NetBSD/sys/arch/m68k/include/bus_dma.h
garbled d974db0ada Merge the ppcoea-renovation branch to HEAD.
This branch was a major cleanup and rototill of many of the various OEA
cpu based PPC ports that focused on sharing as much code as possible
between the various ports to eliminate near-identical copies of files in
every tree.  Additionally there is a new PIC system that unifies the
interface to interrupt code for all different OEA ppc arches.  The work
for this branch was done by a variety of people, too long to list here.

TODO:
bebox still needs work to complete the transition to -renovation.
ofppc still needs a bunch of work, which I will be looking at.
ev64260 still needs to be renovated
amigappc was not attempted.

NOTES:
pmppc was removed as an arch, and moved to a evbppc target.
2007-10-17 19:52:51 +00:00

266 lines
9.9 KiB
C

/* $NetBSD: bus_dma.h,v 1.10 2007/10/17 19:55:05 garbled Exp $ */
/*
* This file was extracted from from alpha/include/bus.h
* and should probably be resynced when needed.
* Darrin B. Jewell <dbj@NetBSD.org> Sat Jul 31 06:11:33 UTC 1999
* original cvs id: NetBSD: bus.h,v 1.29 1999/06/18 04:49:24 cgd Exp
*/
/*-
* Copyright (c) 1997, 1998, 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1996 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Chris G. Demetriou
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#ifndef _M68K_BUS_DMA_H_
#define _M68K_BUS_DMA_H_
/*
* Bus DMA methods.
*/
/*
* Flags used in various bus DMA methods.
*/
#define BUS_DMA_WAITOK 0x000 /* safe to sleep (pseudo-flag) */
#define BUS_DMA_NOWAIT 0x001 /* not safe to sleep */
#define BUS_DMA_ALLOCNOW 0x002 /* perform resource allocation now */
#define BUS_DMA_COHERENT 0x004 /* hint: map memory DMA coherent */
#define BUS_DMA_STREAMING 0x008 /* hint: sequential, unidirectional */
#define BUS_DMA_BUS1 0x010 /* placeholders for bus functions... */
#define BUS_DMA_BUS2 0x020
#define BUS_DMA_BUS3 0x040
#define BUS_DMA_BUS4 0x080
#define BUS_DMA_READ 0x100 /* mapping is device -> memory only */
#define BUS_DMA_WRITE 0x200 /* mapping is memory -> device only */
#define BUS_DMA_NOCACHE 0x400 /* hint: map non-cached memory */
/* Forwards needed by prototypes below. */
struct mbuf;
struct uio;
/*
* Operations performed by bus_dmamap_sync().
*/
#define BUS_DMASYNC_PREREAD 0x01 /* pre-read synchronization */
#define BUS_DMASYNC_POSTREAD 0x02 /* post-read synchronization */
#define BUS_DMASYNC_PREWRITE 0x04 /* pre-write synchronization */
#define BUS_DMASYNC_POSTWRITE 0x08 /* post-write synchronization */
typedef struct m68k_bus_dma_tag *bus_dma_tag_t;
typedef struct m68k_bus_dmamap *bus_dmamap_t;
/*
* bus_dma_segment_t
*
* Describes a single contiguous DMA transaction. Values
* are suitable for programming into DMA registers.
*/
struct m68k_bus_dma_segment {
bus_addr_t ds_addr; /* DMA address */
bus_size_t ds_len; /* length of transfer */
u_int _ds_flags; /* MD flags */
};
typedef struct m68k_bus_dma_segment bus_dma_segment_t;
/*
* bus_dma_tag_t
*
* A machine-dependent opaque type describing the implementation of
* DMA for a given bus.
*/
struct m68k_bus_dma_tag {
void *_cookie; /* cookie used in the guts */
/*
* Some chipsets have a built-in boundary constraint, independent
* of what the device requests. This allows that boundary to
* be specified. If the device has a more restrictive constraint,
* the map will use that, otherwise this boundary will be used.
* This value is ignored if 0.
*/
bus_size_t _boundary;
/*
* DMA mapping methods.
*/
int (*_dmamap_create)(bus_dma_tag_t, bus_size_t, int,
bus_size_t, bus_size_t, int, bus_dmamap_t *);
void (*_dmamap_destroy)(bus_dma_tag_t, bus_dmamap_t);
int (*_dmamap_load)(bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct proc *, int);
int (*_dmamap_load_mbuf)(bus_dma_tag_t, bus_dmamap_t,
struct mbuf *, int);
int (*_dmamap_load_uio)(bus_dma_tag_t, bus_dmamap_t,
struct uio *, int);
int (*_dmamap_load_raw)(bus_dma_tag_t, bus_dmamap_t,
bus_dma_segment_t *, int, bus_size_t, int);
void (*_dmamap_unload)(bus_dma_tag_t, bus_dmamap_t);
void (*_dmamap_sync)(bus_dma_tag_t, bus_dmamap_t,
bus_addr_t, bus_size_t, int);
/*
* DMA memory utility functions.
*/
int (*_dmamem_alloc)(bus_dma_tag_t, bus_size_t, bus_size_t,
bus_size_t, bus_dma_segment_t *, int, int *, int);
void (*_dmamem_free)(bus_dma_tag_t,
bus_dma_segment_t *, int);
int (*_dmamem_map)(bus_dma_tag_t, bus_dma_segment_t *,
int, size_t, void **, int);
void (*_dmamem_unmap)(bus_dma_tag_t, void *, size_t);
paddr_t (*_dmamem_mmap)(bus_dma_tag_t, bus_dma_segment_t *,
int, off_t, int, int);
};
#define bus_dmamap_create(t, s, n, m, b, f, p) \
(*(t)->_dmamap_create)((t), (s), (n), (m), (b), (f), (p))
#define bus_dmamap_destroy(t, p) \
(*(t)->_dmamap_destroy)((t), (p))
#define bus_dmamap_load(t, m, b, s, p, f) \
(*(t)->_dmamap_load)((t), (m), (b), (s), (p), (f))
#define bus_dmamap_load_mbuf(t, m, b, f) \
(*(t)->_dmamap_load_mbuf)((t), (m), (b), (f))
#define bus_dmamap_load_uio(t, m, u, f) \
(*(t)->_dmamap_load_uio)((t), (m), (u), (f))
#define bus_dmamap_load_raw(t, m, sg, n, s, f) \
(*(t)->_dmamap_load_raw)((t), (m), (sg), (n), (s), (f))
#define bus_dmamap_unload(t, p) \
(*(t)->_dmamap_unload)((t), (p))
#define bus_dmamap_sync(t, p, o, l, ops) \
(*(t)->_dmamap_sync)((t), (p), (o), (l), (ops))
#define bus_dmamem_alloc(t, s, a, b, sg, n, r, f) \
(*(t)->_dmamem_alloc)((t), (s), (a), (b), (sg), (n), (r), (f))
#define bus_dmamem_free(t, sg, n) \
(*(t)->_dmamem_free)((t), (sg), (n))
#define bus_dmamem_map(t, sg, n, s, k, f) \
(*(t)->_dmamem_map)((t), (sg), (n), (s), (k), (f))
#define bus_dmamem_unmap(t, k, s) \
(*(t)->_dmamem_unmap)((t), (k), (s))
#define bus_dmamem_mmap(t, sg, n, o, p, f) \
(*(t)->_dmamem_mmap)((t), (sg), (n), (o), (p), (f))
#define bus_dmatag_subregion(t, mna, mxa, nt, f) EOPNOTSUPP
#define bus_dmatag_destroy(t)
/*
* bus_dmamap_t
*
* Describes a DMA mapping.
*/
struct m68k_bus_dmamap {
/*
* PRIVATE MEMBERS: not for use by machine-independent code.
*/
bus_size_t _dm_size; /* largest DMA transfer mappable */
int _dm_segcnt; /* number of segs this map can map */
bus_size_t _dm_maxmaxsegsz; /* fixed largest possible segment */
bus_size_t _dm_boundary; /* don't cross this */
u_int _dm_flags; /* misc. flags */
/* Machine dependant fields: */
bus_size_t dm_xfer_len; /* length of successful transfer */
/*
* PUBLIC MEMBERS: these are used by machine-independent code.
*/
bus_size_t dm_maxsegsz; /* largest possible segment */
bus_size_t dm_mapsize; /* size of the mapping */
int dm_nsegs; /* # valid segments in mapping */
bus_dma_segment_t dm_segs[1]; /* segments; variable length */
};
#ifdef _M68K_BUS_DMA_PRIVATE
int _bus_dmamap_create(bus_dma_tag_t, bus_size_t, int, bus_size_t,
bus_size_t, int, bus_dmamap_t *);
void _bus_dmamap_destroy(bus_dma_tag_t, bus_dmamap_t);
int _bus_dmamap_load_direct(bus_dma_tag_t, bus_dmamap_t,
void *, bus_size_t, struct proc *, int);
int _bus_dmamap_load_mbuf_direct(bus_dma_tag_t,
bus_dmamap_t, struct mbuf *, int);
int _bus_dmamap_load_uio_direct(bus_dma_tag_t,
bus_dmamap_t, struct uio *, int);
int _bus_dmamap_load_raw_direct(bus_dma_tag_t,
bus_dmamap_t, bus_dma_segment_t *, int, bus_size_t, int);
void _bus_dmamap_unload(bus_dma_tag_t, bus_dmamap_t);
void _bus_dmamap_sync(bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
bus_size_t, int);
int _bus_dmamem_alloc(bus_dma_tag_t tag, bus_size_t size,
bus_size_t alignment, bus_size_t boundary,
bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags);
void _bus_dmamem_free(bus_dma_tag_t tag, bus_dma_segment_t *segs,
int nsegs);
int _bus_dmamem_map(bus_dma_tag_t tag, bus_dma_segment_t *segs,
int nsegs, size_t size, void **kvap, int flags);
void _bus_dmamem_unmap(bus_dma_tag_t tag, void *kva,
size_t size);
paddr_t _bus_dmamem_mmap(bus_dma_tag_t tag, bus_dma_segment_t *segs,
int nsegs, off_t off, int prot, int flags);
#endif /* _M68K_BUS_DMA_PRIVATE */
#endif /* _M68K_BUS_DMA_H_ */