NetBSD/sys/dev/sdmmc/sdhc.c

1256 lines
31 KiB
C

/* $NetBSD: sdhc.c,v 1.8 2010/10/07 12:06:10 kiyohara Exp $ */
/* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* SD Host Controller driver based on the SD Host Controller Standard
* Simplified Specification Version 1.00 (www.sdcard.com).
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.8 2010/10/07 12:06:10 kiyohara Exp $");
#include <sys/param.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <dev/sdmmc/sdhcreg.h>
#include <dev/sdmmc/sdhcvar.h>
#include <dev/sdmmc/sdmmcchip.h>
#include <dev/sdmmc/sdmmcreg.h>
#include <dev/sdmmc/sdmmcvar.h>
#ifdef SDHC_DEBUG
int sdhcdebug = 1;
#define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
void sdhc_dump_regs(struct sdhc_host *);
#else
#define DPRINTF(n,s) do {} while (0)
#endif
#define SDHC_COMMAND_TIMEOUT hz
#define SDHC_BUFFER_TIMEOUT hz
#define SDHC_TRANSFER_TIMEOUT hz
#define SDHC_DMA_TIMEOUT hz
struct sdhc_host {
struct sdhc_softc *sc; /* host controller device */
bus_space_tag_t iot; /* host register set tag */
bus_space_handle_t ioh; /* host register set handle */
bus_dma_tag_t dmat; /* host DMA tag */
device_t sdmmc; /* generic SD/MMC device */
struct kmutex host_mtx;
u_int clkbase; /* base clock frequency in KHz */
int maxblklen; /* maximum block length */
uint32_t ocr; /* OCR value from capabilities */
uint8_t regs[14]; /* host controller state */
uint16_t intr_status; /* soft interrupt status */
uint16_t intr_error_status; /* soft error status */
struct kmutex intr_mtx;
struct kcondvar intr_cv;
uint32_t flags; /* flags for this host */
#define SHF_USE_DMA 0x0001
#define SHF_USE_4BIT_MODE 0x0002
};
#define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
#define HREAD1(hp, reg) \
(bus_space_read_1((hp)->iot, (hp)->ioh, (reg)))
#define HREAD2(hp, reg) \
(bus_space_read_2((hp)->iot, (hp)->ioh, (reg)))
#define HREAD4(hp, reg) \
(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
#define HWRITE1(hp, reg, val) \
bus_space_write_1((hp)->iot, (hp)->ioh, (reg), (val))
#define HWRITE2(hp, reg, val) \
bus_space_write_2((hp)->iot, (hp)->ioh, (reg), (val))
#define HWRITE4(hp, reg, val) \
bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
#define HCLR1(hp, reg, bits) \
HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
#define HCLR2(hp, reg, bits) \
HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
#define HSET1(hp, reg, bits) \
HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
#define HSET2(hp, reg, bits) \
HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
static int sdhc_host_reset(sdmmc_chipset_handle_t);
static int sdhc_host_reset1(sdmmc_chipset_handle_t);
static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
static int sdhc_card_detect(sdmmc_chipset_handle_t);
static int sdhc_write_protect(sdmmc_chipset_handle_t);
static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
static void sdhc_exec_command(sdmmc_chipset_handle_t,
struct sdmmc_command *);
static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
static int sdhc_soft_reset(struct sdhc_host *, int);
static int sdhc_wait_intr(struct sdhc_host *, int, int);
static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, int);
static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, int);
static struct sdmmc_chip_functions sdhc_functions = {
/* host controller reset */
sdhc_host_reset,
/* host controller capabilities */
sdhc_host_ocr,
sdhc_host_maxblklen,
/* card detection */
sdhc_card_detect,
/* write protect */
sdhc_write_protect,
/* bus power, clock frequency and width */
sdhc_bus_power,
sdhc_bus_clock,
sdhc_bus_width,
sdhc_bus_rod,
/* command execution */
sdhc_exec_command,
/* card interrupt */
sdhc_card_enable_intr,
sdhc_card_intr_ack
};
/*
* Called by attachment driver. For each SD card slot there is one SD
* host controller standard register set. (1.3)
*/
int
sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
bus_space_handle_t ioh, bus_size_t iosize)
{
struct sdmmcbus_attach_args saa;
struct sdhc_host *hp;
uint32_t caps;
#ifdef SDHC_DEBUG
uint16_t sdhcver;
sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
aprint_normal_dev(sc->sc_dev, "SD Host Specification/Vendor Version ");
switch (SDHC_SPEC_VERSION(sdhcver)) {
case 0x00:
aprint_normal("1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
break;
default:
aprint_normal(">1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
break;
}
#endif
/* Allocate one more host structure. */
hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
if (hp == NULL) {
aprint_error_dev(sc->sc_dev,
"couldn't alloc memory (sdhc host)\n");
goto err1;
}
sc->sc_host[sc->sc_nhosts++] = hp;
/* Fill in the new host structure. */
hp->sc = sc;
hp->iot = iot;
hp->ioh = ioh;
hp->dmat = sc->sc_dmat;
mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
cv_init(&hp->intr_cv, "sdhcintr");
/*
* Reset the host controller and enable interrupts.
*/
(void)sdhc_host_reset(hp);
/* Determine host capabilities. */
mutex_enter(&hp->host_mtx);
caps = HREAD4(hp, SDHC_CAPABILITIES);
mutex_exit(&hp->host_mtx);
#if notyet
/* Use DMA if the host system and the controller support it. */
if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
|| ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
&& ISSET(caps, SDHC_DMA_SUPPORT)))) {
SET(hp->flags, SHF_USE_DMA);
aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
}
#endif
/*
* Determine the base clock frequency. (2.2.24)
*/
if (SDHC_BASE_FREQ_KHZ(caps) != 0)
hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
if (hp->clkbase == 0) {
/* The attachment driver must tell us. */
aprint_error_dev(sc->sc_dev, "unknown base clock frequency\n");
goto err;
} else if (hp->clkbase < 10000 || hp->clkbase > 63000) {
/* SDHC 1.0 supports only 10-63 MHz. */
aprint_error_dev(sc->sc_dev,
"base clock frequency out of range: %u MHz\n",
hp->clkbase / 1000);
goto err;
}
DPRINTF(1,("%s: base clock frequency %u MHz\n",
device_xname(sc->sc_dev), hp->clkbase / 1000));
/*
* XXX Set the data timeout counter value according to
* capabilities. (2.2.15)
*/
HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
/*
* Determine SD bus voltage levels supported by the controller.
*/
if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
/*
* Determine the maximum block length supported by the host
* controller. (2.2.24)
*/
switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
case SDHC_MAX_BLK_LEN_512:
hp->maxblklen = 512;
break;
case SDHC_MAX_BLK_LEN_1024:
hp->maxblklen = 1024;
break;
case SDHC_MAX_BLK_LEN_2048:
hp->maxblklen = 2048;
break;
default:
aprint_error_dev(sc->sc_dev, "max block length unknown\n");
goto err;
}
DPRINTF(1, ("%s: max block length %u byte%s\n",
device_xname(sc->sc_dev), hp->maxblklen,
hp->maxblklen > 1 ? "s" : ""));
/*
* Attach the generic SD/MMC bus driver. (The bus driver must
* not invoke any chipset functions before it is attached.)
*/
memset(&saa, 0, sizeof(saa));
saa.saa_busname = "sdmmc";
saa.saa_sct = &sdhc_functions;
saa.saa_sch = hp;
saa.saa_dmat = hp->dmat;
saa.saa_clkmin = hp->clkbase / 256;
saa.saa_clkmax = hp->clkbase;
saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
#if notyet
if (ISSET(hp->flags, SHF_USE_DMA))
saa.saa_caps |= SMC_CAPS_DMA;
#endif
hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
return 0;
err:
cv_destroy(&hp->intr_cv);
mutex_destroy(&hp->intr_mtx);
mutex_destroy(&hp->host_mtx);
free(hp, M_DEVBUF);
sc->sc_host[--sc->sc_nhosts] = NULL;
err1:
return 1;
}
int
sdhc_detach(device_t dev, int flags)
{
struct sdhc_host *hp = (struct sdhc_host *)dev;
struct sdhc_softc *sc = hp->sc;
int rv = 0;
if (hp->sdmmc)
rv = config_detach(hp->sdmmc, flags);
cv_destroy(&hp->intr_cv);
mutex_destroy(&hp->intr_mtx);
mutex_destroy(&hp->host_mtx);
free(hp, M_DEVBUF);
sc->sc_host[--sc->sc_nhosts] = NULL;
return rv;
}
bool
sdhc_suspend(device_t dev, const pmf_qual_t *qual)
{
struct sdhc_softc *sc = device_private(dev);
struct sdhc_host *hp;
int n, i;
/* XXX poll for command completion or suspend command
* in progress */
/* Save the host controller state. */
for (n = 0; n < sc->sc_nhosts; n++) {
hp = sc->sc_host[n];
for (i = 0; i < sizeof hp->regs; i++)
hp->regs[i] = HREAD1(hp, i);
}
return true;
}
bool
sdhc_resume(device_t dev, const pmf_qual_t *qual)
{
struct sdhc_softc *sc = device_private(dev);
struct sdhc_host *hp;
int n, i;
/* Restore the host controller state. */
for (n = 0; n < sc->sc_nhosts; n++) {
hp = sc->sc_host[n];
(void)sdhc_host_reset(hp);
for (i = 0; i < sizeof hp->regs; i++)
HWRITE1(hp, i, hp->regs[i]);
}
return true;
}
bool
sdhc_shutdown(device_t dev, int flags)
{
struct sdhc_softc *sc = device_private(dev);
struct sdhc_host *hp;
int i;
/* XXX chip locks up if we don't disable it before reboot. */
for (i = 0; i < sc->sc_nhosts; i++) {
hp = sc->sc_host[i];
(void)sdhc_host_reset(hp);
}
return true;
}
/*
* Reset the host controller. Called during initialization, when
* cards are removed, upon resume, and during error recovery.
*/
static int
sdhc_host_reset1(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
uint16_t sdhcimask;
int error;
/* Don't lock. */
/* Disable all interrupts. */
HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
/*
* Reset the entire host controller and wait up to 100ms for
* the controller to clear the reset bit.
*/
error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
if (error)
goto out;
/* Set data timeout counter value to max for now. */
HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
/* Enable interrupts. */
sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
out:
return error;
}
static int
sdhc_host_reset(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
int error;
mutex_enter(&hp->host_mtx);
error = sdhc_host_reset1(sch);
mutex_exit(&hp->host_mtx);
return error;
}
static uint32_t
sdhc_host_ocr(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
return hp->ocr;
}
static int
sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
return hp->maxblklen;
}
/*
* Return non-zero if the card is currently inserted.
*/
static int
sdhc_card_detect(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
int r;
mutex_enter(&hp->host_mtx);
r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
mutex_exit(&hp->host_mtx);
if (r)
return 1;
return 0;
}
/*
* Return non-zero if the card is currently write-protected.
*/
static int
sdhc_write_protect(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
int r;
mutex_enter(&hp->host_mtx);
r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
mutex_exit(&hp->host_mtx);
if (!r)
return 1;
return 0;
}
/*
* Set or change SD bus voltage and enable or disable SD bus power.
* Return zero on success.
*/
static int
sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
uint8_t vdd;
int error = 0;
mutex_enter(&hp->host_mtx);
/*
* Disable bus power before voltage change.
*/
if (!(hp->sc->sc_flags & SDHC_FLAG_NO_PWR0))
HWRITE1(hp, SDHC_POWER_CTL, 0);
/* If power is disabled, reset the host and return now. */
if (ocr == 0) {
(void)sdhc_host_reset1(hp);
goto out;
}
/*
* Select the lowest voltage according to capabilities.
*/
ocr &= hp->ocr;
if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V))
vdd = SDHC_VOLTAGE_1_8V;
else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
vdd = SDHC_VOLTAGE_3_0V;
else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
vdd = SDHC_VOLTAGE_3_3V;
else {
/* Unsupported voltage level requested. */
error = EINVAL;
goto out;
}
/*
* Enable bus power. Wait at least 1 ms (or 74 clocks) plus
* voltage ramp until power rises.
*/
HWRITE1(hp, SDHC_POWER_CTL,
(vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
sdmmc_delay(10000);
/*
* The host system may not power the bus due to battery low,
* etc. In that case, the host controller should clear the
* bus power bit.
*/
if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
error = ENXIO;
goto out;
}
out:
mutex_exit(&hp->host_mtx);
return error;
}
/*
* Return the smallest possible base clock frequency divisor value
* for the CLOCK_CTL register to produce `freq' (KHz).
*/
static int
sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
{
int div;
for (div = 1; div <= 256; div *= 2)
if ((hp->clkbase / div) <= freq)
return (div / 2);
/* No divisor found. */
return -1;
}
/*
* Set or change SDCLK frequency or disable the SD clock.
* Return zero on success.
*/
static int
sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
int div;
int timo;
int error = 0;
#ifdef DIAGNOSTIC
int ispresent;
#endif
#ifdef DIAGNOSTIC
mutex_enter(&hp->host_mtx);
ispresent = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
mutex_exit(&hp->host_mtx);
/* Must not stop the clock if commands are in progress. */
if (ispresent && sdhc_card_detect(hp))
printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
device_xname(hp->sc->sc_dev));
#endif
mutex_enter(&hp->host_mtx);
/*
* Stop SD clock before changing the frequency.
*/
HWRITE2(hp, SDHC_CLOCK_CTL, 0);
if (freq == SDMMC_SDCLK_OFF)
goto out;
/*
* Set the minimum base clock frequency divisor.
*/
if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
/* Invalid base clock frequency or `freq' value. */
error = EINVAL;
goto out;
}
HWRITE2(hp, SDHC_CLOCK_CTL, div << SDHC_SDCLK_DIV_SHIFT);
/*
* Start internal clock. Wait 10ms for stabilization.
*/
HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
for (timo = 1000; timo > 0; timo--) {
if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
break;
sdmmc_delay(10);
}
if (timo == 0) {
error = ETIMEDOUT;
goto out;
}
/*
* Enable SD clock.
*/
HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
if (freq > 25000)
HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
else
HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
out:
mutex_exit(&hp->host_mtx);
return error;
}
static int
sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
int reg;
switch (width) {
case 1:
case 4:
break;
default:
DPRINTF(0,("%s: unsupported bus width (%d)\n",
HDEVNAME(hp), width));
return 1;
}
mutex_enter(&hp->host_mtx);
reg = HREAD1(hp, SDHC_HOST_CTL);
reg &= ~SDHC_4BIT_MODE;
if (width == 4)
reg |= SDHC_4BIT_MODE;
HWRITE1(hp, SDHC_HOST_CTL, reg);
mutex_exit(&hp->host_mtx);
return 0;
}
static int
sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
{
/* Nothing ?? */
return 0;
}
static void
sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
mutex_enter(&hp->host_mtx);
if (enable) {
HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
} else {
HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
}
mutex_exit(&hp->host_mtx);
}
static void
sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
mutex_enter(&hp->host_mtx);
HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
mutex_exit(&hp->host_mtx);
}
static int
sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
{
uint32_t state;
int timeout;
for (timeout = 10; timeout > 0; timeout--) {
if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
return 0;
sdmmc_delay(10000);
}
DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
value, state));
return ETIMEDOUT;
}
static void
sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
{
struct sdhc_host *hp = (struct sdhc_host *)sch;
int error;
/*
* Start the MMC command, or mark `cmd' as failed and return.
*/
error = sdhc_start_command(hp, cmd);
if (error) {
cmd->c_error = error;
goto out;
}
/*
* Wait until the command phase is done, or until the command
* is marked done for any other reason.
*/
if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
cmd->c_error = ETIMEDOUT;
goto out;
}
/*
* The host controller removes bits [0:7] from the response
* data (CRC) and we pass the data up unchanged to the bus
* driver (without padding).
*/
mutex_enter(&hp->host_mtx);
if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
if (ISSET(cmd->c_flags, SCF_RSP_136)) {
uint8_t *p = (uint8_t *)cmd->c_resp;
int i;
for (i = 0; i < 15; i++)
*p++ = HREAD1(hp, SDHC_RESPONSE + i);
} else {
cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
}
}
mutex_exit(&hp->host_mtx);
DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
/*
* If the command has data to transfer in any direction,
* execute the transfer now.
*/
if (cmd->c_error == 0 && cmd->c_data != NULL)
sdhc_transfer_data(hp, cmd);
out:
mutex_enter(&hp->host_mtx);
/* Turn off the LED. */
HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
mutex_exit(&hp->host_mtx);
SET(cmd->c_flags, SCF_ITSDONE);
DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
cmd->c_flags, cmd->c_error));
}
static int
sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
uint16_t blksize = 0;
uint16_t blkcount = 0;
uint16_t mode;
uint16_t command;
int error;
DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x\n",
HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
cmd->c_datalen, cmd->c_flags));
/*
* The maximum block length for commands should be the minimum
* of the host buffer size and the card buffer size. (1.7.2)
*/
/* Fragment the data into proper blocks. */
if (cmd->c_datalen > 0) {
blksize = MIN(cmd->c_datalen, cmd->c_blklen);
blkcount = cmd->c_datalen / blksize;
if (cmd->c_datalen % blksize > 0) {
/* XXX: Split this command. (1.7.4) */
aprint_error_dev(hp->sc->sc_dev,
"data not a multiple of %u bytes\n", blksize);
return EINVAL;
}
}
/* Check limit imposed by 9-bit block count. (1.7.2) */
if (blkcount > SDHC_BLOCK_COUNT_MAX) {
aprint_error_dev(hp->sc->sc_dev, "too much data\n");
return EINVAL;
}
/* Prepare transfer mode register value. (2.2.5) */
mode = 0;
if (ISSET(cmd->c_flags, SCF_CMD_READ))
mode |= SDHC_READ_MODE;
if (blkcount > 0) {
mode |= SDHC_BLOCK_COUNT_ENABLE;
if (blkcount > 1) {
mode |= SDHC_MULTI_BLOCK_MODE;
/* XXX only for memory commands? */
mode |= SDHC_AUTO_CMD12_ENABLE;
}
}
if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
if (cmd->c_dmamap->dm_nsegs == 1) {
mode |= SDHC_DMA_ENABLE;
} else {
cmd->c_dmamap = NULL;
}
}
/*
* Prepare command register value. (2.2.6)
*/
command =
(cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
if (ISSET(cmd->c_flags, SCF_RSP_CRC))
command |= SDHC_CRC_CHECK_ENABLE;
if (ISSET(cmd->c_flags, SCF_RSP_IDX))
command |= SDHC_INDEX_CHECK_ENABLE;
if (cmd->c_data != NULL)
command |= SDHC_DATA_PRESENT_SELECT;
if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
command |= SDHC_NO_RESPONSE;
else if (ISSET(cmd->c_flags, SCF_RSP_136))
command |= SDHC_RESP_LEN_136;
else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
command |= SDHC_RESP_LEN_48_CHK_BUSY;
else
command |= SDHC_RESP_LEN_48;
/* Wait until command and data inhibit bits are clear. (1.5) */
error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
if (error)
return error;
DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
HDEVNAME(hp), blksize, blkcount, mode, command));
mutex_enter(&hp->host_mtx);
/* Alert the user not to remove the card. */
HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
/* Set DMA start address. */
if (ISSET(mode, SDHC_DMA_ENABLE))
HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
/*
* Start a CPU data transfer. Writing to the high order byte
* of the SDHC_COMMAND register triggers the SD command. (1.5)
*/
HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
if (blkcount > 1)
HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
HWRITE2(hp, SDHC_COMMAND, command);
mutex_exit(&hp->host_mtx);
return 0;
}
static void
sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
int error;
DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
MMC_R1(cmd->c_resp), cmd->c_datalen));
#ifdef SDHC_DEBUG
/* XXX I forgot why I wanted to know when this happens :-( */
if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
aprint_error_dev(hp->sc->sc_dev,
"CMD52/53 error response flags %#x\n",
MMC_R1(cmd->c_resp) & 0xff00);
}
#endif
if (cmd->c_dmamap != NULL)
error = sdhc_transfer_data_dma(hp, cmd);
else
error = sdhc_transfer_data_pio(hp, cmd);
if (error)
cmd->c_error = error;
SET(cmd->c_flags, SCF_ITSDONE);
DPRINTF(1,("%s: data transfer done (error=%d)\n",
HDEVNAME(hp), cmd->c_error));
}
static int
sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
bus_dmamap_t dmap = cmd->c_dmamap;
uint16_t blklen = cmd->c_blklen;
uint16_t blkcnt = cmd->c_datalen / blklen;
uint16_t remain;
int error = 0;
for (;;) {
if (!sdhc_wait_intr(hp,
SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
SDHC_DMA_TIMEOUT)) {
error = ETIMEDOUT;
break;
}
/* single block mode */
if (blkcnt == 1)
break;
/* multi block mode */
remain = HREAD2(hp, SDHC_BLOCK_COUNT);
if (remain == 0)
break;
HWRITE4(hp, SDHC_DMA_ADDR,
dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
}
#if 0
if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
SDHC_TRANSFER_TIMEOUT))
error = ETIMEDOUT;
#endif
return error;
}
static int
sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
{
uint8_t *data = cmd->c_data;
int len, datalen;
int mask;
int error = 0;
mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
datalen = cmd->c_datalen;
while (datalen > 0) {
if (!sdhc_wait_intr(hp,
SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY,
SDHC_BUFFER_TIMEOUT)) {
error = ETIMEDOUT;
break;
}
error = sdhc_wait_state(hp, mask, mask);
if (error)
break;
len = MIN(datalen, cmd->c_blklen);
if (ISSET(cmd->c_flags, SCF_CMD_READ))
sdhc_read_data_pio(hp, data, len);
else
sdhc_write_data_pio(hp, data, len);
data += len;
datalen -= len;
}
if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
SDHC_TRANSFER_TIMEOUT))
error = ETIMEDOUT;
return error;
}
static void
sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
{
if (((__uintptr_t)data & 3) == 0) {
while (datalen > 3) {
*(uint32_t *)data = HREAD4(hp, SDHC_DATA);
data += 4;
datalen -= 4;
}
if (datalen > 1) {
*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
data += 2;
datalen -= 2;
}
if (datalen > 0) {
*data = HREAD1(hp, SDHC_DATA);
data += 1;
datalen -= 1;
}
} else if (((__uintptr_t)data & 1) == 0) {
while (datalen > 1) {
*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
data += 2;
datalen -= 2;
}
if (datalen > 0) {
*data = HREAD1(hp, SDHC_DATA);
data += 1;
datalen -= 1;
}
} else {
while (datalen > 0) {
*data = HREAD1(hp, SDHC_DATA);
data += 1;
datalen -= 1;
}
}
}
static void
sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
{
if (((__uintptr_t)data & 3) == 0) {
while (datalen > 3) {
HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
data += 4;
datalen -= 4;
}
if (datalen > 1) {
HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
data += 2;
datalen -= 2;
}
if (datalen > 0) {
HWRITE1(hp, SDHC_DATA, *data);
data += 1;
datalen -= 1;
}
} else if (((__uintptr_t)data & 1) == 0) {
while (datalen > 1) {
HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
data += 2;
datalen -= 2;
}
if (datalen > 0) {
HWRITE1(hp, SDHC_DATA, *data);
data += 1;
datalen -= 1;
}
} else {
while (datalen > 0) {
HWRITE1(hp, SDHC_DATA, *data);
data += 1;
datalen -= 1;
}
}
}
/* Prepare for another command. */
static int
sdhc_soft_reset(struct sdhc_host *hp, int mask)
{
int timo;
DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
for (timo = 10; timo > 0; timo--) {
if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
break;
sdmmc_delay(10000);
HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
}
if (timo == 0) {
DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
HREAD1(hp, SDHC_SOFTWARE_RESET)));
HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
return ETIMEDOUT;
}
return 0;
}
static int
sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
{
int status;
mask |= SDHC_ERROR_INTERRUPT;
mutex_enter(&hp->intr_mtx);
status = hp->intr_status & mask;
while (status == 0) {
if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
== EWOULDBLOCK) {
status |= SDHC_ERROR_INTERRUPT;
break;
}
status = hp->intr_status & mask;
}
hp->intr_status &= ~status;
DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
hp->intr_error_status));
/* Command timeout has higher priority than command complete. */
if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
hp->intr_error_status = 0;
(void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
status = 0;
}
mutex_exit(&hp->intr_mtx);
return status;
}
/*
* Established by attachment driver at interrupt priority IPL_SDMMC.
*/
int
sdhc_intr(void *arg)
{
struct sdhc_softc *sc = (struct sdhc_softc *)arg;
struct sdhc_host *hp;
int host;
int done = 0;
uint16_t status;
uint16_t error;
/* We got an interrupt, but we don't know from which slot. */
for (host = 0; host < sc->sc_nhosts; host++) {
hp = sc->sc_host[host];
if (hp == NULL)
continue;
/* Find out which interrupts are pending. */
status = HREAD2(hp, SDHC_NINTR_STATUS);
if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
continue; /* no interrupt for us */
/* Acknowledge the interrupts we are about to handle. */
HWRITE2(hp, SDHC_NINTR_STATUS, status);
DPRINTF(2,("%s: interrupt status=%x\n", HDEVNAME(hp),
status));
if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
continue;
/* Claim this interrupt. */
done = 1;
/*
* Service error interrupts.
*/
if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
/* Acknowledge error interrupts. */
error = HREAD2(hp, SDHC_EINTR_STATUS);
HWRITE2(hp, SDHC_EINTR_STATUS, error);
DPRINTF(2,("%s: error interrupt, status=%x\n",
HDEVNAME(hp), error));
if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
SDHC_DATA_TIMEOUT_ERROR)) {
hp->intr_error_status |= error;
hp->intr_status |= status;
cv_broadcast(&hp->intr_cv);
}
}
/*
* Wake up the sdmmc event thread to scan for cards.
*/
if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION))
sdmmc_needs_discover(hp->sdmmc);
/*
* Wake up the blocking process to service command
* related interrupt(s).
*/
if (ISSET(status, SDHC_BUFFER_READ_READY|
SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
hp->intr_status |= status;
cv_broadcast(&hp->intr_cv);
}
/*
* Service SD card interrupts.
*/
if (ISSET(status, SDHC_CARD_INTERRUPT)) {
DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
sdmmc_card_intr(hp->sdmmc);
}
}
return done;
}
#ifdef SDHC_DEBUG
void
sdhc_dump_regs(struct sdhc_host *hp)
{
printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
HREAD4(hp, SDHC_PRESENT_STATE));
printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
HREAD1(hp, SDHC_POWER_CTL));
printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
HREAD2(hp, SDHC_NINTR_STATUS));
printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
HREAD2(hp, SDHC_EINTR_STATUS));
printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
HREAD2(hp, SDHC_NINTR_STATUS_EN));
printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
HREAD2(hp, SDHC_EINTR_STATUS_EN));
printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
HREAD4(hp, SDHC_CAPABILITIES));
printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
HREAD4(hp, SDHC_MAX_CAPABILITIES));
}
#endif