NetBSD/sys/dev/acpi/acpi_resource.c

843 lines
22 KiB
C

/* $NetBSD: acpi_resource.c,v 1.35 2011/06/30 20:09:39 wiz Exp $ */
/*
* Copyright 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* ACPI resource parsing.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_resource.c,v 1.35 2011/06/30 20:09:39 wiz Exp $");
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#define _COMPONENT ACPI_RESOURCE_COMPONENT
ACPI_MODULE_NAME("RESOURCE")
static ACPI_STATUS acpi_resource_parse_callback(ACPI_RESOURCE *, void *);
struct resource_parse_callback_arg {
const struct acpi_resource_parse_ops *ops;
device_t dev;
void *context;
};
static ACPI_STATUS
acpi_resource_parse_callback(ACPI_RESOURCE *res, void *context)
{
struct resource_parse_callback_arg *arg = context;
const struct acpi_resource_parse_ops *ops;
int i;
ACPI_FUNCTION_TRACE(__func__);
ops = arg->ops;
switch (res->Type) {
case ACPI_RESOURCE_TYPE_FIXED_IO:
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"FixedIo 0x%x/%u\n",
res->Data.FixedIo.Address,
res->Data.FixedIo.AddressLength));
if (ops->ioport)
(*ops->ioport)(arg->dev, arg->context,
res->Data.FixedIo.Address,
res->Data.FixedIo.AddressLength);
break;
case ACPI_RESOURCE_TYPE_IO:
if (res->Data.Io.Minimum ==
res->Data.Io.Maximum) {
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"Io 0x%x/%u\n",
res->Data.Io.Minimum,
res->Data.Io.AddressLength));
if (ops->ioport)
(*ops->ioport)(arg->dev, arg->context,
res->Data.Io.Minimum,
res->Data.Io.AddressLength);
} else {
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"Io 0x%x-0x%x/%u\n",
res->Data.Io.Minimum,
res->Data.Io.Maximum,
res->Data.Io.AddressLength));
if (ops->iorange)
(*ops->iorange)(arg->dev, arg->context,
res->Data.Io.Minimum,
res->Data.Io.Maximum,
res->Data.Io.AddressLength,
res->Data.Io.Alignment);
}
break;
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"FixedMemory32 0x%x/%u\n",
res->Data.FixedMemory32.Address,
res->Data.FixedMemory32.AddressLength));
if (ops->memory)
(*ops->memory)(arg->dev, arg->context,
res->Data.FixedMemory32.Address,
res->Data.FixedMemory32.AddressLength);
break;
case ACPI_RESOURCE_TYPE_MEMORY32:
if (res->Data.Memory32.Minimum ==
res->Data.Memory32.Maximum) {
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"Memory32 0x%x/%u\n",
res->Data.Memory32.Minimum,
res->Data.Memory32.AddressLength));
if (ops->memory)
(*ops->memory)(arg->dev, arg->context,
res->Data.Memory32.Minimum,
res->Data.Memory32.AddressLength);
} else {
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"Memory32 0x%x-0x%x/%u\n",
res->Data.Memory32.Minimum,
res->Data.Memory32.Maximum,
res->Data.Memory32.AddressLength));
if (ops->memrange)
(*ops->memrange)(arg->dev, arg->context,
res->Data.Memory32.Minimum,
res->Data.Memory32.Maximum,
res->Data.Memory32.AddressLength,
res->Data.Memory32.Alignment);
}
break;
case ACPI_RESOURCE_TYPE_MEMORY24:
if (res->Data.Memory24.Minimum ==
res->Data.Memory24.Maximum) {
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"Memory24 0x%x/%u\n",
res->Data.Memory24.Minimum,
res->Data.Memory24.AddressLength));
if (ops->memory)
(*ops->memory)(arg->dev, arg->context,
res->Data.Memory24.Minimum,
res->Data.Memory24.AddressLength);
} else {
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"Memory24 0x%x-0x%x/%u\n",
res->Data.Memory24.Minimum,
res->Data.Memory24.Maximum,
res->Data.Memory24.AddressLength));
if (ops->memrange)
(*ops->memrange)(arg->dev, arg->context,
res->Data.Memory24.Minimum,
res->Data.Memory24.Maximum,
res->Data.Memory24.AddressLength,
res->Data.Memory24.Alignment);
}
break;
case ACPI_RESOURCE_TYPE_IRQ:
for (i = 0; i < res->Data.Irq.InterruptCount; i++) {
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"IRQ %u\n",
res->Data.Irq.Interrupts[i]));
if (ops->irq)
(*ops->irq)(arg->dev, arg->context,
res->Data.Irq.Interrupts[i],
res->Data.Irq.Triggering);
}
break;
case ACPI_RESOURCE_TYPE_DMA:
for (i = 0; i < res->Data.Dma.ChannelCount; i++) {
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"DRQ %u\n",
res->Data.Dma.Channels[i]));
if (ops->drq)
(*ops->drq)(arg->dev, arg->context,
res->Data.Dma.Channels[i]);
}
break;
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"Start dependent functions: %u\n",
res->Data.StartDpf.CompatibilityPriority));
if (ops->start_dep)
(*ops->start_dep)(arg->dev, arg->context,
res->Data.StartDpf.CompatibilityPriority);
break;
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"End dependent functions\n"));
if (ops->end_dep)
(*ops->end_dep)(arg->dev, arg->context);
break;
case ACPI_RESOURCE_TYPE_ADDRESS32:
/* XXX Only fixed size supported for now */
if (res->Data.Address32.AddressLength == 0 ||
res->Data.Address32.ProducerConsumer != ACPI_CONSUMER)
break;
#define ADRRESS32_FIXED2(r) \
((r)->Data.Address32.MinAddressFixed == ACPI_ADDRESS_FIXED && \
(r)->Data.Address32.MaxAddressFixed == ACPI_ADDRESS_FIXED)
switch (res->Data.Address32.ResourceType) {
case ACPI_MEMORY_RANGE:
if (ADRRESS32_FIXED2(res)) {
if (ops->memory)
(*ops->memory)(arg->dev, arg->context,
res->Data.Address32.Minimum,
res->Data.Address32.AddressLength);
} else {
if (ops->memrange)
(*ops->memrange)(arg->dev, arg->context,
res->Data.Address32.Minimum,
res->Data.Address32.Maximum,
res->Data.Address32.AddressLength,
res->Data.Address32.Granularity);
}
break;
case ACPI_IO_RANGE:
if (ADRRESS32_FIXED2(res)) {
if (ops->ioport)
(*ops->ioport)(arg->dev, arg->context,
res->Data.Address32.Minimum,
res->Data.Address32.AddressLength);
} else {
if (ops->iorange)
(*ops->iorange)(arg->dev, arg->context,
res->Data.Address32.Minimum,
res->Data.Address32.Maximum,
res->Data.Address32.AddressLength,
res->Data.Address32.Granularity);
}
break;
case ACPI_BUS_NUMBER_RANGE:
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"Address32/BusNumber unimplemented\n"));
break;
}
#undef ADRRESS32_FIXED2
break;
case ACPI_RESOURCE_TYPE_ADDRESS16:
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"Address16 unimplemented\n"));
break;
case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64:
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"Extended address64 unimplemented\n"));
break;
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
if (res->Data.ExtendedIrq.ProducerConsumer != ACPI_CONSUMER) {
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"ignored ExtIRQ producer\n"));
break;
}
for (i = 0; i < res->Data.ExtendedIrq.InterruptCount; i++) {
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"ExtIRQ %u\n",
res->Data.ExtendedIrq.Interrupts[i]));
if (ops->irq)
(*ops->irq)(arg->dev, arg->context,
res->Data.ExtendedIrq.Interrupts[i],
res->Data.ExtendedIrq.Triggering);
}
break;
case ACPI_RESOURCE_TYPE_GENERIC_REGISTER:
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"GenericRegister unimplemented\n"));
break;
case ACPI_RESOURCE_TYPE_VENDOR:
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"VendorSpecific unimplemented\n"));
break;
default:
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES,
"Unknown resource type: %u\n", res->Type));
break;
}
return_ACPI_STATUS(AE_OK);
}
/*
* acpi_resource_parse:
*
* Parse a device node's resources and fill them in for the
* client.
*
* This API supports _CRS (current resources) and
* _PRS (possible resources).
*
* Note that it might be nice to also locate ACPI-specific resource
* items, such as GPE bits.
*/
ACPI_STATUS
acpi_resource_parse(device_t dev, ACPI_HANDLE handle, const char *path,
void *arg, const struct acpi_resource_parse_ops *ops)
{
struct resource_parse_callback_arg cbarg;
ACPI_STATUS rv;
ACPI_FUNCTION_TRACE(__func__);
if (ops->init)
(*ops->init)(dev, arg, &cbarg.context);
else
cbarg.context = arg;
cbarg.ops = ops;
cbarg.dev = dev;
rv = AcpiWalkResources(handle, path, acpi_resource_parse_callback,
&cbarg);
if (ACPI_FAILURE(rv)) {
aprint_error_dev(dev, "ACPI: unable to get %s resources: %s\n",
path, AcpiFormatException(rv));
return_ACPI_STATUS(rv);
}
if (ops->fini)
(*ops->fini)(dev, cbarg.context);
return_ACPI_STATUS(AE_OK);
}
/*
* acpi_resource_print:
*
* Print the resources assigned to a device.
*/
void
acpi_resource_print(device_t dev, struct acpi_resources *res)
{
const char *sep;
if (SIMPLEQ_EMPTY(&res->ar_io) &&
SIMPLEQ_EMPTY(&res->ar_iorange) &&
SIMPLEQ_EMPTY(&res->ar_mem) &&
SIMPLEQ_EMPTY(&res->ar_memrange) &&
SIMPLEQ_EMPTY(&res->ar_irq) &&
SIMPLEQ_EMPTY(&res->ar_drq))
return;
aprint_normal(":");
if (SIMPLEQ_EMPTY(&res->ar_io) == 0) {
struct acpi_io *ar;
sep = "";
aprint_normal(" io ");
SIMPLEQ_FOREACH(ar, &res->ar_io, ar_list) {
aprint_normal("%s0x%x", sep, ar->ar_base);
if (ar->ar_length > 1)
aprint_normal("-0x%x", ar->ar_base +
ar->ar_length - 1);
sep = ",";
}
}
/* XXX iorange */
if (SIMPLEQ_EMPTY(&res->ar_mem) == 0) {
struct acpi_mem *ar;
sep = "";
aprint_normal(" mem ");
SIMPLEQ_FOREACH(ar, &res->ar_mem, ar_list) {
aprint_normal("%s0x%x", sep, ar->ar_base);
if (ar->ar_length > 1)
aprint_normal("-0x%x", ar->ar_base +
ar->ar_length - 1);
sep = ",";
}
}
/* XXX memrange */
if (SIMPLEQ_EMPTY(&res->ar_irq) == 0) {
struct acpi_irq *ar;
sep = "";
aprint_normal(" irq ");
SIMPLEQ_FOREACH(ar, &res->ar_irq, ar_list) {
aprint_normal("%s%d", sep, ar->ar_irq);
sep = ",";
}
}
if (SIMPLEQ_EMPTY(&res->ar_drq) == 0) {
struct acpi_drq *ar;
sep = "";
aprint_normal(" drq ");
SIMPLEQ_FOREACH(ar, &res->ar_drq, ar_list) {
aprint_normal("%s%d", sep, ar->ar_drq);
sep = ",";
}
}
aprint_normal("\n");
aprint_naive("\n");
}
/*
* acpi_resource_cleanup:
*
* Free all allocated buffers
*/
void
acpi_resource_cleanup(struct acpi_resources *res)
{
while (!SIMPLEQ_EMPTY(&res->ar_io)) {
struct acpi_io *ar;
ar = SIMPLEQ_FIRST(&res->ar_io);
SIMPLEQ_REMOVE_HEAD(&res->ar_io, ar_list);
ACPI_FREE(ar);
}
while (!SIMPLEQ_EMPTY(&res->ar_iorange)) {
struct acpi_iorange *ar;
ar = SIMPLEQ_FIRST(&res->ar_iorange);
SIMPLEQ_REMOVE_HEAD(&res->ar_iorange, ar_list);
ACPI_FREE(ar);
}
while (!SIMPLEQ_EMPTY(&res->ar_mem)) {
struct acpi_mem *ar;
ar = SIMPLEQ_FIRST(&res->ar_mem);
SIMPLEQ_REMOVE_HEAD(&res->ar_mem, ar_list);
ACPI_FREE(ar);
}
while (!SIMPLEQ_EMPTY(&res->ar_memrange)) {
struct acpi_memrange *ar;
ar = SIMPLEQ_FIRST(&res->ar_memrange);
SIMPLEQ_REMOVE_HEAD(&res->ar_memrange, ar_list);
ACPI_FREE(ar);
}
while (!SIMPLEQ_EMPTY(&res->ar_irq)) {
struct acpi_irq *ar;
ar = SIMPLEQ_FIRST(&res->ar_irq);
SIMPLEQ_REMOVE_HEAD(&res->ar_irq, ar_list);
ACPI_FREE(ar);
}
while (!SIMPLEQ_EMPTY(&res->ar_drq)) {
struct acpi_drq *ar;
ar = SIMPLEQ_FIRST(&res->ar_drq);
SIMPLEQ_REMOVE_HEAD(&res->ar_drq, ar_list);
ACPI_FREE(ar);
}
res->ar_nio = res->ar_niorange = res->ar_nmem =
res->ar_nmemrange = res->ar_nirq = res->ar_ndrq = 0;
}
struct acpi_io *
acpi_res_io(struct acpi_resources *res, int idx)
{
struct acpi_io *ar;
SIMPLEQ_FOREACH(ar, &res->ar_io, ar_list) {
if (ar->ar_index == idx)
return ar;
}
return NULL;
}
struct acpi_iorange *
acpi_res_iorange(struct acpi_resources *res, int idx)
{
struct acpi_iorange *ar;
SIMPLEQ_FOREACH(ar, &res->ar_iorange, ar_list) {
if (ar->ar_index == idx)
return ar;
}
return NULL;
}
struct acpi_mem *
acpi_res_mem(struct acpi_resources *res, int idx)
{
struct acpi_mem *ar;
SIMPLEQ_FOREACH(ar, &res->ar_mem, ar_list) {
if (ar->ar_index == idx)
return ar;
}
return NULL;
}
struct acpi_memrange *
acpi_res_memrange(struct acpi_resources *res, int idx)
{
struct acpi_memrange *ar;
SIMPLEQ_FOREACH(ar, &res->ar_memrange, ar_list) {
if (ar->ar_index == idx)
return ar;
}
return NULL;
}
struct acpi_irq *
acpi_res_irq(struct acpi_resources *res, int idx)
{
struct acpi_irq *ar;
SIMPLEQ_FOREACH(ar, &res->ar_irq, ar_list) {
if (ar->ar_index == idx)
return ar;
}
return NULL;
}
struct acpi_drq *
acpi_res_drq(struct acpi_resources *res, int idx)
{
struct acpi_drq *ar;
SIMPLEQ_FOREACH(ar, &res->ar_drq, ar_list) {
if (ar->ar_index == idx)
return ar;
}
return NULL;
}
/*****************************************************************************
* Default ACPI resource parse operations.
*****************************************************************************/
static void acpi_res_parse_init(device_t, void *, void **);
static void acpi_res_parse_fini(device_t, void *);
static void acpi_res_parse_ioport(device_t, void *, uint32_t,
uint32_t);
static void acpi_res_parse_iorange(device_t, void *, uint32_t,
uint32_t, uint32_t, uint32_t);
static void acpi_res_parse_memory(device_t, void *, uint32_t,
uint32_t);
static void acpi_res_parse_memrange(device_t, void *, uint32_t,
uint32_t, uint32_t, uint32_t);
static void acpi_res_parse_irq(device_t, void *, uint32_t, uint32_t);
static void acpi_res_parse_drq(device_t, void *, uint32_t);
static void acpi_res_parse_start_dep(device_t, void *, int);
static void acpi_res_parse_end_dep(device_t, void *);
const struct acpi_resource_parse_ops acpi_resource_parse_ops_default = {
.init = acpi_res_parse_init,
.fini = acpi_res_parse_fini,
.ioport = acpi_res_parse_ioport,
.iorange = acpi_res_parse_iorange,
.memory = acpi_res_parse_memory,
.memrange = acpi_res_parse_memrange,
.irq = acpi_res_parse_irq,
.drq = acpi_res_parse_drq,
.start_dep = acpi_res_parse_start_dep,
.end_dep = acpi_res_parse_end_dep,
};
const struct acpi_resource_parse_ops acpi_resource_parse_ops_quiet = {
.init = acpi_res_parse_init,
.fini = NULL,
.ioport = acpi_res_parse_ioport,
.iorange = acpi_res_parse_iorange,
.memory = acpi_res_parse_memory,
.memrange = acpi_res_parse_memrange,
.irq = acpi_res_parse_irq,
.drq = acpi_res_parse_drq,
.start_dep = acpi_res_parse_start_dep,
.end_dep = acpi_res_parse_end_dep,
};
static void
acpi_res_parse_init(device_t dev, void *arg, void **contextp)
{
struct acpi_resources *res = arg;
SIMPLEQ_INIT(&res->ar_io);
res->ar_nio = 0;
SIMPLEQ_INIT(&res->ar_iorange);
res->ar_niorange = 0;
SIMPLEQ_INIT(&res->ar_mem);
res->ar_nmem = 0;
SIMPLEQ_INIT(&res->ar_memrange);
res->ar_nmemrange = 0;
SIMPLEQ_INIT(&res->ar_irq);
res->ar_nirq = 0;
SIMPLEQ_INIT(&res->ar_drq);
res->ar_ndrq = 0;
*contextp = res;
}
static void
acpi_res_parse_fini(device_t dev, void *context)
{
struct acpi_resources *res = context;
/* Print the resources we're using. */
acpi_resource_print(dev, res);
}
static void
acpi_res_parse_ioport(device_t dev, void *context, uint32_t base,
uint32_t length)
{
struct acpi_resources *res = context;
struct acpi_io *ar;
/*
* Check if there is another I/O port directly below/under
* this one.
*/
SIMPLEQ_FOREACH(ar, &res->ar_io, ar_list) {
if (ar->ar_base == base + length ) {
/*
* Entry just below existing entry - adjust
* the entry and return.
*/
ar->ar_base = base;
ar->ar_length += length;
return;
} else if (ar->ar_base + ar->ar_length == base) {
/*
* Entry just above existing entry - adjust
* the entry and return.
*/
ar->ar_length += length;
return;
}
}
ar = ACPI_ALLOCATE(sizeof(*ar));
if (ar == NULL) {
aprint_error_dev(dev, "ACPI: unable to allocate I/O resource %d\n",
res->ar_nio);
res->ar_nio++;
return;
}
ar->ar_index = res->ar_nio++;
ar->ar_base = base;
ar->ar_length = length;
SIMPLEQ_INSERT_TAIL(&res->ar_io, ar, ar_list);
}
static void
acpi_res_parse_iorange(device_t dev, void *context, uint32_t low,
uint32_t high, uint32_t length, uint32_t align)
{
struct acpi_resources *res = context;
struct acpi_iorange *ar;
ar = ACPI_ALLOCATE(sizeof(*ar));
if (ar == NULL) {
aprint_error_dev(dev, "ACPI: unable to allocate I/O range resource %d\n",
res->ar_niorange);
res->ar_niorange++;
return;
}
ar->ar_index = res->ar_niorange++;
ar->ar_low = low;
ar->ar_high = high;
ar->ar_length = length;
ar->ar_align = align;
SIMPLEQ_INSERT_TAIL(&res->ar_iorange, ar, ar_list);
}
static void
acpi_res_parse_memory(device_t dev, void *context, uint32_t base,
uint32_t length)
{
struct acpi_resources *res = context;
struct acpi_mem *ar;
ar = ACPI_ALLOCATE(sizeof(*ar));
if (ar == NULL) {
aprint_error_dev(dev, "ACPI: unable to allocate Memory resource %d\n",
res->ar_nmem);
res->ar_nmem++;
return;
}
ar->ar_index = res->ar_nmem++;
ar->ar_base = base;
ar->ar_length = length;
SIMPLEQ_INSERT_TAIL(&res->ar_mem, ar, ar_list);
}
static void
acpi_res_parse_memrange(device_t dev, void *context, uint32_t low,
uint32_t high, uint32_t length, uint32_t align)
{
struct acpi_resources *res = context;
struct acpi_memrange *ar;
ar = ACPI_ALLOCATE(sizeof(*ar));
if (ar == NULL) {
aprint_error_dev(dev, "ACPI: unable to allocate Memory range resource %d\n",
res->ar_nmemrange);
res->ar_nmemrange++;
return;
}
ar->ar_index = res->ar_nmemrange++;
ar->ar_low = low;
ar->ar_high = high;
ar->ar_length = length;
ar->ar_align = align;
SIMPLEQ_INSERT_TAIL(&res->ar_memrange, ar, ar_list);
}
static void
acpi_res_parse_irq(device_t dev, void *context, uint32_t irq, uint32_t type)
{
struct acpi_resources *res = context;
struct acpi_irq *ar;
ar = ACPI_ALLOCATE(sizeof(*ar));
if (ar == NULL) {
aprint_error_dev(dev, "ACPI: unable to allocate IRQ resource %d\n",
res->ar_nirq);
res->ar_nirq++;
return;
}
ar->ar_index = res->ar_nirq++;
ar->ar_irq = irq;
ar->ar_type = type;
SIMPLEQ_INSERT_TAIL(&res->ar_irq, ar, ar_list);
}
static void
acpi_res_parse_drq(device_t dev, void *context, uint32_t drq)
{
struct acpi_resources *res = context;
struct acpi_drq *ar;
ar = ACPI_ALLOCATE(sizeof(*ar));
if (ar == NULL) {
aprint_error_dev(dev, "ACPI: unable to allocate DRQ resource %d\n",
res->ar_ndrq);
res->ar_ndrq++;
return;
}
ar->ar_index = res->ar_ndrq++;
ar->ar_drq = drq;
SIMPLEQ_INSERT_TAIL(&res->ar_drq, ar, ar_list);
}
static void
acpi_res_parse_start_dep(device_t dev, void *context,
int preference)
{
aprint_error_dev(dev, "ACPI: dependent functions not supported\n");
}
static void
acpi_res_parse_end_dep(device_t dev, void *context)
{
/* Nothing to do. */
}