NetBSD/sys/dev/usb/if_aue.c

1052 lines
29 KiB
C

/* $NetBSD: if_aue.c,v 1.171 2020/03/18 11:33:32 kre Exp $ */
/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: src/sys/dev/usb/if_aue.c,v 1.11 2000/01/14 01:36:14 wpaul Exp $
*/
/*
* ADMtek AN986 Pegasus and AN8511 Pegasus II USB to ethernet driver.
* Datasheet is available from http://www.admtek.com.tw.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Pegasus chip uses four USB "endpoints" to provide 10/100 ethernet
* support: the control endpoint for reading/writing registers, burst
* read endpoint for packet reception, burst write for packet transmission
* and one for "interrupts." The chip uses the same RX filter scheme
* as the other ADMtek ethernet parts: one perfect filter entry for the
* the station address and a 64-bit multicast hash table. The chip supports
* both MII and HomePNA attachments.
*
* Since the maximum data transfer speed of USB is supposed to be 12Mbps,
* you're never really going to get 100Mbps speeds from this device. I
* think the idea is to allow the device to connect to 10 or 100Mbps
* networks, not necessarily to provide 100Mbps performance. Also, since
* the controller uses an external PHY chip, it's possible that board
* designers might simply choose a 10Mbps PHY.
*
* Registers are accessed using usbd_do_request(). Packet transfers are
* done using usbd_transfer() and friends.
*/
/*
* Ported to NetBSD and somewhat rewritten by Lennart Augustsson.
*/
/*
* TODO:
* better error messages from rxstat
* more error checks
* investigate short rx problem
* proper cleanup on errors
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_aue.c,v 1.171 2020/03/18 11:33:32 kre Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#include "opt_inet.h"
#endif
#include <sys/param.h>
#include <dev/usb/usbnet.h>
#include <dev/usb/usbhist.h>
#include <dev/usb/if_auereg.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#ifdef USB_DEBUG
#ifndef AUE_DEBUG
#define auedebug 0
#else
static int auedebug = 10;
SYSCTL_SETUP(sysctl_hw_aue_setup, "sysctl hw.aue setup")
{
int err;
const struct sysctlnode *rnode;
const struct sysctlnode *cnode;
err = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "aue",
SYSCTL_DESCR("aue global controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (err)
goto fail;
/* control debugging printfs */
err = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable debugging output"),
NULL, 0, &auedebug, sizeof(auedebug), CTL_CREATE, CTL_EOL);
if (err)
goto fail;
return;
fail:
aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
}
#endif /* AUE_DEBUG */
#endif /* USB_DEBUG */
#define DPRINTF(FMT,A,B,C,D) USBHIST_LOGN(auedebug,1,FMT,A,B,C,D)
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(auedebug,N,FMT,A,B,C,D)
#define AUEHIST_FUNC() USBHIST_FUNC()
#define AUEHIST_CALLED(name) USBHIST_CALLED(auedebug)
#define AUEHIST_CALLARGS(FMT,A,B,C,D) \
USBHIST_CALLARGS(auedebug,FMT,A,B,C,D)
#define AUEHIST_CALLARGSN(N,FMT,A,B,C,D) \
USBHIST_CALLARGSN(auedebug,N,FMT,A,B,C,D)
#define AUE_TX_LIST_CNT 1
#define AUE_RX_LIST_CNT 1
struct aue_softc {
struct usbnet aue_un;
struct usbnet_intr aue_intr;
struct aue_intrpkt aue_ibuf;
};
#define AUE_TIMEOUT 1000
#define AUE_BUFSZ 1536
#define AUE_MIN_FRAMELEN 60
#define AUE_TX_TIMEOUT 10000 /* ms */
#define AUE_INTR_INTERVAL 100 /* ms */
/*
* Various supported device vendors/products.
*/
struct aue_type {
struct usb_devno aue_dev;
uint16_t aue_flags;
#define LSYS 0x0001 /* use Linksys reset */
#define PNA 0x0002 /* has Home PNA */
#define PII 0x0004 /* Pegasus II chip */
};
static const struct aue_type aue_devs[] = {
{{ USB_VENDOR_3COM, USB_PRODUCT_3COM_3C460B}, PII },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX1}, PNA | PII },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX2}, PII },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_UFE1000}, LSYS },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX4}, PNA },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX5}, PNA },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX6}, PII },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX7}, PII },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX8}, PII },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX9}, PNA },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX10}, 0 },
{{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_DSB650TX_PNA}, 0 },
{{ USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_USB320_EC}, 0 },
{{ USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_SS1001}, PII },
{{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUS}, PNA },
{{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII}, PII },
{{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII_2}, PII },
{{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII_3}, PII },
{{ USB_VENDOR_AEI, USB_PRODUCT_AEI_USBTOLAN}, PII },
{{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_USB2LAN}, PII },
{{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB100}, 0 },
{{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBLP100}, PNA },
{{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBEL100}, 0 },
{{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBE100}, PII },
{{ USB_VENDOR_COMPAQ, USB_PRODUCT_COMPAQ_HNE200}, PII },
{{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB_TX}, 0 },
{{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB_TXS},PII },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX4}, LSYS | PII },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX1}, LSYS },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX}, LSYS },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX_PNA}, PNA },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX3}, LSYS | PII },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX2}, LSYS | PII },
{{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650}, 0 },
{{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX0}, 0 },
{{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX1}, LSYS },
{{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX2}, 0 },
{{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX3}, LSYS },
{{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBLTX}, PII },
{{ USB_VENDOR_ELSA, USB_PRODUCT_ELSA_USB2ETHERNET}, 0 },
{{ USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_UF100}, PII },
{{ USB_VENDOR_HP, USB_PRODUCT_HP_HN210E}, PII },
{{ USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETTX}, 0 },
{{ USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETTXS}, PII },
{{ USB_VENDOR_IODATA, USB_PRODUCT_IODATA_ETXUS2}, PII },
{{ USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_KNU101TX}, 0 },
{{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TX1}, LSYS | PII },
{{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T}, LSYS },
{{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB100TX}, LSYS },
{{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB100H1}, LSYS | PNA },
{{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TA}, LSYS },
{{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TX2}, LSYS | PII },
{{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUATX1}, 0 },
{{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUATX5}, 0 },
{{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUA2TX5}, PII },
{{ USB_VENDOR_MICROSOFT, USB_PRODUCT_MICROSOFT_MN110}, PII },
{{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_FA101}, PII },
{{ USB_VENDOR_SIEMENS, USB_PRODUCT_SIEMENS_SPEEDSTREAM}, PII },
{{ USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTNIC},PII },
{{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2202USB}, 0 },
{{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2206USB}, PII },
{{ USB_VENDOR_SOHOWARE, USB_PRODUCT_SOHOWARE_NUB100}, 0 },
};
#define aue_lookup(v, p) ((const struct aue_type *)usb_lookup(aue_devs, v, p))
static int aue_match(device_t, cfdata_t, void *);
static void aue_attach(device_t, device_t, void *);
CFATTACH_DECL_NEW(aue, sizeof(struct aue_softc), aue_match, aue_attach,
usbnet_detach, usbnet_activate);
static void aue_reset_pegasus_II(struct aue_softc *);
static void aue_uno_stop(struct ifnet *, int);
static int aue_uno_ioctl(struct ifnet *, u_long, void *);
static int aue_uno_mii_read_reg(struct usbnet *, int, int, uint16_t *);
static int aue_uno_mii_write_reg(struct usbnet *, int, int, uint16_t);
static void aue_uno_mii_statchg(struct ifnet *);
static unsigned aue_uno_tx_prepare(struct usbnet *, struct mbuf *,
struct usbnet_chain *);
static void aue_uno_rx_loop(struct usbnet *, struct usbnet_chain *, uint32_t);
static int aue_uno_init(struct ifnet *);
static void aue_uno_intr(struct usbnet *, usbd_status);
static const struct usbnet_ops aue_ops = {
.uno_stop = aue_uno_stop,
.uno_ioctl = aue_uno_ioctl,
.uno_read_reg = aue_uno_mii_read_reg,
.uno_write_reg = aue_uno_mii_write_reg,
.uno_statchg = aue_uno_mii_statchg,
.uno_tx_prepare = aue_uno_tx_prepare,
.uno_rx_loop = aue_uno_rx_loop,
.uno_init = aue_uno_init,
.uno_intr = aue_uno_intr,
};
static uint32_t aue_crc(void *);
static void aue_reset(struct aue_softc *);
static int aue_csr_read_1(struct aue_softc *, int);
static int aue_csr_write_1(struct aue_softc *, int, int);
static int aue_csr_read_2(struct aue_softc *, int);
static int aue_csr_write_2(struct aue_softc *, int, int);
#define AUE_SETBIT(sc, reg, x) \
aue_csr_write_1(sc, reg, aue_csr_read_1(sc, reg) | (x))
#define AUE_CLRBIT(sc, reg, x) \
aue_csr_write_1(sc, reg, aue_csr_read_1(sc, reg) & ~(x))
static int
aue_csr_read_1(struct aue_softc *sc, int reg)
{
struct usbnet * const un = &sc->aue_un;
usb_device_request_t req;
usbd_status err;
uByte val = 0;
usbnet_isowned_core(un);
if (usbnet_isdying(un))
return 0;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = AUE_UR_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 1);
err = usbd_do_request(un->un_udev, &req, &val);
if (err) {
AUEHIST_FUNC();
AUEHIST_CALLARGS("aue%jd: reg=%#jx err=%jd",
device_unit(un->un_dev), reg, err, 0);
return 0;
}
return val;
}
static int
aue_csr_read_2(struct aue_softc *sc, int reg)
{
struct usbnet * const un = &sc->aue_un;
usb_device_request_t req;
usbd_status err;
uWord val;
usbnet_isowned_core(un);
if (usbnet_isdying(un))
return 0;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = AUE_UR_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 2);
err = usbd_do_request(un->un_udev, &req, &val);
if (err) {
AUEHIST_FUNC();
AUEHIST_CALLARGS("aue%jd: reg=%#jx err=%jd",
device_unit(un->un_dev), reg, err, 0);
return 0;
}
return UGETW(val);
}
static int
aue_csr_write_1(struct aue_softc *sc, int reg, int aval)
{
struct usbnet * const un = &sc->aue_un;
usb_device_request_t req;
usbd_status err;
uByte val;
usbnet_isowned_core(un);
if (usbnet_isdying(un))
return 0;
val = aval;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = AUE_UR_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 1);
err = usbd_do_request(un->un_udev, &req, &val);
if (err) {
AUEHIST_FUNC();
AUEHIST_CALLARGS("aue%jd: reg=%#jx err=%jd",
device_unit(un->un_dev), reg, err, 0);
return -1;
}
return 0;
}
static int
aue_csr_write_2(struct aue_softc *sc, int reg, int aval)
{
struct usbnet * const un = &sc->aue_un;
usb_device_request_t req;
usbd_status err;
uWord val;
usbnet_isowned_core(un);
if (usbnet_isdying(un))
return 0;
USETW(val, aval);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = AUE_UR_WRITEREG;
USETW(req.wValue, aval);
USETW(req.wIndex, reg);
USETW(req.wLength, 2);
err = usbd_do_request(un->un_udev, &req, &val);
if (err) {
AUEHIST_FUNC();
AUEHIST_CALLARGS("aue%jd: reg=%#jx err=%jd",
device_unit(un->un_dev), reg, err, 0);
return -1;
}
return 0;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static int
aue_eeprom_getword(struct aue_softc *sc, int addr)
{
struct usbnet * const un = &sc->aue_un;
int i;
AUEHIST_FUNC(); AUEHIST_CALLED();
aue_csr_write_1(sc, AUE_EE_REG, addr);
aue_csr_write_1(sc, AUE_EE_CTL, AUE_EECTL_READ);
for (i = 0; i < AUE_TIMEOUT; i++) {
if (aue_csr_read_1(sc, AUE_EE_CTL) & AUE_EECTL_DONE)
break;
}
if (i == AUE_TIMEOUT) {
printf("%s: EEPROM read timed out\n",
device_xname(un->un_dev));
}
return aue_csr_read_2(sc, AUE_EE_DATA);
}
/*
* Read the MAC from the EEPROM. It's at offset 0.
*/
static void
aue_read_mac(struct usbnet *un)
{
struct aue_softc *sc = usbnet_softc(un);
int i;
int off = 0;
int word;
usbnet_isowned_core(un);
AUEHIST_FUNC();
AUEHIST_CALLARGS("aue%jd: enter",
device_unit(un->un_dev), 0, 0, 0);
for (i = 0; i < 3; i++) {
word = aue_eeprom_getword(sc, off + i);
un->un_eaddr[2 * i] = (u_char)word;
un->un_eaddr[2 * i + 1] = (u_char)(word >> 8);
}
}
static int
aue_uno_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
{
struct aue_softc *sc = usbnet_softc(un);
int i;
AUEHIST_FUNC();
#if 0
/*
* The Am79C901 HomePNA PHY actually contains
* two transceivers: a 1Mbps HomePNA PHY and a
* 10Mbps full/half duplex ethernet PHY with
* NWAY autoneg. However in the ADMtek adapter,
* only the 1Mbps PHY is actually connected to
* anything, so we ignore the 10Mbps one. It
* happens to be configured for MII address 3,
* so we filter that out.
*/
if (sc->aue_vendor == USB_VENDOR_ADMTEK &&
sc->aue_product == USB_PRODUCT_ADMTEK_PEGASUS) {
if (phy == 3)
return EINVAL;
}
#endif
aue_csr_write_1(sc, AUE_PHY_ADDR, phy);
aue_csr_write_1(sc, AUE_PHY_CTL, reg | AUE_PHYCTL_READ);
for (i = 0; i < AUE_TIMEOUT; i++) {
if (aue_csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE)
break;
}
if (i == AUE_TIMEOUT) {
AUEHIST_CALLARGS("aue%jd: phy=%#jx reg=%#jx read timed out",
device_unit(un->un_dev), phy, reg, 0);
return ETIMEDOUT;
}
*val = aue_csr_read_2(sc, AUE_PHY_DATA);
AUEHIST_CALLARGSN(11, "aue%jd: phy=%#jx reg=%#jx => 0x%04jx",
device_unit(un->un_dev), phy, reg, *val);
return 0;
}
static int
aue_uno_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
{
struct aue_softc *sc = usbnet_softc(un);
int i;
AUEHIST_FUNC();
AUEHIST_CALLARGSN(11, "aue%jd: phy=%jd reg=%jd data=0x%04jx",
device_unit(un->un_dev), phy, reg, val);
#if 0
if (sc->aue_vendor == USB_VENDOR_ADMTEK &&
sc->aue_product == USB_PRODUCT_ADMTEK_PEGASUS) {
if (phy == 3)
return EINVAL;
}
#endif
aue_csr_write_2(sc, AUE_PHY_DATA, val);
aue_csr_write_1(sc, AUE_PHY_ADDR, phy);
aue_csr_write_1(sc, AUE_PHY_CTL, reg | AUE_PHYCTL_WRITE);
for (i = 0; i < AUE_TIMEOUT; i++) {
if (aue_csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE)
break;
}
if (i == AUE_TIMEOUT) {
DPRINTF("aue%jd: phy=%#jx reg=%#jx val=%#jx write timed out",
device_unit(un->un_dev), phy, reg, val);
return ETIMEDOUT;
}
return 0;
}
static void
aue_uno_mii_statchg(struct ifnet *ifp)
{
struct usbnet *un = ifp->if_softc;
struct aue_softc *sc = usbnet_softc(un);
struct mii_data *mii = usbnet_mii(un);
const bool hadlink __diagused = usbnet_havelink(un);
AUEHIST_FUNC(); AUEHIST_CALLED();
AUEHIST_CALLARGSN(5, "aue%jd: ifp=%#jx link=%jd",
device_unit(un->un_dev), (uintptr_t)ifp, hadlink, 0);
AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB | AUE_CTL0_TX_ENB);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL);
} else {
AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL);
}
if ((mii->mii_media_active & IFM_FDX) != 0)
AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX);
else
AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX);
AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB | AUE_CTL0_TX_ENB);
if (mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
usbnet_set_link(un, true);
}
/*
* Set the LED modes on the LinkSys adapter.
* This turns on the 'dual link LED' bin in the auxmode
* register of the Broadcom PHY.
*/
if (!usbnet_isdying(un) && (un->un_flags & LSYS)) {
uint16_t auxmode;
aue_uno_mii_read_reg(un, 0, 0x1b, &auxmode);
aue_uno_mii_write_reg(un, 0, 0x1b, auxmode | 0x04);
}
if (usbnet_havelink(un) != hadlink) {
DPRINTFN(5, "aue%jd: exit link %jd",
device_unit(un->un_dev), usbnet_havelink(un), 0, 0);
}
}
#define AUE_POLY 0xEDB88320
#define AUE_BITS 6
static uint32_t
aue_crc(void *addrv)
{
uint32_t idx, bit, data, crc;
char *addr = addrv;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? AUE_POLY : 0);
}
return crc & ((1 << AUE_BITS) - 1);
}
static void
aue_setiff_locked(struct usbnet *un)
{
struct aue_softc * const sc = usbnet_softc(un);
struct ifnet * const ifp = usbnet_ifp(un);
struct ethercom * ec = usbnet_ec(un);
struct ether_multi *enm;
struct ether_multistep step;
uint32_t h = 0, i;
uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
AUEHIST_FUNC();
AUEHIST_CALLARGSN(5, "aue%jd: enter", device_unit(un->un_dev), 0, 0, 0);
usbnet_isowned_core(un);
if (ifp->if_flags & IFF_PROMISC) {
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI);
return;
}
AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI);
/* now program new ones */
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo,
enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
ETHER_UNLOCK(ec);
goto allmulti;
}
h = aue_crc(enm->enm_addrlo);
hashtbl[h >> 3] |= 1 << (h & 0x7);
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
/* write the hashtable */
for (i = 0; i < 8; i++)
aue_csr_write_1(sc, AUE_MAR0 + i, hashtbl[i]);
ifp->if_flags &= ~IFF_ALLMULTI;
}
static void
aue_reset_pegasus_II(struct aue_softc *sc)
{
/* Magic constants taken from Linux driver. */
aue_csr_write_1(sc, AUE_REG_1D, 0);
aue_csr_write_1(sc, AUE_REG_7B, 2);
#if 0
if ((un->un_flags & PNA) && mii_mode)
aue_csr_write_1(sc, AUE_REG_81, 6);
else
#endif
aue_csr_write_1(sc, AUE_REG_81, 2);
}
static void
aue_reset(struct aue_softc *sc)
{
struct usbnet * const un = &sc->aue_un;
int i;
AUEHIST_FUNC();
AUEHIST_CALLARGSN(2, "aue%jd: enter", device_unit(un->un_dev), 0, 0, 0);
AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_RESETMAC);
for (i = 0; i < AUE_TIMEOUT; i++) {
if (!(aue_csr_read_1(sc, AUE_CTL1) & AUE_CTL1_RESETMAC))
break;
}
if (i == AUE_TIMEOUT)
printf("%s: reset failed\n", device_xname(un->un_dev));
#if 0
/* XXX what is mii_mode supposed to be */
if (sc->sc_mii_mode && (un->un_flags & PNA))
aue_csr_write_1(sc, AUE_GPIO1, 0x34);
else
aue_csr_write_1(sc, AUE_GPIO1, 0x26);
#endif
/*
* The PHY(s) attached to the Pegasus chip may be held
* in reset until we flip on the GPIO outputs. Make sure
* to set the GPIO pins high so that the PHY(s) will
* be enabled.
*
* Note: We force all of the GPIO pins low first, *then*
* enable the ones we want.
*/
if (un->un_flags & LSYS) {
/* Grrr. LinkSys has to be different from everyone else. */
aue_csr_write_1(sc, AUE_GPIO0,
AUE_GPIO_SEL0 | AUE_GPIO_SEL1);
} else {
aue_csr_write_1(sc, AUE_GPIO0,
AUE_GPIO_OUT0 | AUE_GPIO_SEL0);
}
aue_csr_write_1(sc, AUE_GPIO0,
AUE_GPIO_OUT0 | AUE_GPIO_SEL0 | AUE_GPIO_SEL1);
if (un->un_flags & PII)
aue_reset_pegasus_II(sc);
/* Wait a little while for the chip to get its brains in order. */
delay(10000); /* XXX */
//usbd_delay_ms(un->un_udev, 10); /* XXX */
DPRINTFN(2, "aue%jd: exit", device_unit(un->un_dev), 0, 0, 0);
}
/*
* Probe for a Pegasus chip.
*/
static int
aue_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
/*
* Some manufacturers use the same vendor and product id for
* different devices. We need to sanity check the DeviceClass
* in this case
* Currently known guilty products:
* 0x050d/0x0121 Belkin Bluetooth and USB2LAN
*
* If this turns out to be more common, we could use a quirk
* table.
*/
if (uaa->uaa_vendor == USB_VENDOR_BELKIN &&
uaa->uaa_product == USB_PRODUCT_BELKIN_USB2LAN) {
usb_device_descriptor_t *dd;
dd = usbd_get_device_descriptor(uaa->uaa_device);
if (dd != NULL &&
dd->bDeviceClass != UDCLASS_IN_INTERFACE)
return UMATCH_NONE;
}
return aue_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static void
aue_attach(device_t parent, device_t self, void *aux)
{
USBNET_MII_DECL_DEFAULT(unm);
struct aue_softc * const sc = device_private(self);
struct usbnet * const un = &sc->aue_un;
struct usb_attach_arg *uaa = aux;
char *devinfop;
struct usbd_device *dev = uaa->uaa_device;
usbd_status err;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
int i;
AUEHIST_FUNC();
AUEHIST_CALLARGSN(2, "aue%jd: enter sc=%#jx",
device_unit(self), (uintptr_t)sc, 0, 0);
KASSERT((void *)sc == un);
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
un->un_dev = self;
un->un_udev = dev;
un->un_sc = sc;
un->un_ops = &aue_ops;
un->un_intr = &sc->aue_intr;
un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
un->un_rx_list_cnt = AUE_RX_LIST_CNT;
un->un_tx_list_cnt = AUE_RX_LIST_CNT;
un->un_rx_bufsz = AUE_BUFSZ;
un->un_tx_bufsz = AUE_BUFSZ;
sc->aue_intr.uni_buf = &sc->aue_ibuf;
sc->aue_intr.uni_bufsz = sizeof(sc->aue_ibuf);
sc->aue_intr.uni_interval = AUE_INTR_INTERVAL;
err = usbd_set_config_no(dev, AUE_CONFIG_NO, 1);
if (err) {
aprint_error_dev(self, "failed to set configuration"
", err=%s\n", usbd_errstr(err));
return;
}
err = usbd_device2interface_handle(dev, AUE_IFACE_IDX, &un->un_iface);
if (err) {
aprint_error_dev(self, "getting interface handle failed\n");
return;
}
un->un_flags = aue_lookup(uaa->uaa_vendor, uaa->uaa_product)->aue_flags;
id = usbd_get_interface_descriptor(un->un_iface);
/* Find endpoints. */
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
if (ed == NULL) {
aprint_error_dev(self,
"couldn't get endpoint descriptor %d\n", i);
return;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
}
}
if (un->un_ed[USBNET_ENDPT_RX] == 0 ||
un->un_ed[USBNET_ENDPT_TX] == 0 ||
un->un_ed[USBNET_ENDPT_INTR] == 0) {
aprint_error_dev(self, "missing endpoint\n");
return;
}
/* First level attach. */
usbnet_attach(un, "auedet");
usbnet_lock_core(un);
/* Reset the adapter and get station address from the EEPROM. */
aue_reset(sc);
aue_read_mac(un);
usbnet_unlock_core(un);
usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
0, &unm);
}
static void
aue_uno_intr(struct usbnet *un, usbd_status status)
{
struct ifnet *ifp = usbnet_ifp(un);
struct aue_softc *sc = usbnet_softc(un);
struct aue_intrpkt *p = &sc->aue_ibuf;
AUEHIST_FUNC();
AUEHIST_CALLARGSN(20, "aue%jd: enter txstat0 %#jx\n",
device_unit(un->un_dev), p->aue_txstat0, 0, 0);
if (p->aue_txstat0)
if_statinc(ifp, if_oerrors);
if (p->aue_txstat0 & (AUE_TXSTAT0_LATECOLL | AUE_TXSTAT0_EXCESSCOLL))
if_statinc(ifp, if_collisions);
}
static void
aue_uno_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len)
{
struct ifnet *ifp = usbnet_ifp(un);
uint8_t *buf = c->unc_buf;
struct aue_rxpkt r;
uint32_t pktlen;
AUEHIST_FUNC();
AUEHIST_CALLARGSN(10, "aue%jd: enter len %ju",
device_unit(un->un_dev), total_len, 0, 0);
if (total_len <= 4 + ETHER_CRC_LEN) {
if_statinc(ifp, if_ierrors);
return;
}
memcpy(&r, buf + total_len - 4, sizeof(r));
/* Turn off all the non-error bits in the rx status word. */
r.aue_rxstat &= AUE_RXSTAT_MASK;
if (r.aue_rxstat) {
if_statinc(ifp, if_ierrors);
return;
}
/* No errors; receive the packet. */
pktlen = total_len - ETHER_CRC_LEN - 4;
usbnet_enqueue(un, buf, pktlen, 0, 0, 0);
}
static unsigned
aue_uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
{
uint8_t *buf = c->unc_buf;
int total_len;
AUEHIST_FUNC();
AUEHIST_CALLARGSN(10, "aue%jd: enter pktlen=%jd",
device_unit(un->un_dev), m->m_pkthdr.len, 0, 0);
if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - 2)
return 0;
/*
* Copy the mbuf data into a contiguous buffer, leaving two
* bytes at the beginning to hold the frame length.
*/
m_copydata(m, 0, m->m_pkthdr.len, buf + 2);
/*
* The ADMtek documentation says that the packet length is
* supposed to be specified in the first two bytes of the
* transfer, however it actually seems to ignore this info
* and base the frame size on the bulk transfer length.
*/
buf[0] = (uint8_t)m->m_pkthdr.len;
buf[1] = (uint8_t)(m->m_pkthdr.len >> 8);
total_len = m->m_pkthdr.len + 2;
DPRINTFN(5, "aue%jd: send %jd bytes",
device_unit(un->un_dev), total_len, 0, 0);
return total_len;
}
static int
aue_init_locked(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
struct aue_softc *sc = usbnet_softc(un);
int i, rv;
const u_char *eaddr;
AUEHIST_FUNC();
AUEHIST_CALLARGSN(5, "aue%jd: enter link=%jd",
device_unit(un->un_dev), usbnet_havelink(un), 0, 0);
if (usbnet_isdying(un))
return EIO;
/* Cancel pending I/O */
if (ifp->if_flags & IFF_RUNNING)
return 0;
/* Reset the interface. */
aue_reset(sc);
eaddr = CLLADDR(ifp->if_sadl);
for (i = 0; i < ETHER_ADDR_LEN; i++)
aue_csr_write_1(sc, AUE_PAR0 + i, eaddr[i]);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC);
else
AUE_CLRBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC);
rv = usbnet_init_rx_tx(un);
/* Load the multicast filter. */
aue_setiff_locked(un);
/* Enable RX and TX */
aue_csr_write_1(sc, AUE_CTL0, AUE_CTL0_RXSTAT_APPEND | AUE_CTL0_RX_ENB);
AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_TX_ENB);
AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_EP3_CLR);
//mii_mediachg(mii);
return rv;
}
static int
aue_uno_init(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
int rv;
usbnet_lock_core(un);
usbnet_busy(un);
rv = aue_init_locked(ifp);
usbnet_unbusy(un);
usbnet_unlock_core(un);
return rv;
}
static int
aue_uno_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
AUEHIST_FUNC();
AUEHIST_CALLARGSN(5, "aue%jd: enter cmd %#jx data %#jx",
device_unit(((struct usbnet *)(ifp->if_softc))->un_dev),
cmd, (uintptr_t)data, 0);
switch (cmd) {
case SIOCADDMULTI:
case SIOCDELMULTI:
aue_uno_init(ifp);
break;
default:
break;
}
return 0;
}
static void
aue_uno_stop(struct ifnet *ifp, int disable)
{
struct usbnet * const un = ifp->if_softc;
struct aue_softc * const sc = usbnet_softc(un);
AUEHIST_FUNC();
AUEHIST_CALLARGSN(5, "aue%jd: enter", device_unit(un->un_dev), 0, 0, 0);
aue_csr_write_1(sc, AUE_CTL0, 0);
aue_csr_write_1(sc, AUE_CTL1, 0);
aue_reset(sc);
}
#ifdef _MODULE
#include "ioconf.c"
#endif
USBNET_MODULE(aue)