386 lines
10 KiB
C
386 lines
10 KiB
C
/* $NetBSD: fpu.c,v 1.6 1997/07/29 10:09:51 fair Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This software was developed by the Computer Systems Engineering group
|
|
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
|
|
* contributed to Berkeley.
|
|
*
|
|
* All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Lawrence Berkeley Laboratory.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)fpu.c 8.1 (Berkeley) 6/11/93
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/signal.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/signalvar.h>
|
|
|
|
#include <machine/instr.h>
|
|
#include <machine/reg.h>
|
|
|
|
#include <sparc/fpu/fpu_emu.h>
|
|
#include <sparc/fpu/fpu_extern.h>
|
|
|
|
/*
|
|
* fpu_execute returns the following error numbers (0 = no error):
|
|
*/
|
|
#define FPE 1 /* take a floating point exception */
|
|
#define NOTFPU 2 /* not an FPU instruction */
|
|
|
|
/*
|
|
* Translate current exceptions into `first' exception. The
|
|
* bits go the wrong way for ffs() (0x10 is most important, etc).
|
|
* There are only 5, so do it the obvious way.
|
|
*/
|
|
#define X1(x) x
|
|
#define X2(x) x,x
|
|
#define X4(x) x,x,x,x
|
|
#define X8(x) X4(x),X4(x)
|
|
#define X16(x) X8(x),X8(x)
|
|
|
|
static char cx_to_trapx[] = {
|
|
X1(FSR_NX),
|
|
X2(FSR_DZ),
|
|
X4(FSR_UF),
|
|
X8(FSR_OF),
|
|
X16(FSR_NV)
|
|
};
|
|
static u_char fpu_codes[] = {
|
|
X1(FPE_FLTINEX_TRAP),
|
|
X2(FPE_FLTDIV_TRAP),
|
|
X4(FPE_FLTUND_TRAP),
|
|
X8(FPE_FLTOVF_TRAP),
|
|
X16(FPE_FLTOPERR_TRAP)
|
|
};
|
|
|
|
/*
|
|
* The FPU gave us an exception. Clean up the mess. Note that the
|
|
* fp queue can only have FPops in it, never load/store FP registers
|
|
* nor FBfcc instructions. Experiments with `crashme' prove that
|
|
* unknown FPops do enter the queue, however.
|
|
*/
|
|
void
|
|
fpu_cleanup(p, fs)
|
|
register struct proc *p;
|
|
register struct fpstate *fs;
|
|
{
|
|
register int i, fsr = fs->fs_fsr, error;
|
|
union instr instr;
|
|
struct fpemu fe;
|
|
|
|
switch ((fsr >> FSR_FTT_SHIFT) & FSR_FTT_MASK) {
|
|
|
|
case FSR_TT_NONE:
|
|
panic("fpu_cleanup 1"); /* ??? */
|
|
break;
|
|
|
|
case FSR_TT_IEEE:
|
|
/* XXX missing trap address! */
|
|
if ((i = fsr & FSR_CX) == 0)
|
|
panic("fpu ieee trap, but no exception");
|
|
trapsignal(p, SIGFPE, fpu_codes[i - 1]);
|
|
break; /* XXX should return, but queue remains */
|
|
|
|
case FSR_TT_UNFIN:
|
|
case FSR_TT_UNIMP:
|
|
if (fs->fs_qsize == 0)
|
|
panic("fpu_cleanup 2");
|
|
break;
|
|
|
|
case FSR_TT_SEQ:
|
|
panic("fpu sequence error");
|
|
/* NOTREACHED */
|
|
|
|
case FSR_TT_HWERR:
|
|
log(LOG_ERR, "fpu hardware error (%s[%d])\n",
|
|
p->p_comm, p->p_pid);
|
|
uprintf("%s[%d]: fpu hardware error\n", p->p_comm, p->p_pid);
|
|
trapsignal(p, SIGFPE, -1); /* ??? */
|
|
goto out;
|
|
|
|
default:
|
|
printf("fsr=0x%x\n", fsr);
|
|
panic("fpu error");
|
|
}
|
|
|
|
/* emulate the instructions left in the queue */
|
|
fe.fe_fpstate = fs;
|
|
for (i = 0; i < fs->fs_qsize; i++) {
|
|
instr.i_int = fs->fs_queue[i].fq_instr;
|
|
if (instr.i_any.i_op != IOP_reg ||
|
|
(instr.i_op3.i_op3 != IOP3_FPop1 &&
|
|
instr.i_op3.i_op3 != IOP3_FPop2))
|
|
panic("bogus fpu queue");
|
|
error = fpu_execute(&fe, instr);
|
|
switch (error) {
|
|
|
|
case 0:
|
|
continue;
|
|
|
|
case FPE:
|
|
trapsignal(p, SIGFPE,
|
|
fpu_codes[(fs->fs_fsr & FSR_CX) - 1]);
|
|
break;
|
|
|
|
case NOTFPU:
|
|
trapsignal(p, SIGILL, 0); /* ??? code? */
|
|
break;
|
|
|
|
default:
|
|
panic("fpu_cleanup 3");
|
|
/* NOTREACHED */
|
|
}
|
|
/* XXX should stop here, but queue remains */
|
|
}
|
|
out:
|
|
fs->fs_qsize = 0;
|
|
}
|
|
|
|
#ifdef notyet
|
|
/*
|
|
* If we have no FPU at all (are there any machines like this out
|
|
* there!?) we have to emulate each instruction, and we need a pointer
|
|
* to the trapframe so that we can step over them and do FBfcc's.
|
|
* We know the `queue' is empty, though; we just want to emulate
|
|
* the instruction at tf->tf_pc.
|
|
*/
|
|
fpu_emulate(p, tf, fs)
|
|
struct proc *p;
|
|
register struct trapframe *tf;
|
|
register struct fpstate *fs;
|
|
{
|
|
|
|
do {
|
|
fetch instr from pc
|
|
decode
|
|
if (integer instr) {
|
|
/*
|
|
* We do this here, rather than earlier, to avoid
|
|
* losing even more badly than usual.
|
|
*/
|
|
if (p->p_addr->u_pcb.pcb_uw) {
|
|
write_user_windows();
|
|
if (rwindow_save(p))
|
|
sigexit(p, SIGILL);
|
|
}
|
|
if (loadstore) {
|
|
do_it;
|
|
pc = npc, npc += 4
|
|
} else if (fbfcc) {
|
|
do_annul_stuff;
|
|
} else
|
|
return;
|
|
} else if (fpu instr) {
|
|
fe.fe_fsr = fs->fs_fsr &= ~FSR_CX;
|
|
error = fpu_execute(&fe, fs, instr);
|
|
switch (error) {
|
|
etc;
|
|
}
|
|
} else
|
|
return;
|
|
if (want to reschedule)
|
|
return;
|
|
} while (error == 0);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Execute an FPU instruction (one that runs entirely in the FPU; not
|
|
* FBfcc or STF, for instance). On return, fe->fe_fs->fs_fsr will be
|
|
* modified to reflect the setting the hardware would have left.
|
|
*
|
|
* Note that we do not catch all illegal opcodes, so you can, for instance,
|
|
* multiply two integers this way.
|
|
*/
|
|
int
|
|
fpu_execute(fe, instr)
|
|
register struct fpemu *fe;
|
|
union instr instr;
|
|
{
|
|
register struct fpn *fp;
|
|
register int opf, rs1, rs2, rd, type, mask, fsr, cx;
|
|
register struct fpstate *fs;
|
|
u_int space[4];
|
|
|
|
/*
|
|
* `Decode' and execute instruction. Start with no exceptions.
|
|
* The type of any i_opf opcode is in the bottom two bits, so we
|
|
* squish them out here.
|
|
*/
|
|
opf = instr.i_opf.i_opf;
|
|
type = opf & 3;
|
|
mask = "\0\0\1\3"[type];
|
|
rs1 = instr.i_opf.i_rs1 & ~mask;
|
|
rs2 = instr.i_opf.i_rs2 & ~mask;
|
|
rd = instr.i_opf.i_rd & ~mask;
|
|
#ifdef notdef
|
|
if ((rs1 | rs2 | rd) & mask)
|
|
return (BADREG);
|
|
#endif
|
|
fs = fe->fe_fpstate;
|
|
fe->fe_fsr = fs->fs_fsr & ~FSR_CX;
|
|
fe->fe_cx = 0;
|
|
switch (opf >>= 2) {
|
|
|
|
default:
|
|
return (NOTFPU);
|
|
|
|
case FMOV >> 2: /* these should all be pretty obvious */
|
|
rs1 = fs->fs_regs[rs2];
|
|
goto mov;
|
|
|
|
case FNEG >> 2:
|
|
rs1 = fs->fs_regs[rs2] ^ (1 << 31);
|
|
goto mov;
|
|
|
|
case FABS >> 2:
|
|
rs1 = fs->fs_regs[rs2] & ~(1 << 31);
|
|
mov:
|
|
fs->fs_regs[rd] = rs1;
|
|
fs->fs_fsr = fe->fe_fsr;
|
|
return (0); /* success */
|
|
|
|
case FSQRT >> 2:
|
|
fpu_explode(fe, &fe->fe_f1, type, rs2);
|
|
fp = fpu_sqrt(fe);
|
|
break;
|
|
|
|
case FADD >> 2:
|
|
fpu_explode(fe, &fe->fe_f1, type, rs1);
|
|
fpu_explode(fe, &fe->fe_f2, type, rs2);
|
|
fp = fpu_add(fe);
|
|
break;
|
|
|
|
case FSUB >> 2:
|
|
fpu_explode(fe, &fe->fe_f1, type, rs1);
|
|
fpu_explode(fe, &fe->fe_f2, type, rs2);
|
|
fp = fpu_sub(fe);
|
|
break;
|
|
|
|
case FMUL >> 2:
|
|
fpu_explode(fe, &fe->fe_f1, type, rs1);
|
|
fpu_explode(fe, &fe->fe_f2, type, rs2);
|
|
fp = fpu_mul(fe);
|
|
break;
|
|
|
|
case FDIV >> 2:
|
|
fpu_explode(fe, &fe->fe_f1, type, rs1);
|
|
fpu_explode(fe, &fe->fe_f2, type, rs2);
|
|
fp = fpu_div(fe);
|
|
break;
|
|
|
|
case FCMP >> 2:
|
|
fpu_explode(fe, &fe->fe_f1, type, rs1);
|
|
fpu_explode(fe, &fe->fe_f2, type, rs2);
|
|
fpu_compare(fe, 0);
|
|
goto cmpdone;
|
|
|
|
case FCMPE >> 2:
|
|
fpu_explode(fe, &fe->fe_f1, type, rs1);
|
|
fpu_explode(fe, &fe->fe_f2, type, rs2);
|
|
fpu_compare(fe, 1);
|
|
cmpdone:
|
|
/*
|
|
* The only possible exception here is NV; catch it
|
|
* early and get out, as there is no result register.
|
|
*/
|
|
cx = fe->fe_cx;
|
|
fsr = fe->fe_fsr | (cx << FSR_CX_SHIFT);
|
|
if (cx != 0) {
|
|
if (fsr & (FSR_NV << FSR_TEM_SHIFT)) {
|
|
fs->fs_fsr = (fsr & ~FSR_FTT) |
|
|
(FSR_TT_IEEE << FSR_FTT_SHIFT);
|
|
return (FPE);
|
|
}
|
|
fsr |= FSR_NV << FSR_AX_SHIFT;
|
|
}
|
|
fs->fs_fsr = fsr;
|
|
return (0);
|
|
|
|
case FSMULD >> 2:
|
|
case FDMULX >> 2:
|
|
if (type == FTYPE_EXT)
|
|
return (NOTFPU);
|
|
fpu_explode(fe, &fe->fe_f1, type, rs1);
|
|
fpu_explode(fe, &fe->fe_f2, type, rs2);
|
|
type++; /* single to double, or double to quad */
|
|
fp = fpu_mul(fe);
|
|
break;
|
|
|
|
case FTOS >> 2:
|
|
case FTOD >> 2:
|
|
case FTOX >> 2:
|
|
case FTOI >> 2:
|
|
fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
|
|
type = opf & 3; /* sneaky; depends on instruction encoding */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* ALU operation is complete. Collapse the result and then check
|
|
* for exceptions. If we got any, and they are enabled, do not
|
|
* alter the destination register, just stop with an exception.
|
|
* Otherwise set new current exceptions and accrue.
|
|
*/
|
|
fpu_implode(fe, fp, type, space);
|
|
cx = fe->fe_cx;
|
|
fsr = fe->fe_fsr;
|
|
if (cx != 0) {
|
|
mask = (fsr >> FSR_TEM_SHIFT) & FSR_TEM_MASK;
|
|
if (cx & mask) {
|
|
/* not accrued??? */
|
|
fs->fs_fsr = (fsr & ~FSR_FTT) |
|
|
(FSR_TT_IEEE << FSR_FTT_SHIFT) |
|
|
(cx_to_trapx[(cx & mask) - 1] << FSR_CX_SHIFT);
|
|
return (FPE);
|
|
}
|
|
fsr |= (cx << FSR_CX_SHIFT) | (cx << FSR_AX_SHIFT);
|
|
}
|
|
fs->fs_fsr = fsr;
|
|
fs->fs_regs[rd] = space[0];
|
|
if (type >= FTYPE_DBL) {
|
|
fs->fs_regs[rd + 1] = space[1];
|
|
if (type > FTYPE_DBL) {
|
|
fs->fs_regs[rd + 2] = space[2];
|
|
fs->fs_regs[rd + 3] = space[3];
|
|
}
|
|
}
|
|
return (0); /* success */
|
|
}
|