2330 lines
55 KiB
C
2330 lines
55 KiB
C
/* $NetBSD: localtime.c,v 1.96 2015/08/13 11:21:18 christos Exp $ */
|
|
|
|
/*
|
|
** This file is in the public domain, so clarified as of
|
|
** 1996-06-05 by Arthur David Olson.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#if defined(LIBC_SCCS) && !defined(lint)
|
|
#if 0
|
|
static char elsieid[] = "@(#)localtime.c 8.17";
|
|
#else
|
|
__RCSID("$NetBSD: localtime.c,v 1.96 2015/08/13 11:21:18 christos Exp $");
|
|
#endif
|
|
#endif /* LIBC_SCCS and not lint */
|
|
|
|
/*
|
|
** Leap second handling from Bradley White.
|
|
** POSIX-style TZ environment variable handling from Guy Harris.
|
|
*/
|
|
|
|
/*LINTLIBRARY*/
|
|
|
|
#include "namespace.h"
|
|
#include <assert.h>
|
|
#define LOCALTIME_IMPLEMENTATION
|
|
#include "private.h"
|
|
|
|
#include "tzfile.h"
|
|
#include "fcntl.h"
|
|
#include "reentrant.h"
|
|
|
|
#if NETBSD_INSPIRED
|
|
# define NETBSD_INSPIRED_EXTERN
|
|
#else
|
|
# define NETBSD_INSPIRED_EXTERN static
|
|
#endif
|
|
|
|
#if defined(__weak_alias)
|
|
__weak_alias(daylight,_daylight)
|
|
__weak_alias(tzname,_tzname)
|
|
#endif
|
|
|
|
#ifndef TZ_ABBR_MAX_LEN
|
|
#define TZ_ABBR_MAX_LEN 16
|
|
#endif /* !defined TZ_ABBR_MAX_LEN */
|
|
|
|
#ifndef TZ_ABBR_CHAR_SET
|
|
#define TZ_ABBR_CHAR_SET \
|
|
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
|
|
#endif /* !defined TZ_ABBR_CHAR_SET */
|
|
|
|
#ifndef TZ_ABBR_ERR_CHAR
|
|
#define TZ_ABBR_ERR_CHAR '_'
|
|
#endif /* !defined TZ_ABBR_ERR_CHAR */
|
|
|
|
/*
|
|
** SunOS 4.1.1 headers lack O_BINARY.
|
|
*/
|
|
|
|
#ifdef O_BINARY
|
|
#define OPEN_MODE (O_RDONLY | O_BINARY | O_CLOEXEC)
|
|
#endif /* defined O_BINARY */
|
|
#ifndef O_BINARY
|
|
#define OPEN_MODE (O_RDONLY | O_CLOEXEC)
|
|
#endif /* !defined O_BINARY */
|
|
|
|
#ifndef WILDABBR
|
|
/*
|
|
** Someone might make incorrect use of a time zone abbreviation:
|
|
** 1. They might reference tzname[0] before calling tzset (explicitly
|
|
** or implicitly).
|
|
** 2. They might reference tzname[1] before calling tzset (explicitly
|
|
** or implicitly).
|
|
** 3. They might reference tzname[1] after setting to a time zone
|
|
** in which Daylight Saving Time is never observed.
|
|
** 4. They might reference tzname[0] after setting to a time zone
|
|
** in which Standard Time is never observed.
|
|
** 5. They might reference tm.TM_ZONE after calling offtime.
|
|
** What's best to do in the above cases is open to debate;
|
|
** for now, we just set things up so that in any of the five cases
|
|
** WILDABBR is used. Another possibility: initialize tzname[0] to the
|
|
** string "tzname[0] used before set", and similarly for the other cases.
|
|
** And another: initialize tzname[0] to "ERA", with an explanation in the
|
|
** manual page of what this "time zone abbreviation" means (doing this so
|
|
** that tzname[0] has the "normal" length of three characters).
|
|
*/
|
|
#define WILDABBR " "
|
|
#endif /* !defined WILDABBR */
|
|
|
|
static const char wildabbr[] = WILDABBR;
|
|
|
|
static const char gmt[] = "GMT";
|
|
|
|
/*
|
|
** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
|
|
** We default to US rules as of 1999-08-17.
|
|
** POSIX 1003.1 section 8.1.1 says that the default DST rules are
|
|
** implementation dependent; for historical reasons, US rules are a
|
|
** common default.
|
|
*/
|
|
#ifndef TZDEFRULESTRING
|
|
#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
|
|
#endif /* !defined TZDEFDST */
|
|
|
|
struct ttinfo { /* time type information */
|
|
int_fast32_t tt_gmtoff; /* UT offset in seconds */
|
|
bool tt_isdst; /* used to set tm_isdst */
|
|
int tt_abbrind; /* abbreviation list index */
|
|
bool tt_ttisstd; /* transition is std time */
|
|
bool tt_ttisgmt; /* transition is UT */
|
|
};
|
|
|
|
struct lsinfo { /* leap second information */
|
|
time_t ls_trans; /* transition time */
|
|
int_fast64_t ls_corr; /* correction to apply */
|
|
};
|
|
|
|
#define SMALLEST(a, b) (((a) < (b)) ? (a) : (b))
|
|
#define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
|
|
|
|
#ifdef TZNAME_MAX
|
|
#define MY_TZNAME_MAX TZNAME_MAX
|
|
#endif /* defined TZNAME_MAX */
|
|
#ifndef TZNAME_MAX
|
|
#define MY_TZNAME_MAX 255
|
|
#endif /* !defined TZNAME_MAX */
|
|
|
|
#define state __state
|
|
struct state {
|
|
int leapcnt;
|
|
int timecnt;
|
|
int typecnt;
|
|
int charcnt;
|
|
bool goback;
|
|
bool goahead;
|
|
time_t ats[TZ_MAX_TIMES];
|
|
unsigned char types[TZ_MAX_TIMES];
|
|
struct ttinfo ttis[TZ_MAX_TYPES];
|
|
char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
|
|
sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
|
|
struct lsinfo lsis[TZ_MAX_LEAPS];
|
|
int defaulttype; /* for early times or if no transitions */
|
|
};
|
|
|
|
enum r_type {
|
|
JULIAN_DAY, /* Jn = Julian day */
|
|
DAY_OF_YEAR, /* n = day of year */
|
|
MONTH_NTH_DAY_OF_WEEK /* Mm.n.d = month, week, day of week */
|
|
};
|
|
|
|
struct rule {
|
|
enum r_type r_type; /* type of rule */
|
|
int r_day; /* day number of rule */
|
|
int r_week; /* week number of rule */
|
|
int r_mon; /* month number of rule */
|
|
int_fast32_t r_time; /* transition time of rule */
|
|
};
|
|
|
|
static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t,
|
|
struct tm *);
|
|
static bool increment_overflow(int *, int);
|
|
static bool increment_overflow_time(time_t *, int_fast32_t);
|
|
static bool normalize_overflow32(int_fast32_t *, int *, int);
|
|
static struct tm *timesub(time_t const *, int_fast32_t, struct state const *,
|
|
struct tm *);
|
|
static bool typesequiv(struct state const *, int, int);
|
|
static bool tzparse(char const *, struct state *, bool);
|
|
|
|
static timezone_t lclptr;
|
|
static timezone_t gmtptr;
|
|
|
|
#ifndef TZ_STRLEN_MAX
|
|
#define TZ_STRLEN_MAX 255
|
|
#endif /* !defined TZ_STRLEN_MAX */
|
|
|
|
static char lcl_TZname[TZ_STRLEN_MAX + 1];
|
|
static int lcl_is_set;
|
|
|
|
#if !defined(__LIBC12_SOURCE__)
|
|
|
|
__aconst char * tzname[2] = {
|
|
(__aconst char *)__UNCONST(wildabbr),
|
|
(__aconst char *)__UNCONST(wildabbr)
|
|
};
|
|
|
|
#else
|
|
|
|
extern __aconst char * tzname[2];
|
|
|
|
#endif
|
|
|
|
#ifdef _REENTRANT
|
|
static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
|
|
#endif
|
|
|
|
/*
|
|
** Section 4.12.3 of X3.159-1989 requires that
|
|
** Except for the strftime function, these functions [asctime,
|
|
** ctime, gmtime, localtime] return values in one of two static
|
|
** objects: a broken-down time structure and an array of char.
|
|
** Thanks to Paul Eggert for noting this.
|
|
*/
|
|
|
|
static struct tm tm;
|
|
|
|
#ifdef USG_COMPAT
|
|
#if !defined(__LIBC12_SOURCE__)
|
|
long timezone = 0;
|
|
int daylight = 0;
|
|
#else
|
|
extern int daylight;
|
|
extern long timezone __RENAME(__timezone13);
|
|
#endif
|
|
#endif /* defined USG_COMPAT */
|
|
|
|
#ifdef ALTZONE
|
|
long altzone = 0;
|
|
#endif /* defined ALTZONE */
|
|
|
|
/* Initialize *S to a value based on GMTOFF, ISDST, and ABBRIND. */
|
|
static void
|
|
init_ttinfo(struct ttinfo *s, int_fast32_t gmtoff, bool isdst, int abbrind)
|
|
{
|
|
s->tt_gmtoff = gmtoff;
|
|
s->tt_isdst = isdst;
|
|
s->tt_abbrind = abbrind;
|
|
s->tt_ttisstd = false;
|
|
s->tt_ttisgmt = false;
|
|
}
|
|
|
|
static int_fast32_t
|
|
detzcode(const char *const codep)
|
|
{
|
|
int_fast32_t result;
|
|
int i;
|
|
int_fast32_t one = 1;
|
|
int_fast32_t halfmaxval = one << (32 - 2);
|
|
int_fast32_t maxval = halfmaxval - 1 + halfmaxval;
|
|
int_fast32_t minval = -1 - maxval;
|
|
|
|
result = codep[0] & 0x7f;
|
|
for (i = 1; i < 4; ++i)
|
|
result = (result << 8) | (codep[i] & 0xff);
|
|
|
|
if (codep[0] & 0x80) {
|
|
/* Do two's-complement negation even on non-two's-complement machines.
|
|
If the result would be minval - 1, return minval. */
|
|
result -= !TWOS_COMPLEMENT(int_fast32_t) && result != 0;
|
|
result += minval;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int_fast64_t
|
|
detzcode64(const char *const codep)
|
|
{
|
|
int_fast64_t result;
|
|
int i;
|
|
int_fast64_t one = 1;
|
|
int_fast64_t halfmaxval = one << (64 - 2);
|
|
int_fast64_t maxval = halfmaxval - 1 + halfmaxval;
|
|
int_fast64_t minval = -TWOS_COMPLEMENT(int_fast64_t) - maxval;
|
|
|
|
result = codep[0] & 0x7f;
|
|
for (i = 1; i < 8; ++i)
|
|
result = (result << 8) | (codep[i] & 0xff);
|
|
|
|
if (codep[0] & 0x80) {
|
|
/* Do two's-complement negation even on non-two's-complement machines.
|
|
If the result would be minval - 1, return minval. */
|
|
result -= !TWOS_COMPLEMENT(int_fast64_t) && result != 0;
|
|
result += minval;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
const char *
|
|
tzgetname(const timezone_t sp, int isdst)
|
|
{
|
|
int i;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
|
|
|
|
if (ttisp->tt_isdst == isdst)
|
|
return &sp->chars[ttisp->tt_abbrind];
|
|
}
|
|
errno = ESRCH;
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
scrub_abbrs(struct state *sp)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
** First, replace bogus characters.
|
|
*/
|
|
for (i = 0; i < sp->charcnt; ++i)
|
|
if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
|
|
sp->chars[i] = TZ_ABBR_ERR_CHAR;
|
|
/*
|
|
** Second, truncate long abbreviations.
|
|
*/
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
const struct ttinfo * const ttisp = &sp->ttis[i];
|
|
char * cp = &sp->chars[ttisp->tt_abbrind];
|
|
|
|
if (strlen(cp) > TZ_ABBR_MAX_LEN &&
|
|
strcmp(cp, GRANDPARENTED) != 0)
|
|
*(cp + TZ_ABBR_MAX_LEN) = '\0';
|
|
}
|
|
}
|
|
|
|
static void
|
|
update_tzname_etc(const struct state *sp, const struct ttinfo *ttisp)
|
|
{
|
|
tzname[ttisp->tt_isdst] = __UNCONST(&sp->chars[ttisp->tt_abbrind]);
|
|
#ifdef USG_COMPAT
|
|
if (!ttisp->tt_isdst)
|
|
timezone = - ttisp->tt_gmtoff;
|
|
#endif
|
|
#ifdef ALTZONE
|
|
if (ttisp->tt_isdst)
|
|
altzone = - ttisp->tt_gmtoff;
|
|
#endif /* defined ALTZONE */
|
|
}
|
|
|
|
static void
|
|
settzname(void)
|
|
{
|
|
timezone_t const sp = lclptr;
|
|
int i;
|
|
|
|
tzname[0] = (__aconst char *)__UNCONST(wildabbr);
|
|
tzname[1] = (__aconst char *)__UNCONST(wildabbr);
|
|
#ifdef USG_COMPAT
|
|
daylight = 0;
|
|
timezone = 0;
|
|
#endif /* defined USG_COMPAT */
|
|
#ifdef ALTZONE
|
|
altzone = 0;
|
|
#endif /* defined ALTZONE */
|
|
if (sp == NULL) {
|
|
tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
|
|
return;
|
|
}
|
|
/*
|
|
** And to get the latest zone names into tzname. . .
|
|
*/
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
update_tzname_etc(sp, &sp->ttis[i]);
|
|
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]];
|
|
update_tzname_etc(sp, ttisp);
|
|
#ifdef USG_COMPAT
|
|
if (ttisp->tt_isdst)
|
|
daylight = 1;
|
|
#endif /* defined USG_COMPAT */
|
|
}
|
|
}
|
|
|
|
static bool
|
|
differ_by_repeat(const time_t t1, const time_t t0)
|
|
{
|
|
if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
|
|
return 0;
|
|
return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
|
|
}
|
|
|
|
union input_buffer {
|
|
/* The first part of the buffer, interpreted as a header. */
|
|
struct tzhead tzhead;
|
|
|
|
/* The entire buffer. */
|
|
char buf[2 * sizeof(struct tzhead) + 2 * sizeof (struct state)
|
|
+ 4 * TZ_MAX_TIMES];
|
|
};
|
|
|
|
/* Local storage needed for 'tzloadbody'. */
|
|
union local_storage {
|
|
/* The file name to be opened. */
|
|
char fullname[FILENAME_MAX + 1];
|
|
|
|
/* The results of analyzing the file's contents after it is opened. */
|
|
struct {
|
|
/* The input buffer. */
|
|
union input_buffer u;
|
|
|
|
/* A temporary state used for parsing a TZ string in the file. */
|
|
struct state st;
|
|
} u;
|
|
};
|
|
|
|
/* Load tz data from the file named NAME into *SP. Read extended
|
|
format if DOEXTEND. Use *LSP for temporary storage. Return 0 on
|
|
success, an errno value on failure. */
|
|
static int
|
|
tzloadbody(char const *name, struct state *sp, bool doextend,
|
|
union local_storage *lsp)
|
|
{
|
|
int i;
|
|
int fid;
|
|
int stored;
|
|
ssize_t nread;
|
|
bool doaccess;
|
|
char *fullname = lsp->fullname;
|
|
union input_buffer *up = &lsp->u.u;
|
|
size_t tzheadsize = sizeof(struct tzhead);
|
|
|
|
sp->goback = sp->goahead = false;
|
|
|
|
if (! name) {
|
|
name = TZDEFAULT;
|
|
if (! name)
|
|
return EINVAL;
|
|
}
|
|
|
|
if (name[0] == ':')
|
|
++name;
|
|
doaccess = name[0] == '/';
|
|
if (!doaccess) {
|
|
char const *p = TZDIR;
|
|
if (! p)
|
|
return EINVAL;
|
|
if (sizeof lsp->fullname - 1 <= strlen(p) + strlen(name))
|
|
return ENAMETOOLONG;
|
|
strcpy(fullname, p);
|
|
strcat(fullname, "/");
|
|
strcat(fullname, name);
|
|
/* Set doaccess if '.' (as in "../") shows up in name. */
|
|
if (strchr(name, '.'))
|
|
doaccess = true;
|
|
name = fullname;
|
|
}
|
|
if (doaccess && access(name, R_OK) != 0)
|
|
return errno;
|
|
|
|
fid = open(name, OPEN_MODE);
|
|
if (fid < 0)
|
|
return errno;
|
|
nread = read(fid, up->buf, sizeof up->buf);
|
|
if (nread < (ssize_t)tzheadsize) {
|
|
int err = nread < 0 ? errno : EINVAL;
|
|
close(fid);
|
|
return err;
|
|
}
|
|
if (close(fid) < 0)
|
|
return errno;
|
|
for (stored = 4; stored <= 8; stored *= 2) {
|
|
int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt);
|
|
int_fast32_t ttisgmtcnt = detzcode(up->tzhead.tzh_ttisgmtcnt);
|
|
int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt);
|
|
int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt);
|
|
int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt);
|
|
int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt);
|
|
char const *p = up->buf + tzheadsize;
|
|
if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS
|
|
&& 0 < typecnt && typecnt < TZ_MAX_TYPES
|
|
&& 0 <= timecnt && timecnt < TZ_MAX_TIMES
|
|
&& 0 <= charcnt && charcnt < TZ_MAX_CHARS
|
|
&& (ttisstdcnt == typecnt || ttisstdcnt == 0)
|
|
&& (ttisgmtcnt == typecnt || ttisgmtcnt == 0)))
|
|
return EINVAL;
|
|
if ((size_t)nread
|
|
< (tzheadsize /* struct tzhead */
|
|
+ timecnt * stored /* ats */
|
|
+ timecnt /* types */
|
|
+ typecnt * 6 /* ttinfos */
|
|
+ charcnt /* chars */
|
|
+ leapcnt * (stored + 4) /* lsinfos */
|
|
+ ttisstdcnt /* ttisstds */
|
|
+ ttisgmtcnt)) /* ttisgmts */
|
|
return EINVAL;
|
|
sp->leapcnt = leapcnt;
|
|
sp->timecnt = timecnt;
|
|
sp->typecnt = typecnt;
|
|
sp->charcnt = charcnt;
|
|
|
|
/* Read transitions, discarding those out of time_t range.
|
|
But pretend the last transition before time_t_min
|
|
occurred at time_t_min. */
|
|
timecnt = 0;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
int_fast64_t at
|
|
= stored == 4 ? detzcode(p) : detzcode64(p);
|
|
sp->types[i] = at <= time_t_max;
|
|
if (sp->types[i]) {
|
|
time_t attime
|
|
= ((TYPE_SIGNED(time_t) ?
|
|
at < time_t_min : at < 0)
|
|
? time_t_min : (time_t)at);
|
|
if (timecnt && attime <= sp->ats[timecnt - 1]) {
|
|
if (attime < sp->ats[timecnt - 1])
|
|
return EINVAL;
|
|
sp->types[i - 1] = 0;
|
|
timecnt--;
|
|
}
|
|
sp->ats[timecnt++] = attime;
|
|
}
|
|
p += stored;
|
|
}
|
|
|
|
timecnt = 0;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
unsigned char typ = *p++;
|
|
if (sp->typecnt <= typ)
|
|
return EINVAL;
|
|
if (sp->types[i])
|
|
sp->types[timecnt++] = typ;
|
|
}
|
|
sp->timecnt = timecnt;
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
struct ttinfo * ttisp;
|
|
unsigned char isdst, abbrind;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
ttisp->tt_gmtoff = detzcode(p);
|
|
p += 4;
|
|
isdst = *p++;
|
|
if (! (isdst < 2))
|
|
return EINVAL;
|
|
ttisp->tt_isdst = isdst;
|
|
abbrind = *p++;
|
|
if (! (abbrind < sp->charcnt))
|
|
return EINVAL;
|
|
ttisp->tt_abbrind = abbrind;
|
|
}
|
|
for (i = 0; i < sp->charcnt; ++i)
|
|
sp->chars[i] = *p++;
|
|
sp->chars[i] = '\0'; /* ensure '\0' at end */
|
|
|
|
/* Read leap seconds, discarding those out of time_t range. */
|
|
leapcnt = 0;
|
|
for (i = 0; i < sp->leapcnt; ++i) {
|
|
int_fast64_t tr = stored == 4 ? detzcode(p) :
|
|
detzcode64(p);
|
|
int_fast32_t corr = detzcode(p + stored);
|
|
p += stored + 4;
|
|
if (tr <= time_t_max) {
|
|
time_t trans = ((TYPE_SIGNED(time_t) ?
|
|
tr < time_t_min : tr < 0)
|
|
? time_t_min : (time_t)tr);
|
|
if (leapcnt && trans <=
|
|
sp->lsis[leapcnt - 1].ls_trans) {
|
|
if (trans <
|
|
sp->lsis[leapcnt - 1].ls_trans)
|
|
return EINVAL;
|
|
leapcnt--;
|
|
}
|
|
sp->lsis[leapcnt].ls_trans = trans;
|
|
sp->lsis[leapcnt].ls_corr = corr;
|
|
leapcnt++;
|
|
}
|
|
}
|
|
sp->leapcnt = leapcnt;
|
|
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
struct ttinfo * ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisstdcnt == 0)
|
|
ttisp->tt_ttisstd = false;
|
|
else {
|
|
if (*p != true && *p != false)
|
|
return EINVAL;
|
|
ttisp->tt_ttisstd = *p++;
|
|
}
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
struct ttinfo * ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisgmtcnt == 0)
|
|
ttisp->tt_ttisgmt = false;
|
|
else {
|
|
if (*p != true && *p != false)
|
|
return EINVAL;
|
|
ttisp->tt_ttisgmt = *p++;
|
|
}
|
|
}
|
|
/*
|
|
** If this is an old file, we're done.
|
|
*/
|
|
if (up->tzhead.tzh_version[0] == '\0')
|
|
break;
|
|
nread -= p - up->buf;
|
|
memmove(up->buf, p, (size_t)nread);
|
|
/*
|
|
** If this is a signed narrow time_t system, we're done.
|
|
*/
|
|
if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
|
|
break;
|
|
}
|
|
if (doextend && nread > 2 &&
|
|
up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
|
|
sp->typecnt + 2 <= TZ_MAX_TYPES) {
|
|
struct state *ts = &lsp->u.st;
|
|
|
|
up->buf[nread - 1] = '\0';
|
|
if (tzparse(&up->buf[1], ts, false)
|
|
&& ts->typecnt == 2
|
|
&& sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
|
|
for (i = 0; i < 2; ++i)
|
|
ts->ttis[i].tt_abbrind +=
|
|
sp->charcnt;
|
|
for (i = 0; i < ts->charcnt; ++i)
|
|
sp->chars[sp->charcnt++] =
|
|
ts->chars[i];
|
|
i = 0;
|
|
while (i < ts->timecnt &&
|
|
ts->ats[i] <=
|
|
sp->ats[sp->timecnt - 1])
|
|
++i;
|
|
while (i < ts->timecnt &&
|
|
sp->timecnt < TZ_MAX_TIMES) {
|
|
sp->ats[sp->timecnt] =
|
|
ts->ats[i];
|
|
sp->types[sp->timecnt] =
|
|
sp->typecnt +
|
|
ts->types[i];
|
|
++sp->timecnt;
|
|
++i;
|
|
}
|
|
sp->ttis[sp->typecnt++] = ts->ttis[0];
|
|
sp->ttis[sp->typecnt++] = ts->ttis[1];
|
|
}
|
|
}
|
|
if (sp->timecnt > 1) {
|
|
for (i = 1; i < sp->timecnt; ++i)
|
|
if (typesequiv(sp, sp->types[i], sp->types[0]) &&
|
|
differ_by_repeat(sp->ats[i], sp->ats[0])) {
|
|
sp->goback = true;
|
|
break;
|
|
}
|
|
for (i = sp->timecnt - 2; i >= 0; --i)
|
|
if (typesequiv(sp, sp->types[sp->timecnt - 1],
|
|
sp->types[i]) &&
|
|
differ_by_repeat(sp->ats[sp->timecnt - 1],
|
|
sp->ats[i])) {
|
|
sp->goahead = true;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
** If type 0 is is unused in transitions,
|
|
** it's the type to use for early times.
|
|
*/
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
if (sp->types[i] == 0)
|
|
break;
|
|
i = i < sp->timecnt ? -1 : 0;
|
|
/*
|
|
** Absent the above,
|
|
** if there are transition times
|
|
** and the first transition is to a daylight time
|
|
** find the standard type less than and closest to
|
|
** the type of the first transition.
|
|
*/
|
|
if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
|
|
i = sp->types[0];
|
|
while (--i >= 0)
|
|
if (!sp->ttis[i].tt_isdst)
|
|
break;
|
|
}
|
|
/*
|
|
** If no result yet, find the first standard type.
|
|
** If there is none, punt to type zero.
|
|
*/
|
|
if (i < 0) {
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
if (++i >= sp->typecnt) {
|
|
i = 0;
|
|
break;
|
|
}
|
|
}
|
|
sp->defaulttype = i;
|
|
return 0;
|
|
}
|
|
|
|
/* Load tz data from the file named NAME into *SP. Read extended
|
|
format if DOEXTEND. Return 0 on success, an errno value on failure. */
|
|
static int
|
|
tzload(char const *name, struct state *sp, bool doextend)
|
|
{
|
|
union local_storage *lsp = malloc(sizeof *lsp);
|
|
if (!lsp)
|
|
return errno;
|
|
else {
|
|
int err = tzloadbody(name, sp, doextend, lsp);
|
|
free(lsp);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
typesequiv(const struct state *sp, int a, int b)
|
|
{
|
|
bool result;
|
|
|
|
if (sp == NULL ||
|
|
a < 0 || a >= sp->typecnt ||
|
|
b < 0 || b >= sp->typecnt)
|
|
result = false;
|
|
else {
|
|
const struct ttinfo * ap = &sp->ttis[a];
|
|
const struct ttinfo * bp = &sp->ttis[b];
|
|
result = ap->tt_gmtoff == bp->tt_gmtoff &&
|
|
ap->tt_isdst == bp->tt_isdst &&
|
|
ap->tt_ttisstd == bp->tt_ttisstd &&
|
|
ap->tt_ttisgmt == bp->tt_ttisgmt &&
|
|
strcmp(&sp->chars[ap->tt_abbrind],
|
|
&sp->chars[bp->tt_abbrind]) == 0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static const int mon_lengths[2][MONSPERYEAR] = {
|
|
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
|
|
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
|
|
};
|
|
|
|
static const int year_lengths[2] = {
|
|
DAYSPERNYEAR, DAYSPERLYEAR
|
|
};
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, scan until a character that is not
|
|
** a valid character in a zone name is found. Return a pointer to that
|
|
** character.
|
|
*/
|
|
|
|
static const char * ATTRIBUTE_PURE
|
|
getzname(const char *strp)
|
|
{
|
|
char c;
|
|
|
|
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
|
|
c != '+')
|
|
++strp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into an extended time zone string, scan until the ending
|
|
** delimiter of the zone name is located. Return a pointer to the delimiter.
|
|
**
|
|
** As with getzname above, the legal character set is actually quite
|
|
** restricted, with other characters producing undefined results.
|
|
** We don't do any checking here; checking is done later in common-case code.
|
|
*/
|
|
|
|
static const char * ATTRIBUTE_PURE
|
|
getqzname(const char *strp, const int delim)
|
|
{
|
|
int c;
|
|
|
|
while ((c = *strp) != '\0' && c != delim)
|
|
++strp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, extract a number from that string.
|
|
** Check that the number is within a specified range; if it is not, return
|
|
** NULL.
|
|
** Otherwise, return a pointer to the first character not part of the number.
|
|
*/
|
|
|
|
static const char *
|
|
getnum(const char *strp, int *const nump, const int min, const int max)
|
|
{
|
|
char c;
|
|
int num;
|
|
|
|
if (strp == NULL || !is_digit(c = *strp)) {
|
|
errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
num = 0;
|
|
do {
|
|
num = num * 10 + (c - '0');
|
|
if (num > max) {
|
|
errno = EOVERFLOW;
|
|
return NULL; /* illegal value */
|
|
}
|
|
c = *++strp;
|
|
} while (is_digit(c));
|
|
if (num < min) {
|
|
errno = EINVAL;
|
|
return NULL; /* illegal value */
|
|
}
|
|
*nump = num;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, extract a number of seconds,
|
|
** in hh[:mm[:ss]] form, from the string.
|
|
** If any error occurs, return NULL.
|
|
** Otherwise, return a pointer to the first character not part of the number
|
|
** of seconds.
|
|
*/
|
|
|
|
static const char *
|
|
getsecs(const char *strp, int_fast32_t *const secsp)
|
|
{
|
|
int num;
|
|
|
|
/*
|
|
** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
|
|
** "M10.4.6/26", which does not conform to Posix,
|
|
** but which specifies the equivalent of
|
|
** "02:00 on the first Sunday on or after 23 Oct".
|
|
*/
|
|
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp = num * (int_fast32_t) SECSPERHOUR;
|
|
if (*strp == ':') {
|
|
++strp;
|
|
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num * SECSPERMIN;
|
|
if (*strp == ':') {
|
|
++strp;
|
|
/* 'SECSPERMIN' allows for leap seconds. */
|
|
strp = getnum(strp, &num, 0, SECSPERMIN);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num;
|
|
}
|
|
}
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, extract an offset, in
|
|
** [+-]hh[:mm[:ss]] form, from the string.
|
|
** If any error occurs, return NULL.
|
|
** Otherwise, return a pointer to the first character not part of the time.
|
|
*/
|
|
|
|
static const char *
|
|
getoffset(const char *strp, int_fast32_t *const offsetp)
|
|
{
|
|
bool neg = false;
|
|
|
|
if (*strp == '-') {
|
|
neg = true;
|
|
++strp;
|
|
} else if (*strp == '+')
|
|
++strp;
|
|
strp = getsecs(strp, offsetp);
|
|
if (strp == NULL)
|
|
return NULL; /* illegal time */
|
|
if (neg)
|
|
*offsetp = -*offsetp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, extract a rule in the form
|
|
** date[/time]. See POSIX section 8 for the format of "date" and "time".
|
|
** If a valid rule is not found, return NULL.
|
|
** Otherwise, return a pointer to the first character not part of the rule.
|
|
*/
|
|
|
|
static const char *
|
|
getrule(const char *strp, struct rule *const rulep)
|
|
{
|
|
if (*strp == 'J') {
|
|
/*
|
|
** Julian day.
|
|
*/
|
|
rulep->r_type = JULIAN_DAY;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
|
|
} else if (*strp == 'M') {
|
|
/*
|
|
** Month, week, day.
|
|
*/
|
|
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_week, 1, 5);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
|
|
} else if (is_digit(*strp)) {
|
|
/*
|
|
** Day of year.
|
|
*/
|
|
rulep->r_type = DAY_OF_YEAR;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
|
|
} else return NULL; /* invalid format */
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp == '/') {
|
|
/*
|
|
** Time specified.
|
|
*/
|
|
++strp;
|
|
strp = getoffset(strp, &rulep->r_time);
|
|
} else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a year, a rule, and the offset from UT at the time that rule takes
|
|
** effect, calculate the year-relative time that rule takes effect.
|
|
*/
|
|
|
|
static int_fast32_t ATTRIBUTE_PURE
|
|
transtime(const int year, const struct rule *const rulep,
|
|
const int_fast32_t offset)
|
|
{
|
|
bool leapyear;
|
|
int_fast32_t value;
|
|
int i;
|
|
int d, m1, yy0, yy1, yy2, dow;
|
|
|
|
INITIALIZE(value);
|
|
leapyear = isleap(year);
|
|
switch (rulep->r_type) {
|
|
|
|
case JULIAN_DAY:
|
|
/*
|
|
** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
|
|
** years.
|
|
** In non-leap years, or if the day number is 59 or less, just
|
|
** add SECSPERDAY times the day number-1 to the time of
|
|
** January 1, midnight, to get the day.
|
|
*/
|
|
value = (rulep->r_day - 1) * SECSPERDAY;
|
|
if (leapyear && rulep->r_day >= 60)
|
|
value += SECSPERDAY;
|
|
break;
|
|
|
|
case DAY_OF_YEAR:
|
|
/*
|
|
** n - day of year.
|
|
** Just add SECSPERDAY times the day number to the time of
|
|
** January 1, midnight, to get the day.
|
|
*/
|
|
value = rulep->r_day * SECSPERDAY;
|
|
break;
|
|
|
|
case MONTH_NTH_DAY_OF_WEEK:
|
|
/*
|
|
** Mm.n.d - nth "dth day" of month m.
|
|
*/
|
|
|
|
/*
|
|
** Use Zeller's Congruence to get day-of-week of first day of
|
|
** month.
|
|
*/
|
|
m1 = (rulep->r_mon + 9) % 12 + 1;
|
|
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
|
|
yy1 = yy0 / 100;
|
|
yy2 = yy0 % 100;
|
|
dow = ((26 * m1 - 2) / 10 +
|
|
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
|
|
if (dow < 0)
|
|
dow += DAYSPERWEEK;
|
|
|
|
/*
|
|
** "dow" is the day-of-week of the first day of the month. Get
|
|
** the day-of-month (zero-origin) of the first "dow" day of the
|
|
** month.
|
|
*/
|
|
d = rulep->r_day - dow;
|
|
if (d < 0)
|
|
d += DAYSPERWEEK;
|
|
for (i = 1; i < rulep->r_week; ++i) {
|
|
if (d + DAYSPERWEEK >=
|
|
mon_lengths[leapyear][rulep->r_mon - 1])
|
|
break;
|
|
d += DAYSPERWEEK;
|
|
}
|
|
|
|
/*
|
|
** "d" is the day-of-month (zero-origin) of the day we want.
|
|
*/
|
|
value = d * SECSPERDAY;
|
|
for (i = 0; i < rulep->r_mon - 1; ++i)
|
|
value += mon_lengths[leapyear][i] * SECSPERDAY;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** "value" is the year-relative time of 00:00:00 UT on the day in
|
|
** question. To get the year-relative time of the specified local
|
|
** time on that day, add the transition time and the current offset
|
|
** from UT.
|
|
*/
|
|
return value + rulep->r_time + offset;
|
|
}
|
|
|
|
/*
|
|
** Given a POSIX section 8-style TZ string, fill in the rule tables as
|
|
** appropriate.
|
|
*/
|
|
|
|
static bool
|
|
tzparse(const char *name, struct state *sp, bool lastditch)
|
|
{
|
|
const char * stdname;
|
|
const char * dstname;
|
|
size_t stdlen;
|
|
size_t dstlen;
|
|
size_t charcnt;
|
|
int_fast32_t stdoffset;
|
|
int_fast32_t dstoffset;
|
|
char * cp;
|
|
bool load_ok;
|
|
|
|
dstname = NULL; /* XXX gcc */
|
|
stdname = name;
|
|
if (lastditch) {
|
|
stdlen = sizeof gmt - 1;
|
|
name += stdlen;
|
|
stdoffset = 0;
|
|
} else {
|
|
if (*name == '<') {
|
|
name++;
|
|
stdname = name;
|
|
name = getqzname(name, '>');
|
|
if (*name != '>')
|
|
return false;
|
|
stdlen = name - stdname;
|
|
name++;
|
|
} else {
|
|
name = getzname(name);
|
|
stdlen = name - stdname;
|
|
}
|
|
if (!stdlen)
|
|
return false;
|
|
name = getoffset(name, &stdoffset);
|
|
if (name == NULL)
|
|
return false;
|
|
}
|
|
charcnt = stdlen + 1;
|
|
if (sizeof sp->chars < charcnt)
|
|
return false;
|
|
load_ok = tzload(TZDEFRULES, sp, false) == 0;
|
|
if (!load_ok)
|
|
sp->leapcnt = 0; /* so, we're off a little */
|
|
if (*name != '\0') {
|
|
if (*name == '<') {
|
|
dstname = ++name;
|
|
name = getqzname(name, '>');
|
|
if (*name != '>')
|
|
return false;
|
|
dstlen = name - dstname;
|
|
name++;
|
|
} else {
|
|
dstname = name;
|
|
name = getzname(name);
|
|
dstlen = name - dstname; /* length of DST zone name */
|
|
}
|
|
if (!dstlen)
|
|
return false;
|
|
charcnt += dstlen + 1;
|
|
if (sizeof sp->chars < charcnt)
|
|
return false;
|
|
if (*name != '\0' && *name != ',' && *name != ';') {
|
|
name = getoffset(name, &dstoffset);
|
|
if (name == NULL)
|
|
return false;
|
|
} else dstoffset = stdoffset - SECSPERHOUR;
|
|
if (*name == '\0' && !load_ok)
|
|
name = TZDEFRULESTRING;
|
|
if (*name == ',' || *name == ';') {
|
|
struct rule start;
|
|
struct rule end;
|
|
int year;
|
|
int yearlim;
|
|
int timecnt;
|
|
time_t janfirst;
|
|
|
|
++name;
|
|
if ((name = getrule(name, &start)) == NULL)
|
|
return false;
|
|
if (*name++ != ',')
|
|
return false;
|
|
if ((name = getrule(name, &end)) == NULL)
|
|
return false;
|
|
if (*name != '\0')
|
|
return false;
|
|
sp->typecnt = 2; /* standard time and DST */
|
|
/*
|
|
** Two transitions per year, from EPOCH_YEAR forward.
|
|
*/
|
|
init_ttinfo(&sp->ttis[0], -dstoffset, true,
|
|
(int)(stdlen + 1));
|
|
init_ttinfo(&sp->ttis[1], -stdoffset, false, 0);
|
|
sp->defaulttype = 0;
|
|
timecnt = 0;
|
|
janfirst = 0;
|
|
yearlim = EPOCH_YEAR + YEARSPERREPEAT;
|
|
for (year = EPOCH_YEAR; year < yearlim; year++) {
|
|
int_fast32_t
|
|
starttime = transtime(year, &start, stdoffset),
|
|
endtime = transtime(year, &end, dstoffset);
|
|
int_fast32_t
|
|
yearsecs = (year_lengths[isleap(year)]
|
|
* SECSPERDAY);
|
|
bool reversed = endtime < starttime;
|
|
if (reversed) {
|
|
int_fast32_t swap = starttime;
|
|
starttime = endtime;
|
|
endtime = swap;
|
|
}
|
|
if (reversed
|
|
|| (starttime < endtime
|
|
&& (endtime - starttime
|
|
< (yearsecs
|
|
+ (stdoffset - dstoffset))))) {
|
|
if (TZ_MAX_TIMES - 2 < timecnt)
|
|
break;
|
|
yearlim = year + YEARSPERREPEAT + 1;
|
|
sp->ats[timecnt] = janfirst;
|
|
if (increment_overflow_time
|
|
(&sp->ats[timecnt], starttime))
|
|
break;
|
|
sp->types[timecnt++] = reversed;
|
|
sp->ats[timecnt] = janfirst;
|
|
if (increment_overflow_time
|
|
(&sp->ats[timecnt], endtime))
|
|
break;
|
|
sp->types[timecnt++] = !reversed;
|
|
}
|
|
if (increment_overflow_time(&janfirst, yearsecs))
|
|
break;
|
|
}
|
|
sp->timecnt = timecnt;
|
|
if (!timecnt)
|
|
sp->typecnt = 1; /* Perpetual DST. */
|
|
} else {
|
|
int_fast32_t theirstdoffset;
|
|
int_fast32_t theirdstoffset;
|
|
int_fast32_t theiroffset;
|
|
bool isdst;
|
|
int i;
|
|
int j;
|
|
|
|
if (*name != '\0')
|
|
return false;
|
|
/*
|
|
** Initial values of theirstdoffset and theirdstoffset.
|
|
*/
|
|
theirstdoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
j = sp->types[i];
|
|
if (!sp->ttis[j].tt_isdst) {
|
|
theirstdoffset =
|
|
-sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
theirdstoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
j = sp->types[i];
|
|
if (sp->ttis[j].tt_isdst) {
|
|
theirdstoffset =
|
|
-sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
** Initially we're assumed to be in standard time.
|
|
*/
|
|
isdst = false;
|
|
theiroffset = theirstdoffset;
|
|
/*
|
|
** Now juggle transition times and types
|
|
** tracking offsets as you do.
|
|
*/
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
j = sp->types[i];
|
|
sp->types[i] = sp->ttis[j].tt_isdst;
|
|
if (sp->ttis[j].tt_ttisgmt) {
|
|
/* No adjustment to transition time */
|
|
} else {
|
|
/*
|
|
** If summer time is in effect, and the
|
|
** transition time was not specified as
|
|
** standard time, add the summer time
|
|
** offset to the transition time;
|
|
** otherwise, add the standard time
|
|
** offset to the transition time.
|
|
*/
|
|
/*
|
|
** Transitions from DST to DDST
|
|
** will effectively disappear since
|
|
** POSIX provides for only one DST
|
|
** offset.
|
|
*/
|
|
if (isdst && !sp->ttis[j].tt_ttisstd) {
|
|
sp->ats[i] += (time_t)
|
|
(dstoffset - theirdstoffset);
|
|
} else {
|
|
sp->ats[i] += (time_t)
|
|
(stdoffset - theirstdoffset);
|
|
}
|
|
}
|
|
theiroffset = -sp->ttis[j].tt_gmtoff;
|
|
if (sp->ttis[j].tt_isdst)
|
|
theirstdoffset = theiroffset;
|
|
else theirdstoffset = theiroffset;
|
|
}
|
|
/*
|
|
** Finally, fill in ttis.
|
|
*/
|
|
init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
|
|
init_ttinfo(&sp->ttis[1], -dstoffset, true,
|
|
(int)(stdlen + 1));
|
|
sp->typecnt = 2;
|
|
sp->defaulttype = 0;
|
|
}
|
|
} else {
|
|
dstlen = 0;
|
|
sp->typecnt = 1; /* only standard time */
|
|
sp->timecnt = 0;
|
|
init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
|
|
init_ttinfo(&sp->ttis[1], 0, false, 0);
|
|
sp->defaulttype = 0;
|
|
}
|
|
sp->charcnt = charcnt;
|
|
cp = sp->chars;
|
|
(void) memcpy(cp, stdname, stdlen);
|
|
cp += stdlen;
|
|
*cp++ = '\0';
|
|
if (dstlen != 0) {
|
|
(void) memcpy(cp, dstname, dstlen);
|
|
*(cp + dstlen) = '\0';
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
gmtload(struct state *const sp)
|
|
{
|
|
if (tzload(gmt, sp, true) != 0)
|
|
(void) tzparse(gmt, sp, true);
|
|
}
|
|
|
|
static int
|
|
zoneinit(struct state *sp, char const *name)
|
|
{
|
|
if (name && ! name[0]) {
|
|
/*
|
|
** User wants it fast rather than right.
|
|
*/
|
|
sp->leapcnt = 0; /* so, we're off a little */
|
|
sp->timecnt = 0;
|
|
sp->typecnt = 0;
|
|
sp->charcnt = 0;
|
|
sp->goback = sp->goahead = false;
|
|
init_ttinfo(&sp->ttis[0], 0, false, 0);
|
|
strcpy(sp->chars, gmt);
|
|
sp->defaulttype = 0;
|
|
return 0;
|
|
} else {
|
|
int err = tzload(name, sp, true);
|
|
if (err != 0 && name && name[0] != ':' &&
|
|
tzparse(name, sp, false))
|
|
err = 0;
|
|
if (err == 0)
|
|
scrub_abbrs(sp);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
static void
|
|
tzsetlcl(char const *name)
|
|
{
|
|
struct state *sp = lclptr;
|
|
int lcl = name ? strlen(name) < sizeof lcl_TZname : -1;
|
|
if (lcl < 0 ? lcl_is_set < 0
|
|
: 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0)
|
|
return;
|
|
|
|
if (! sp)
|
|
lclptr = sp = malloc(sizeof *lclptr);
|
|
if (sp) {
|
|
if (zoneinit(sp, name) != 0)
|
|
zoneinit(sp, "");
|
|
if (0 < lcl)
|
|
strcpy(lcl_TZname, name);
|
|
}
|
|
settzname();
|
|
lcl_is_set = lcl;
|
|
}
|
|
|
|
#ifdef STD_INSPIRED
|
|
void
|
|
tzsetwall(void)
|
|
{
|
|
rwlock_wrlock(&lcl_lock);
|
|
tzsetlcl(NULL);
|
|
rwlock_unlock(&lcl_lock);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
tzset_unlocked(void)
|
|
{
|
|
tzsetlcl(getenv("TZ"));
|
|
}
|
|
|
|
void
|
|
tzset(void)
|
|
{
|
|
rwlock_wrlock(&lcl_lock);
|
|
tzset_unlocked();
|
|
rwlock_unlock(&lcl_lock);
|
|
}
|
|
|
|
static void
|
|
gmtcheck(void)
|
|
{
|
|
static bool gmt_is_set;
|
|
rwlock_wrlock(&lcl_lock);
|
|
if (! gmt_is_set) {
|
|
gmtptr = malloc(sizeof *gmtptr);
|
|
if (gmtptr)
|
|
gmtload(gmtptr);
|
|
gmt_is_set = true;
|
|
}
|
|
rwlock_unlock(&lcl_lock);
|
|
}
|
|
|
|
#if NETBSD_INSPIRED
|
|
|
|
timezone_t
|
|
tzalloc(const char *name)
|
|
{
|
|
timezone_t sp = malloc(sizeof *sp);
|
|
if (sp) {
|
|
int err = zoneinit(sp, name);
|
|
if (err != 0) {
|
|
free(sp);
|
|
errno = err;
|
|
return NULL;
|
|
}
|
|
}
|
|
return sp;
|
|
}
|
|
|
|
void
|
|
tzfree(timezone_t sp)
|
|
{
|
|
free(sp);
|
|
}
|
|
|
|
/*
|
|
** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and
|
|
** ctime_r are obsolescent and have potential security problems that
|
|
** ctime_rz would share. Callers can instead use localtime_rz + strftime.
|
|
**
|
|
** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work
|
|
** in zones with three or more time zone abbreviations.
|
|
** Callers can instead use localtime_rz + strftime.
|
|
*/
|
|
|
|
#endif
|
|
|
|
/*
|
|
** The easy way to behave "as if no library function calls" localtime
|
|
** is to not call it, so we drop its guts into "localsub", which can be
|
|
** freely called. (And no, the PANS doesn't require the above behavior,
|
|
** but it *is* desirable.)
|
|
**
|
|
** If successful and SETNAME is nonzero,
|
|
** set the applicable parts of tzname, timezone and altzone;
|
|
** however, it's OK to omit this step if the time zone is POSIX-compatible,
|
|
** since in that case tzset should have already done this step correctly.
|
|
** SETNAME's type is intfast32_t for compatibility with gmtsub,
|
|
** but it is actually a boolean and its value should be 0 or 1.
|
|
*/
|
|
|
|
/*ARGSUSED*/
|
|
static struct tm *
|
|
localsub(struct state const *sp, time_t const *timep, int_fast32_t setname,
|
|
struct tm *const tmp)
|
|
{
|
|
const struct ttinfo * ttisp;
|
|
int i;
|
|
struct tm * result;
|
|
const time_t t = *timep;
|
|
|
|
if (sp == NULL) {
|
|
/* Don't bother to set tzname etc.; tzset has already done it. */
|
|
return gmtsub(gmtptr, timep, 0, tmp);
|
|
}
|
|
if ((sp->goback && t < sp->ats[0]) ||
|
|
(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
|
|
time_t newt = t;
|
|
time_t seconds;
|
|
time_t years;
|
|
|
|
if (t < sp->ats[0])
|
|
seconds = sp->ats[0] - t;
|
|
else seconds = t - sp->ats[sp->timecnt - 1];
|
|
--seconds;
|
|
years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
|
|
seconds = (time_t)(years * AVGSECSPERYEAR);
|
|
if (t < sp->ats[0])
|
|
newt += seconds;
|
|
else newt -= seconds;
|
|
if (newt < sp->ats[0] ||
|
|
newt > sp->ats[sp->timecnt - 1]) {
|
|
errno = EINVAL;
|
|
return NULL; /* "cannot happen" */
|
|
}
|
|
result = localsub(sp, &newt, setname, tmp);
|
|
if (result) {
|
|
int_fast64_t newy;
|
|
|
|
newy = result->tm_year;
|
|
if (t < sp->ats[0])
|
|
newy -= years;
|
|
else newy += years;
|
|
if (! (INT_MIN <= newy && newy <= INT_MAX)) {
|
|
errno = EOVERFLOW;
|
|
return NULL;
|
|
}
|
|
result->tm_year = (int)newy;
|
|
}
|
|
return result;
|
|
}
|
|
if (sp->timecnt == 0 || t < sp->ats[0]) {
|
|
i = sp->defaulttype;
|
|
} else {
|
|
int lo = 1;
|
|
int hi = sp->timecnt;
|
|
|
|
while (lo < hi) {
|
|
int mid = (lo + hi) / 2;
|
|
|
|
if (t < sp->ats[mid])
|
|
hi = mid;
|
|
else lo = mid + 1;
|
|
}
|
|
i = (int) sp->types[lo - 1];
|
|
}
|
|
ttisp = &sp->ttis[i];
|
|
/*
|
|
** To get (wrong) behavior that's compatible with System V Release 2.0
|
|
** you'd replace the statement below with
|
|
** t += ttisp->tt_gmtoff;
|
|
** timesub(&t, 0L, sp, tmp);
|
|
*/
|
|
result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
|
|
if (result) {
|
|
result->tm_isdst = ttisp->tt_isdst;
|
|
#ifdef TM_ZONE
|
|
result->TM_ZONE = __UNCONST(&sp->chars[ttisp->tt_abbrind]);
|
|
#endif /* defined TM_ZONE */
|
|
if (setname)
|
|
update_tzname_etc(sp, ttisp);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#if NETBSD_INSPIRED
|
|
|
|
struct tm *
|
|
localtime_rz(timezone_t sp, time_t const *timep, struct tm *tmp)
|
|
{
|
|
return localsub(sp, timep, 0, tmp);
|
|
}
|
|
|
|
#endif
|
|
|
|
static struct tm *
|
|
localtime_tzset(time_t const *timep, struct tm *tmp, bool setname)
|
|
{
|
|
rwlock_wrlock(&lcl_lock);
|
|
if (setname || !lcl_is_set)
|
|
tzset_unlocked();
|
|
tmp = localsub(lclptr, timep, setname, tmp);
|
|
rwlock_unlock(&lcl_lock);
|
|
return tmp;
|
|
}
|
|
|
|
struct tm *
|
|
localtime(const time_t *timep)
|
|
{
|
|
return localtime_tzset(timep, &tm, true);
|
|
}
|
|
|
|
struct tm *
|
|
localtime_r(const time_t * __restrict timep, struct tm *tmp)
|
|
{
|
|
return localtime_tzset(timep, tmp, false);
|
|
}
|
|
|
|
/*
|
|
** gmtsub is to gmtime as localsub is to localtime.
|
|
*/
|
|
|
|
static struct tm *
|
|
gmtsub(struct state const *sp, const time_t *timep, int_fast32_t offset,
|
|
struct tm *tmp)
|
|
{
|
|
struct tm * result;
|
|
|
|
result = timesub(timep, offset, gmtptr, tmp);
|
|
#ifdef TM_ZONE
|
|
/*
|
|
** Could get fancy here and deliver something such as
|
|
** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
|
|
** but this is no time for a treasure hunt.
|
|
*/
|
|
if (result)
|
|
result->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ?
|
|
gmtptr->chars : __UNCONST(gmt);
|
|
#endif /* defined TM_ZONE */
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
** Re-entrant version of gmtime.
|
|
*/
|
|
|
|
struct tm *
|
|
gmtime_r(const time_t *timep, struct tm *tmp)
|
|
{
|
|
gmtcheck();
|
|
return gmtsub(NULL, timep, 0, tmp);
|
|
}
|
|
|
|
struct tm *
|
|
gmtime(const time_t *timep)
|
|
{
|
|
return gmtime_r(timep, &tm);
|
|
}
|
|
#ifdef STD_INSPIRED
|
|
|
|
struct tm *
|
|
offtime(const time_t *timep, long offset)
|
|
{
|
|
gmtcheck();
|
|
return gmtsub(gmtptr, timep, (int_fast32_t)offset, &tm);
|
|
}
|
|
|
|
struct tm *
|
|
offtime_r(const time_t *timep, long offset, struct tm *tmp)
|
|
{
|
|
gmtcheck();
|
|
return gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
|
|
}
|
|
|
|
#endif /* defined STD_INSPIRED */
|
|
|
|
/*
|
|
** Return the number of leap years through the end of the given year
|
|
** where, to make the math easy, the answer for year zero is defined as zero.
|
|
*/
|
|
|
|
static int ATTRIBUTE_PURE
|
|
leaps_thru_end_of(const int y)
|
|
{
|
|
return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
|
|
-(leaps_thru_end_of(-(y + 1)) + 1);
|
|
}
|
|
|
|
static struct tm *
|
|
timesub(const time_t *timep, int_fast32_t offset,
|
|
const struct state const *sp, struct tm *tmp)
|
|
{
|
|
const struct lsinfo * lp;
|
|
time_t tdays;
|
|
int idays; /* unsigned would be so 2003 */
|
|
int_fast64_t rem;
|
|
int y;
|
|
const int * ip;
|
|
int_fast64_t corr;
|
|
bool hit;
|
|
int i;
|
|
|
|
corr = 0;
|
|
hit = false;
|
|
i = (sp == NULL) ? 0 : sp->leapcnt;
|
|
while (--i >= 0) {
|
|
lp = &sp->lsis[i];
|
|
if (*timep >= lp->ls_trans) {
|
|
if (*timep == lp->ls_trans) {
|
|
hit = ((i == 0 && lp->ls_corr > 0) ||
|
|
lp->ls_corr > sp->lsis[i - 1].ls_corr);
|
|
if (hit)
|
|
while (i > 0 &&
|
|
sp->lsis[i].ls_trans ==
|
|
sp->lsis[i - 1].ls_trans + 1 &&
|
|
sp->lsis[i].ls_corr ==
|
|
sp->lsis[i - 1].ls_corr + 1) {
|
|
++hit;
|
|
--i;
|
|
}
|
|
}
|
|
corr = lp->ls_corr;
|
|
break;
|
|
}
|
|
}
|
|
y = EPOCH_YEAR;
|
|
tdays = (time_t)(*timep / SECSPERDAY);
|
|
rem = *timep % SECSPERDAY;
|
|
while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
|
|
int newy;
|
|
time_t tdelta;
|
|
int idelta;
|
|
int leapdays;
|
|
|
|
tdelta = tdays / DAYSPERLYEAR;
|
|
if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
|
|
&& tdelta <= INT_MAX))
|
|
goto out_of_range;
|
|
_DIAGASSERT(__type_fit(int, tdelta));
|
|
idelta = (int)tdelta;
|
|
if (idelta == 0)
|
|
idelta = (tdays < 0) ? -1 : 1;
|
|
newy = y;
|
|
if (increment_overflow(&newy, idelta))
|
|
goto out_of_range;
|
|
leapdays = leaps_thru_end_of(newy - 1) -
|
|
leaps_thru_end_of(y - 1);
|
|
tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
|
|
tdays -= leapdays;
|
|
y = newy;
|
|
}
|
|
/*
|
|
** Given the range, we can now fearlessly cast...
|
|
*/
|
|
idays = (int) tdays;
|
|
rem += offset - corr;
|
|
while (rem < 0) {
|
|
rem += SECSPERDAY;
|
|
--idays;
|
|
}
|
|
while (rem >= SECSPERDAY) {
|
|
rem -= SECSPERDAY;
|
|
++idays;
|
|
}
|
|
while (idays < 0) {
|
|
if (increment_overflow(&y, -1))
|
|
goto out_of_range;
|
|
idays += year_lengths[isleap(y)];
|
|
}
|
|
while (idays >= year_lengths[isleap(y)]) {
|
|
idays -= year_lengths[isleap(y)];
|
|
if (increment_overflow(&y, 1))
|
|
goto out_of_range;
|
|
}
|
|
tmp->tm_year = y;
|
|
if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
|
|
goto out_of_range;
|
|
tmp->tm_yday = idays;
|
|
/*
|
|
** The "extra" mods below avoid overflow problems.
|
|
*/
|
|
tmp->tm_wday = EPOCH_WDAY +
|
|
((y - EPOCH_YEAR) % DAYSPERWEEK) *
|
|
(DAYSPERNYEAR % DAYSPERWEEK) +
|
|
leaps_thru_end_of(y - 1) -
|
|
leaps_thru_end_of(EPOCH_YEAR - 1) +
|
|
idays;
|
|
tmp->tm_wday %= DAYSPERWEEK;
|
|
if (tmp->tm_wday < 0)
|
|
tmp->tm_wday += DAYSPERWEEK;
|
|
tmp->tm_hour = (int) (rem / SECSPERHOUR);
|
|
rem %= SECSPERHOUR;
|
|
tmp->tm_min = (int) (rem / SECSPERMIN);
|
|
/*
|
|
** A positive leap second requires a special
|
|
** representation. This uses "... ??:59:60" et seq.
|
|
*/
|
|
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
|
|
ip = mon_lengths[isleap(y)];
|
|
for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
|
|
idays -= ip[tmp->tm_mon];
|
|
tmp->tm_mday = (int) (idays + 1);
|
|
tmp->tm_isdst = 0;
|
|
#ifdef TM_GMTOFF
|
|
tmp->TM_GMTOFF = offset;
|
|
#endif /* defined TM_GMTOFF */
|
|
return tmp;
|
|
out_of_range:
|
|
errno = EOVERFLOW;
|
|
return NULL;
|
|
}
|
|
|
|
char *
|
|
ctime(const time_t *timep)
|
|
{
|
|
/*
|
|
** Section 4.12.3.2 of X3.159-1989 requires that
|
|
** The ctime function converts the calendar time pointed to by timer
|
|
** to local time in the form of a string. It is equivalent to
|
|
** asctime(localtime(timer))
|
|
*/
|
|
struct tm *tmp = localtime(timep);
|
|
return tmp ? asctime(tmp) : NULL;
|
|
}
|
|
|
|
char *
|
|
ctime_r(const time_t *timep, char *buf)
|
|
{
|
|
struct tm mytm;
|
|
struct tm *tmp = localtime_r(timep, &mytm);
|
|
return tmp ? asctime_r(tmp, buf) : NULL;
|
|
}
|
|
|
|
char *
|
|
ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
|
|
{
|
|
struct tm mytm, *rtm;
|
|
|
|
rtm = localtime_rz(sp, timep, &mytm);
|
|
if (rtm == NULL)
|
|
return NULL;
|
|
return asctime_r(rtm, buf);
|
|
}
|
|
|
|
/*
|
|
** Adapted from code provided by Robert Elz, who writes:
|
|
** The "best" way to do mktime I think is based on an idea of Bob
|
|
** Kridle's (so its said...) from a long time ago.
|
|
** It does a binary search of the time_t space. Since time_t's are
|
|
** just 32 bits, its a max of 32 iterations (even at 64 bits it
|
|
** would still be very reasonable).
|
|
*/
|
|
|
|
#ifndef WRONG
|
|
#define WRONG ((time_t)-1)
|
|
#endif /* !defined WRONG */
|
|
|
|
/*
|
|
** Normalize logic courtesy Paul Eggert.
|
|
*/
|
|
|
|
static bool
|
|
increment_overflow(int *ip, int j)
|
|
{
|
|
int const i = *ip;
|
|
|
|
/*
|
|
** If i >= 0 there can only be overflow if i + j > INT_MAX
|
|
** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
|
|
** If i < 0 there can only be overflow if i + j < INT_MIN
|
|
** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
|
|
*/
|
|
if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
|
|
return true;
|
|
*ip += j;
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
increment_overflow32(int_fast32_t *const lp, int const m)
|
|
{
|
|
int_fast32_t const l = *lp;
|
|
|
|
if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
|
|
return true;
|
|
*lp += m;
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
increment_overflow_time(time_t *tp, int_fast32_t j)
|
|
{
|
|
/*
|
|
** This is like
|
|
** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
|
|
** except that it does the right thing even if *tp + j would overflow.
|
|
*/
|
|
if (! (j < 0
|
|
? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
|
|
: *tp <= time_t_max - j))
|
|
return true;
|
|
*tp += j;
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
|
|
{
|
|
int tensdelta;
|
|
|
|
tensdelta = (*unitsptr >= 0) ?
|
|
(*unitsptr / base) :
|
|
(-1 - (-1 - *unitsptr) / base);
|
|
*unitsptr -= tensdelta * base;
|
|
return increment_overflow(tensptr, tensdelta);
|
|
}
|
|
|
|
static bool
|
|
normalize_overflow32(int_fast32_t *tensptr, int *unitsptr, int base)
|
|
{
|
|
int tensdelta;
|
|
|
|
tensdelta = (*unitsptr >= 0) ?
|
|
(*unitsptr / base) :
|
|
(-1 - (-1 - *unitsptr) / base);
|
|
*unitsptr -= tensdelta * base;
|
|
return increment_overflow32(tensptr, tensdelta);
|
|
}
|
|
|
|
static int
|
|
tmcomp(const struct tm *const atmp,
|
|
const struct tm *const btmp)
|
|
{
|
|
int result;
|
|
|
|
if (atmp->tm_year != btmp->tm_year)
|
|
return atmp->tm_year < btmp->tm_year ? -1 : 1;
|
|
if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
|
|
(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
|
|
(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
|
|
(result = (atmp->tm_min - btmp->tm_min)) == 0)
|
|
result = atmp->tm_sec - btmp->tm_sec;
|
|
return result;
|
|
}
|
|
|
|
static time_t
|
|
time2sub(struct tm *const tmp,
|
|
struct tm *(*funcp)(struct state const *, time_t const *,
|
|
int_fast32_t, struct tm *),
|
|
struct state const *sp,
|
|
const int_fast32_t offset,
|
|
bool *okayp,
|
|
bool do_norm_secs)
|
|
{
|
|
int dir;
|
|
int i, j;
|
|
int saved_seconds;
|
|
int_fast32_t li;
|
|
time_t lo;
|
|
time_t hi;
|
|
#ifdef NO_ERROR_IN_DST_GAP
|
|
time_t ilo;
|
|
#endif
|
|
int_fast32_t y;
|
|
time_t newt;
|
|
time_t t;
|
|
struct tm yourtm, mytm;
|
|
|
|
*okayp = false;
|
|
yourtm = *tmp;
|
|
#ifdef NO_ERROR_IN_DST_GAP
|
|
again:
|
|
#endif
|
|
if (do_norm_secs) {
|
|
if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
|
|
SECSPERMIN))
|
|
goto out_of_range;
|
|
}
|
|
if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
|
|
goto out_of_range;
|
|
if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
|
|
goto out_of_range;
|
|
y = yourtm.tm_year;
|
|
if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
|
|
goto out_of_range;
|
|
/*
|
|
** Turn y into an actual year number for now.
|
|
** It is converted back to an offset from TM_YEAR_BASE later.
|
|
*/
|
|
if (increment_overflow32(&y, TM_YEAR_BASE))
|
|
goto out_of_range;
|
|
while (yourtm.tm_mday <= 0) {
|
|
if (increment_overflow32(&y, -1))
|
|
goto out_of_range;
|
|
li = y + (1 < yourtm.tm_mon);
|
|
yourtm.tm_mday += year_lengths[isleap(li)];
|
|
}
|
|
while (yourtm.tm_mday > DAYSPERLYEAR) {
|
|
li = y + (1 < yourtm.tm_mon);
|
|
yourtm.tm_mday -= year_lengths[isleap(li)];
|
|
if (increment_overflow32(&y, 1))
|
|
goto out_of_range;
|
|
}
|
|
for ( ; ; ) {
|
|
i = mon_lengths[isleap(y)][yourtm.tm_mon];
|
|
if (yourtm.tm_mday <= i)
|
|
break;
|
|
yourtm.tm_mday -= i;
|
|
if (++yourtm.tm_mon >= MONSPERYEAR) {
|
|
yourtm.tm_mon = 0;
|
|
if (increment_overflow32(&y, 1))
|
|
goto out_of_range;
|
|
}
|
|
}
|
|
if (increment_overflow32(&y, -TM_YEAR_BASE))
|
|
goto out_of_range;
|
|
if (! (INT_MIN <= y && y <= INT_MAX))
|
|
goto out_of_range;
|
|
yourtm.tm_year = (int)y;
|
|
if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
|
|
saved_seconds = 0;
|
|
else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
|
|
/*
|
|
** We can't set tm_sec to 0, because that might push the
|
|
** time below the minimum representable time.
|
|
** Set tm_sec to 59 instead.
|
|
** This assumes that the minimum representable time is
|
|
** not in the same minute that a leap second was deleted from,
|
|
** which is a safer assumption than using 58 would be.
|
|
*/
|
|
if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
|
|
goto out_of_range;
|
|
saved_seconds = yourtm.tm_sec;
|
|
yourtm.tm_sec = SECSPERMIN - 1;
|
|
} else {
|
|
saved_seconds = yourtm.tm_sec;
|
|
yourtm.tm_sec = 0;
|
|
}
|
|
/*
|
|
** Do a binary search (this works whatever time_t's type is).
|
|
*/
|
|
lo = time_t_min;
|
|
hi = time_t_max;
|
|
#ifdef NO_ERROR_IN_DST_GAP
|
|
ilo = lo;
|
|
#endif
|
|
for ( ; ; ) {
|
|
t = lo / 2 + hi / 2;
|
|
if (t < lo)
|
|
t = lo;
|
|
else if (t > hi)
|
|
t = hi;
|
|
if (! funcp(sp, &t, offset, &mytm)) {
|
|
/*
|
|
** Assume that t is too extreme to be represented in
|
|
** a struct tm; arrange things so that it is less
|
|
** extreme on the next pass.
|
|
*/
|
|
dir = (t > 0) ? 1 : -1;
|
|
} else dir = tmcomp(&mytm, &yourtm);
|
|
if (dir != 0) {
|
|
if (t == lo) {
|
|
if (t == time_t_max)
|
|
goto out_of_range;
|
|
++t;
|
|
++lo;
|
|
} else if (t == hi) {
|
|
if (t == time_t_min)
|
|
goto out_of_range;
|
|
--t;
|
|
--hi;
|
|
}
|
|
#ifdef NO_ERROR_IN_DST_GAP
|
|
if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
|
|
do_norm_secs) {
|
|
for (i = sp->typecnt - 1; i >= 0; --i) {
|
|
for (j = sp->typecnt - 1; j >= 0; --j) {
|
|
time_t off;
|
|
if (sp->ttis[j].tt_isdst ==
|
|
sp->ttis[i].tt_isdst)
|
|
continue;
|
|
off = sp->ttis[j].tt_gmtoff -
|
|
sp->ttis[i].tt_gmtoff;
|
|
yourtm.tm_sec += off < 0 ?
|
|
-off : off;
|
|
goto again;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (lo > hi)
|
|
goto invalid;
|
|
if (dir > 0)
|
|
hi = t;
|
|
else lo = t;
|
|
continue;
|
|
}
|
|
#if defined TM_GMTOFF && ! UNINIT_TRAP
|
|
if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF
|
|
&& (yourtm.TM_GMTOFF < 0
|
|
? (-SECSPERDAY <= yourtm.TM_GMTOFF
|
|
&& (mytm.TM_GMTOFF <=
|
|
(/*CONSTCOND*/SMALLEST (INT_FAST32_MAX, LONG_MAX)
|
|
+ yourtm.TM_GMTOFF)))
|
|
: (yourtm.TM_GMTOFF <= SECSPERDAY
|
|
&& ((/*CONSTCOND*/BIGGEST (INT_FAST32_MIN, LONG_MIN)
|
|
+ yourtm.TM_GMTOFF)
|
|
<= mytm.TM_GMTOFF)))) {
|
|
/* MYTM matches YOURTM except with the wrong UTC offset.
|
|
YOURTM.TM_GMTOFF is plausible, so try it instead.
|
|
It's OK if YOURTM.TM_GMTOFF contains uninitialized data,
|
|
since the guess gets checked. */
|
|
time_t altt = t;
|
|
int_fast32_t diff = (int_fast32_t)
|
|
(mytm.TM_GMTOFF - yourtm.TM_GMTOFF);
|
|
if (!increment_overflow_time(&altt, diff)) {
|
|
struct tm alttm;
|
|
if (! funcp(sp, &altt, offset, &alttm)
|
|
&& alttm.tm_isdst == mytm.tm_isdst
|
|
&& alttm.TM_GMTOFF == yourtm.TM_GMTOFF
|
|
&& tmcomp(&alttm, &yourtm)) {
|
|
t = altt;
|
|
mytm = alttm;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
|
|
break;
|
|
/*
|
|
** Right time, wrong type.
|
|
** Hunt for right time, right type.
|
|
** It's okay to guess wrong since the guess
|
|
** gets checked.
|
|
*/
|
|
if (sp == NULL)
|
|
goto invalid;
|
|
for (i = sp->typecnt - 1; i >= 0; --i) {
|
|
if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
|
|
continue;
|
|
for (j = sp->typecnt - 1; j >= 0; --j) {
|
|
if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
|
|
continue;
|
|
newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
|
|
sp->ttis[i].tt_gmtoff);
|
|
if (! funcp(sp, &newt, offset, &mytm))
|
|
continue;
|
|
if (tmcomp(&mytm, &yourtm) != 0)
|
|
continue;
|
|
if (mytm.tm_isdst != yourtm.tm_isdst)
|
|
continue;
|
|
/*
|
|
** We have a match.
|
|
*/
|
|
t = newt;
|
|
goto label;
|
|
}
|
|
}
|
|
goto invalid;
|
|
}
|
|
label:
|
|
newt = t + saved_seconds;
|
|
if ((newt < t) != (saved_seconds < 0))
|
|
goto out_of_range;
|
|
t = newt;
|
|
if (funcp(sp, &t, offset, tmp)) {
|
|
*okayp = true;
|
|
return t;
|
|
}
|
|
out_of_range:
|
|
errno = EOVERFLOW;
|
|
return WRONG;
|
|
invalid:
|
|
errno = EINVAL;
|
|
return WRONG;
|
|
}
|
|
|
|
static time_t
|
|
time2(struct tm * const tmp,
|
|
struct tm *(*funcp)(struct state const *, time_t const *,
|
|
int_fast32_t, struct tm *),
|
|
struct state const *sp,
|
|
const int_fast32_t offset,
|
|
bool *okayp)
|
|
{
|
|
time_t t;
|
|
|
|
/*
|
|
** First try without normalization of seconds
|
|
** (in case tm_sec contains a value associated with a leap second).
|
|
** If that fails, try with normalization of seconds.
|
|
*/
|
|
t = time2sub(tmp, funcp, sp, offset, okayp, false);
|
|
return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true);
|
|
}
|
|
|
|
static time_t
|
|
time1(struct tm *const tmp,
|
|
struct tm *(*funcp) (struct state const *, time_t const *,
|
|
int_fast32_t, struct tm *),
|
|
struct state const *sp,
|
|
const int_fast32_t offset)
|
|
{
|
|
time_t t;
|
|
int samei, otheri;
|
|
int sameind, otherind;
|
|
int i;
|
|
int nseen;
|
|
int save_errno;
|
|
char seen[TZ_MAX_TYPES];
|
|
unsigned char types[TZ_MAX_TYPES];
|
|
bool okay;
|
|
|
|
if (tmp == NULL) {
|
|
errno = EINVAL;
|
|
return WRONG;
|
|
}
|
|
if (tmp->tm_isdst > 1)
|
|
tmp->tm_isdst = 1;
|
|
save_errno = errno;
|
|
t = time2(tmp, funcp, sp, offset, &okay);
|
|
if (okay) {
|
|
errno = save_errno;
|
|
return t;
|
|
}
|
|
if (tmp->tm_isdst < 0)
|
|
#ifdef PCTS
|
|
/*
|
|
** POSIX Conformance Test Suite code courtesy Grant Sullivan.
|
|
*/
|
|
tmp->tm_isdst = 0; /* reset to std and try again */
|
|
#else
|
|
return t;
|
|
#endif /* !defined PCTS */
|
|
/*
|
|
** We're supposed to assume that somebody took a time of one type
|
|
** and did some math on it that yielded a "struct tm" that's bad.
|
|
** We try to divine the type they started from and adjust to the
|
|
** type they need.
|
|
*/
|
|
if (sp == NULL) {
|
|
errno = EINVAL;
|
|
return WRONG;
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
seen[i] = false;
|
|
nseen = 0;
|
|
for (i = sp->timecnt - 1; i >= 0; --i)
|
|
if (!seen[sp->types[i]]) {
|
|
seen[sp->types[i]] = true;
|
|
types[nseen++] = sp->types[i];
|
|
}
|
|
for (sameind = 0; sameind < nseen; ++sameind) {
|
|
samei = types[sameind];
|
|
if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
|
|
continue;
|
|
for (otherind = 0; otherind < nseen; ++otherind) {
|
|
otheri = types[otherind];
|
|
if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
|
|
continue;
|
|
tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
|
|
sp->ttis[samei].tt_gmtoff);
|
|
tmp->tm_isdst = !tmp->tm_isdst;
|
|
t = time2(tmp, funcp, sp, offset, &okay);
|
|
if (okay) {
|
|
errno = save_errno;
|
|
return t;
|
|
}
|
|
tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
|
|
sp->ttis[samei].tt_gmtoff);
|
|
tmp->tm_isdst = !tmp->tm_isdst;
|
|
}
|
|
}
|
|
errno = EOVERFLOW;
|
|
return WRONG;
|
|
}
|
|
|
|
static time_t
|
|
mktime_tzname(timezone_t sp, struct tm *tmp, bool setname)
|
|
{
|
|
if (sp)
|
|
return time1(tmp, localsub, sp, setname);
|
|
else {
|
|
gmtcheck();
|
|
return time1(tmp, gmtsub, gmtptr, 0);
|
|
}
|
|
}
|
|
|
|
#if NETBSD_INSPIRED
|
|
|
|
time_t
|
|
mktime_z(timezone_t sp, struct tm *const tmp)
|
|
{
|
|
return mktime_tzname(sp, tmp, false);
|
|
}
|
|
|
|
#endif
|
|
|
|
time_t
|
|
mktime(struct tm *tmp)
|
|
{
|
|
time_t t;
|
|
|
|
rwlock_wrlock(&lcl_lock);
|
|
tzset_unlocked();
|
|
t = mktime_tzname(lclptr, tmp, true);
|
|
rwlock_unlock(&lcl_lock);
|
|
return t;
|
|
}
|
|
|
|
#ifdef STD_INSPIRED
|
|
|
|
time_t
|
|
timelocal_z(const timezone_t sp, struct tm *const tmp)
|
|
{
|
|
if (tmp != NULL)
|
|
tmp->tm_isdst = -1; /* in case it wasn't initialized */
|
|
return mktime_z(sp, tmp);
|
|
}
|
|
|
|
time_t
|
|
timelocal(struct tm *tmp)
|
|
{
|
|
if (tmp != NULL)
|
|
tmp->tm_isdst = -1; /* in case it wasn't initialized */
|
|
return mktime(tmp);
|
|
}
|
|
|
|
time_t
|
|
timegm(struct tm *tmp)
|
|
{
|
|
|
|
return timeoff(tmp, 0);
|
|
}
|
|
|
|
time_t
|
|
timeoff(struct tm *tmp, long offset)
|
|
{
|
|
if (tmp)
|
|
tmp->tm_isdst = 0;
|
|
gmtcheck();
|
|
return time1(tmp, gmtsub, gmtptr, (int_fast32_t)offset);
|
|
}
|
|
|
|
#endif /* defined STD_INSPIRED */
|
|
|
|
/*
|
|
** XXX--is the below the right way to conditionalize??
|
|
*/
|
|
|
|
#ifdef STD_INSPIRED
|
|
|
|
/*
|
|
** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
|
|
** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
|
|
** is not the case if we are accounting for leap seconds.
|
|
** So, we provide the following conversion routines for use
|
|
** when exchanging timestamps with POSIX conforming systems.
|
|
*/
|
|
|
|
static int_fast64_t
|
|
leapcorr(const timezone_t sp, time_t t)
|
|
{
|
|
struct lsinfo const * lp;
|
|
int i;
|
|
|
|
i = sp->leapcnt;
|
|
while (--i >= 0) {
|
|
lp = &sp->lsis[i];
|
|
if (t >= lp->ls_trans)
|
|
return lp->ls_corr;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
|
|
time2posix_z(timezone_t sp, time_t t)
|
|
{
|
|
return (time_t)(t - leapcorr(sp, t));
|
|
}
|
|
|
|
time_t
|
|
time2posix(time_t t)
|
|
{
|
|
rwlock_wrlock(&lcl_lock);
|
|
if (!lcl_is_set)
|
|
tzset_unlocked();
|
|
if (lclptr)
|
|
t = (time_t)(t - leapcorr(lclptr, t));
|
|
rwlock_unlock(&lcl_lock);
|
|
return t;
|
|
}
|
|
|
|
NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
|
|
posix2time_z(timezone_t sp, time_t t)
|
|
{
|
|
time_t x;
|
|
time_t y;
|
|
|
|
/*
|
|
** For a positive leap second hit, the result
|
|
** is not unique. For a negative leap second
|
|
** hit, the corresponding time doesn't exist,
|
|
** so we return an adjacent second.
|
|
*/
|
|
x = (time_t)(t + leapcorr(sp, t));
|
|
y = (time_t)(x - leapcorr(sp, x));
|
|
if (y < t) {
|
|
do {
|
|
x++;
|
|
y = (time_t)(x - leapcorr(sp, x));
|
|
} while (y < t);
|
|
x -= y != t;
|
|
} else if (y > t) {
|
|
do {
|
|
--x;
|
|
y = (time_t)(x - leapcorr(sp, x));
|
|
} while (y > t);
|
|
x += y != t;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
time_t
|
|
posix2time(time_t t)
|
|
{
|
|
rwlock_wrlock(&lcl_lock);
|
|
if (!lcl_is_set)
|
|
tzset_unlocked();
|
|
if (lclptr)
|
|
t = posix2time_z(lclptr, t);
|
|
rwlock_unlock(&lcl_lock);
|
|
return t;
|
|
}
|
|
|
|
#endif /* defined STD_INSPIRED */
|