_DagNode_t *node;
{
RegularQSubr(node,node->results[1]);
return(rf_RegularXorFunc(node)); /* does the wakeup */
}
int rf_RegularQFunc(node)
RF_DagNode_t *node;
{
/* Almost ... adjust Qsubr args */
RegularQSubr(node, node->results[0]);
rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no I/O in this node */
return(0);
}
/*
Called by singly degraded write code to compute the new parity and the new q.
structure of the params:
pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d
failedPDA raidPtr
for a total of 2d+2 arguments.
The result buffers results[0], results[1] are the buffers for the parity and q,
respectively.
We compute Q first, then compute parity. The parity calculation may try to reuse
one of the input buffers for its output, so if we computed parity first, we would
corrupt the input for the q calculation.
We treat this identically to the regularPQ case, ignoring the failedPDA extra argument.
*/
void rf_Degraded_100_PQFunc(node)
RF_DagNode_t *node;
{
int np = node->numParams;
RF_ASSERT (np >= 2);
DegrQSubr(node);
rf_RecoveryXorFunc(node);
}
/*
The two below are used when reading a stripe with a single lost data unit.
The parameters are
pda_0, buffer_0, .... pda_n, buffer_n, P pda, P buffer, failedPDA, raidPtr
and results[0] contains the data buffer. Which is originally zero-filled.
*/
/* this Q func is used by the degraded-mode dag functions to recover lost data.
* the second-to-last parameter is the PDA for the failed portion of the access.
* the code here looks at this PDA and assumes that the xor target buffer is
* equal in size to the number of sectors in the failed PDA. It then uses
* the other PDAs in the parameter list to determine where within the target
* buffer the corresponding data should be xored.
*
* Recall the basic equation is
*
* Q = ( data_1 + 2 * data_2 ... + k * data_k ) mod 256
*
* so to recover data_j we need
*
* J data_j = (Q - data_1 - 2 data_2 ....- k* data_k) mod 256
*
* So the coefficient for each buffer is (255 - data_col), and j should be initialized by
* copying Q into it. Then we need to do a table lookup to convert to solve
* data_j /= J
*
*
*/
int rf_RecoveryQFunc(node)
RF_DagNode_t *node;
{
RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams-1].p;
RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) &raidPtr->Layout;
RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams-2].p;
int i;
RF_PhysDiskAddr_t *pda;
RF_RaidAddr_t suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr,failedPDA->startSector);
char *srcbuf, *destbuf;
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
RF_Etimer_t timer;
unsigned long coeff;
RF_ETIMER_START(timer);
/* start by copying Q into the buffer */
bcopy(node->params[node->numParams-3].p,node->results[0],
rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
for (i=0; i<node->numParams-4; i+=2)
{
RF_ASSERT (node->params[i+1].p != node->results[0]);
pda = (RF_PhysDiskAddr_t *) node->params[i].p;
srcbuf = (char *) node->params[i+1].p;
suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr,suoffset-failedSUOffset);
coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),pda->raidAddress);
/* compute the data unit offset within the column */
coeff = (coeff % raidPtr->Layout.numDataCol);
rf_IncQ((unsigned long *)destbuf, (unsigned long *)srcbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
}
/* Do the nasty inversion now */
coeff = (rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),failedPDA->startSector) % raidPtr->Layout.numDataCol);
rf_InvertQ(node->results[0],node->results[0],rf_RaidAddressToByte(raidPtr,pda->numSector),coeff);
RF_ETIMER_STOP(timer);
RF_ETIMER_EVAL(timer);
tracerec->q_us += RF_ETIMER_VAL_US(timer);
rf_GenericWakeupFunc(node, 0);
return(0);
}
int rf_RecoveryPQFunc(node)
RF_DagNode_t *node;
{
RF_PANIC();
return(1);
}
/*
Degraded write Q subroutine.
Used when P is dead.
Large-write style Q computation.
Parameters
(pda,buf),(pda,buf),.....,(failedPDA,bufPtr),failedPDA,raidPtr.
We ignore failedPDA.
This is a "simple style" recovery func.
*/
void rf_PQ_DegradedWriteQFunc(node)
RF_DagNode_t *node;
{
int np = node->numParams;
int d;
RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np-1].p;
unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
int i;
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
RF_Etimer_t timer;
char *qbuf = node->results[0];
char *obuf, *qpbuf;
RF_PhysDiskAddr_t *old;
unsigned long coeff;
int fail_start,j;
old = (RF_PhysDiskAddr_t *) node->params[np-2].p;
fail_start = old->startSector % secPerSU;
RF_ETIMER_START(timer);
d = (np-2)/2;
RF_ASSERT (2*d+2 == np);
for (i=0; i < d; i++)
{
old = (RF_PhysDiskAddr_t *) node->params[2*i].p;
obuf = (char *) node->params[2*i+1].p;
coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout),old->raidAddress);
/* compute the data unit offset within the column, then add one */
coeff = (coeff % raidPtr->Layout.numDataCol);
j = old->startSector % secPerSU;
RF_ASSERT(j >= fail_start);
qpbuf = qbuf + rf_RaidAddressToByte(raidPtr,j - fail_start);
rf_IncQ((unsigned long *)qpbuf,(unsigned long *)obuf,rf_RaidAddressToByte(raidPtr, old->numSector),coeff);
}
RF_ETIMER_STOP(timer);
RF_ETIMER_EVAL(timer);
tracerec->q_us += RF_ETIMER_VAL_US(timer);
rf_GenericWakeupFunc(node, 0);
}
/* Q computations */
/*
coeff - colummn;
compute dest ^= qfor[28-coeff][rn[coeff+1] a]
on 5-bit basis;
length in bytes;
*/
void rf_IncQ(dest,buf,length,coeff)
unsigned long *dest;
unsigned long *buf;
unsigned length;
unsigned coeff;
{
unsigned long a, d, new;
unsigned long a1, a2;
unsigned int *q = &(rf_qfor[28-coeff][0]);
unsigned r = rf_rn[coeff+1];
#define EXTRACT(a,i) ((a >> (5L*i)) & 0x1f)
#define INSERT(a,i) (a << (5L*i))
length /= 8;
/* 13 5 bit quants in a 64 bit word */
while (length)
{
a = *buf++;
d = *dest;
a1 = EXTRACT(a,0) ^ r;
a2 = EXTRACT(a,1) ^ r;
new = INSERT(a2,1) | a1 ;
a1 = EXTRACT(a,2) ^ r;
a2 = EXTRACT(a,3) ^ r;
a1 = q[a1];
a2 = q[a2];
new = new | INSERT(a1,2) | INSERT (a2,3);
a1 = EXTRACT(a,4) ^ r;
a2 = EXTRACT(a,5) ^ r;
a1 = q[a1];
a2 = q[a2];
new = new | INSERT(a1,4) | INSERT (a2,5);
a1 = EXTRACT(a,5) ^ r;
a2 = EXTRACT(a,6) ^ r;
a1 = q[a1];
a2 = q[a2];
new = new | INSERT(a1,5) | INSERT (a2,6);
#if RF_LONGSHIFT > 2
a1 = EXTRACT(a,7) ^ r;
a2 = EXTRACT(a,8) ^ r;
a1 = q[a1];
a2 = q[a2];
new = new | INSERT(a1,7) | INSERT (a2,8);
a1 = EXTRACT(a,9) ^ r;
a2 = EXTRACT(a,10) ^ r;
a1 = q[a1];
a2 = q[a2];
new = new | INSERT(a1,9) | INSERT (a2,10);
a1 = EXTRACT(a,11) ^ r;
a2 = EXTRACT(a,12) ^ r;
a1 = q[a1];
a2 = q[a2];
new = new | INSERT(a1,11) | INSERT (a2,12);
#endif /* RF_LONGSHIFT > 2 */
d ^= new;
*dest++ = d;
length--;
}
}
/*
compute
dest ^= rf_qfor[28-coeff][rf_rn[coeff+1] (old^new) ]
on a five bit basis.
optimization: compute old ^ new on 64 bit basis.
length in bytes.
*/
static void QDelta(
char *dest,
char *obuf,
char *nbuf,
unsigned length,
unsigned char coeff)
{
unsigned long a, d, new;
unsigned long a1, a2;
unsigned int *q = &(rf_qfor[28-coeff][0]);
unsigned r = rf_rn[coeff+1];
#ifdef KERNEL
/* PQ in kernel currently not supported because the encoding/decoding table is not present */
bzero(dest, length);
#else /* KERNEL */
/* this code probably doesn't work and should be rewritten -wvcii */
/* 13 5 bit quants in a 64 bit word */
length /= 8;
while (length)
{
a = *obuf++; /* XXX need to reorg to avoid cache conflicts */
a ^= *nbuf++;
d = *dest;
a1 = EXTRACT(a,0) ^ r;
a2 = EXTRACT(a,1) ^ r;
a1 = q[a1];
a2 = q[a2];
new = INSERT(a2,1) | a1 ;
a1 = EXTRACT(a,2) ^ r;
a2 = EXTRACT(a,3) ^ r;
a1 = q[a1];
a2 = q[a2];
new = new | INSERT(a1,2) | INSERT (a2,3);
a1 = EXTRACT(a,4) ^ r;
a2 = EXTRACT(a,5) ^ r;
a1 = q[a1];
a2 = q[a2];
new = new | INSERT(a1,4) | INSERT (a2,5);
a1 = EXTRACT(a,5) ^ r;
a2 = EXTRACT(a,6) ^ r;
a1 = q[a1];
a2 = q[a2];
new = new | INSERT(a1,5) | INSERT (a2,6);
#if RF_LONGSHIFT > 2
a1 = EXTRACT(a,7) ^ r;
a2 = EXTRACT(a,8) ^ r;
a1 = q[a1];
a2 = q[a2];
new = new | INSERT(a1,7) | INSERT (a2,8);
a1 = EXTRACT(a,9) ^ r;
a2 = EXTRACT(a,10) ^ r;
a1 = q[a1];
a2 = q[a2];
new = new | INSERT(a1,9) | INSERT (a2,10);
a1 = EXTRACT(a,11) ^ r;
a2 = EXTRACT(a,12) ^ r;
a1 = q[a1];
a2 = q[a2];
new = new | INSERT(a1,11) | INSERT (a2,12);
#endif /* RF_LONGSHIFT > 2 */
d ^= new;
*dest++ = d;
length--;
}
#endif /* KERNEL */
}
/*
recover columns a and b from the given p and q into
bufs abuf and bbuf. All bufs are word aligned.
Length is in bytes.
*/
/*
* XXX
*
* Everything about this seems wrong.
*/
void rf_PQ_recover(pbuf,qbuf,abuf,bbuf,length,coeff_a,coeff_b)
unsigned long *pbuf;
unsigned long *qbuf;
unsigned long *abuf;
unsigned long *bbuf;
unsigned length;
unsigned coeff_a;
unsigned coeff_b;
{
unsigned long p, q, a, a0, a1;
int col = (29 * coeff_a) + coeff_b;
unsigned char *q0 = & (rf_qinv[col][0]);
length /= 8;
while (length)
{
p = *pbuf++;
q = *qbuf++;
a0 = EXTRACT(p,0);
a1 = EXTRACT(q,0);
a = q0[a0<<5 | a1];
#define MF(i) \
a0 = EXTRACT(p,i); \
a1 = EXTRACT(q,i); \
a = a | INSERT(q0[a0<<5 | a1],i)
MF(1);
MF(2);
MF(3);
MF(4);
MF(5);
MF(6);
#if 0
MF(7);
MF(8);
MF(9);
MF(10);
MF(11);
MF(12);
#endif /* 0 */
*abuf++ = a;
*bbuf++ = a ^ p;
length--;
}
}
/*
Lost parity and a data column. Recover that data column.
Assume col coeff is lost. Let q the contents of Q after
all surviving data columns have been q-xored out of it.
Then we have the equation
q[28-coeff][a_i ^ r_i+1] = q
but q is cyclic with period 31.
So q[3+coeff][q[28-coeff][a_i ^ r_{i+1}]] =
q[31][a_i ^ r_{i+1}] = a_i ^ r_{i+1} .
so a_i = r_{coeff+1} ^ q[3+coeff][q]
The routine is passed q buffer and the buffer
the data is to be recoverd into. They can be the same.
*/
static void rf_InvertQ(
unsigned long *qbuf,
unsigned long *abuf,
unsigned length,
unsigned coeff)
{
unsigned long a, new;
unsigned long a1, a2;
unsigned int *q = &(rf_qfor[3+coeff][0]);
unsigned r = rf_rn[coeff+1];
/* 13 5 bit quants in a 64 bit word */
length /= 8;
while (length)
{
a = *qbuf++;
a1 = EXTRACT(a,0);
a2 = EXTRACT(a,1);
a1 = r ^ q[a1];
a2 = r ^ q[a2];
new = INSERT(a2,1) | a1;
#define M(i,j) \
a1 = EXTRACT(a,i); \
a2 = EXTRACT(a,j); \
a1 = r ^ q[a1]; \
a2 = r ^ q[a2]; \
new = new | INSERT(a1,i) | INSERT(a2,j)
M(2,3);
M(4,5);
M(5,6);
#if RF_LONGSHIFT > 2
M(7,8);
M(9,10);
M(11,12);
#endif /* RF_LONGSHIFT > 2 */
*abuf++ = new;
length--;
}
}
#endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) */