NetBSD/sys/arch/xen/i386/xen_shm_machdep.c

311 lines
9.2 KiB
C

/* $NetBSD: xen_shm_machdep.c,v 1.22 2007/03/13 18:30:57 ad Exp $ */
/*
* Copyright (c) 2006 Manuel Bouyer.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Manuel Bouyer.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/vmem.h>
#include <sys/kernel.h>
#include <uvm/uvm.h>
#include <machine/pmap.h>
#include <machine/hypervisor.h>
#include <machine/xen.h>
#include <machine/evtchn.h>
#include <machine/xen_shm.h>
/*
* Helper routines for the backend drivers. This implement the necessary
* functions to map a bunch of pages from foreign domains in our kernel VM
* space, do I/O to it, and unmap it.
*
* At boot time, we grap some kernel VM space that we'll use to map the foreign
* pages. We also maintain a virtual to machine mapping table to give back
* the appropriate address to bus_dma if requested.
* If no more VM space is available, we return an error. The caller can then
* register a callback which will be called when the required VM space is
* available.
*/
/* pointers to our VM space */
static vaddr_t xen_shm_base_address;
static u_long xen_shm_base_address_pg;
static vaddr_t xen_shm_end_address;
/* Grab enouth VM space to map an entire vbd ring. */
#ifdef XEN3
/* Xen3 linux guests seems to eat more pages, gives enough for 10 vbd rings */
#define BLKIF_RING_SIZE __RING_SIZE((blkif_sring_t *)0, PAGE_SIZE)
#define XENSHM_NPAGES (BLKIF_RING_SIZE * (BLKIF_MAX_SEGMENTS_PER_REQUEST + 1) * 10)
#else
#define XENSHM_NPAGES (BLKIF_RING_SIZE * (BLKIF_MAX_SEGMENTS_PER_REQUEST + 1))
#endif
static vsize_t xen_shm_size = (XENSHM_NPAGES * PAGE_SIZE);
/* vm space management */
static vmem_t *xen_shm_arena;
/* callbacks are registered in a FIFO list. */
static SIMPLEQ_HEAD(xen_shm_callback_head, xen_shm_callback_entry)
xen_shm_callbacks;
struct xen_shm_callback_entry {
SIMPLEQ_ENTRY(xen_shm_callback_entry) xshmc_entries;
int (*xshmc_callback)(void *); /* our callback */
void *xshmc_arg; /* cookie passed to the callback */
};
/* a pool of struct xen_shm_callback_entry */
static struct pool xen_shm_callback_pool;
#ifdef DEBUG
/* for ratecheck(9) */
static struct timeval xen_shm_errintvl = { 60, 0 }; /* a minute, each */
#endif
void
xen_shm_init()
{
SIMPLEQ_INIT(&xen_shm_callbacks);
pool_init(&xen_shm_callback_pool, sizeof(struct xen_shm_callback_entry),
0, 0, 0, "xshmc", NULL, IPL_VM);
/* ensure we'll always get items */
if (pool_prime(&xen_shm_callback_pool,
PAGE_SIZE / sizeof(struct xen_shm_callback_entry)) != 0) {
panic("xen_shm_init can't prime pool");
}
xen_shm_base_address = uvm_km_alloc(kernel_map, xen_shm_size, 0,
UVM_KMF_VAONLY);
xen_shm_end_address = xen_shm_base_address + xen_shm_size;
xen_shm_base_address_pg = xen_shm_base_address >> PAGE_SHIFT;
if (xen_shm_base_address == 0) {
panic("xen_shm_init no VM space");
}
xen_shm_arena = vmem_create("xen_shm",
xen_shm_base_address_pg,
(xen_shm_end_address >> PAGE_SHIFT) - 1 - xen_shm_base_address_pg,
1, NULL, NULL, NULL, 1, VM_NOSLEEP);
if (xen_shm_arena == NULL) {
panic("xen_shm_init no arena");
}
}
int
#ifdef XEN3
xen_shm_map(int nentries, int domid, grant_ref_t *grefp, vaddr_t *vap,
grant_handle_t *handlep, int flags)
#else
xen_shm_map(paddr_t *ma, int nentries, int domid, vaddr_t *vap, int flags)
#endif
{
int s, i;
vaddr_t new_va;
u_long new_va_pg;
#ifdef XEN3
int err;
gnttab_map_grant_ref_t op[XENSHM_MAX_PAGES_PER_REQUEST];
#else
multicall_entry_t mcl[XENSHM_MAX_PAGES_PER_REQUEST];
int remap_prot = PG_V | PG_RW | PG_U | PG_M;
#endif
#ifdef DIAGNOSTIC
if (nentries > XENSHM_MAX_PAGES_PER_REQUEST) {
printf("xen_shm_map: %d entries\n", nentries);
panic("xen_shm_map");
}
#endif
s = splvm(); /* splvm is the lowest level blocking disk and net IRQ */
/*
* if a driver is waiting for ressources, don't try to allocate
* yet. This is to avoid a flood of small requests stalling large
* ones.
*/
if (__predict_false(SIMPLEQ_FIRST(&xen_shm_callbacks) != NULL) &&
(flags & XSHM_CALLBACK) == 0) {
#ifdef DEBUG
static struct timeval lasttime;
#endif
splx(s);
#ifdef DEBUG
if (ratecheck(&lasttime, &xen_shm_errintvl))
printf("xen_shm_map: ENOMEM1\n");
#endif
return ENOMEM;
}
/* allocate the needed virtual space */
new_va_pg = vmem_alloc(xen_shm_arena, nentries,
VM_INSTANTFIT | VM_NOSLEEP);
if (new_va_pg == 0) {
#ifdef DEBUG
static struct timeval lasttime;
#endif
splx(s);
#ifdef DEBUG
if (ratecheck(&lasttime, &xen_shm_errintvl))
printf("xen_shm_map: ENOMEM\n");
#endif
return ENOMEM;
}
splx(s);
new_va = new_va_pg << PAGE_SHIFT;
#ifdef XEN3
for (i = 0; i < nentries; i++) {
op[i].host_addr = new_va + i * PAGE_SIZE;
op[i].dom = domid;
op[i].ref = grefp[i];
op[i].flags = GNTMAP_host_map |
((flags & XSHM_RO) ? GNTMAP_readonly : 0);
}
err = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, op, nentries);
if (__predict_false(err))
panic("xen_shm_map: HYPERVISOR_grant_table_op failed");
for (i = 0; i < nentries; i++) {
if (__predict_false(op[i].status))
return op[i].status;
handlep[i] = op[i].handle;
}
#else /* !XEN3 */
for (i = 0; i < nentries; i++, new_va_pg++) {
mcl[i].op = __HYPERVISOR_update_va_mapping_otherdomain;
mcl[i].args[0] = new_va_pg;
mcl[i].args[1] = ma[i] | remap_prot;
mcl[i].args[2] = 0;
mcl[i].args[3] = domid;
}
if (HYPERVISOR_multicall(mcl, nentries) != 0)
panic("xen_shm_map: HYPERVISOR_multicall");
for (i = 0; i < nentries; i++) {
if ((mcl[i].args[5] != 0)) {
printf("xen_shm_map: mcl[%d] failed\n", i);
xen_shm_unmap(new_va, ma, nentries, domid);
return EINVAL;
}
}
#endif /* !XEN3 */
*vap = new_va;
return 0;
}
void
#ifdef XEN3
xen_shm_unmap(vaddr_t va, int nentries, grant_handle_t *handlep)
#else
xen_shm_unmap(vaddr_t va, paddr_t *pa, int nentries, int domid)
#endif
{
#ifdef XEN3
gnttab_unmap_grant_ref_t op[XENSHM_MAX_PAGES_PER_REQUEST];
int ret;
#else
multicall_entry_t mcl[XENSHM_MAX_PAGES_PER_REQUEST];
#endif
int i;
int s;
struct xen_shm_callback_entry *xshmc;
#ifdef DIAGNOSTIC
if (nentries > XENSHM_MAX_PAGES_PER_REQUEST) {
printf("xen_shm_unmap: %d entries\n", nentries);
panic("xen_shm_unmap");
}
#endif
#ifdef XEN3
for (i = 0; i < nentries; i++) {
op[i].host_addr = va + i * PAGE_SIZE;
op[i].dev_bus_addr = 0;
op[i].handle = handlep[i];
}
ret = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
op, nentries);
if (__predict_false(ret))
panic("xen_shm_unmap: unmap failed");
va = va >> PAGE_SHIFT;
#else /* !XEN3 */
va = va >> PAGE_SHIFT;
for (i = 0; i < nentries; i++) {
mcl[i].op = __HYPERVISOR_update_va_mapping;
mcl[i].args[0] = va + i;
mcl[i].args[1] = 0;
mcl[i].args[2] = 0;
}
mcl[nentries - 1].args[2] = UVMF_FLUSH_TLB;
if (HYPERVISOR_multicall(mcl, nentries) != 0)
panic("xen_shm_unmap");
#endif /* !XEN3 */
s = splvm(); /* splvm is the lowest level blocking disk and net IRQ */
vmem_free(xen_shm_arena, va, nentries);
while (__predict_false((xshmc = SIMPLEQ_FIRST(&xen_shm_callbacks))
!= NULL)) {
SIMPLEQ_REMOVE_HEAD(&xen_shm_callbacks, xshmc_entries);
splx(s);
if (xshmc->xshmc_callback(xshmc->xshmc_arg) == 0) {
/* callback succeeded */
s = splvm();
pool_put(&xen_shm_callback_pool, xshmc);
} else {
/* callback failed, probably out of ressources */
s = splvm();
SIMPLEQ_INSERT_TAIL(&xen_shm_callbacks, xshmc,
xshmc_entries);
break;
}
}
splx(s);
}
int
xen_shm_callback(int (*callback)(void *), void *arg)
{
struct xen_shm_callback_entry *xshmc;
int s;
s = splvm();
xshmc = pool_get(&xen_shm_callback_pool, PR_NOWAIT);
if (xshmc == NULL) {
splx(s);
return ENOMEM;
}
xshmc->xshmc_arg = arg;
xshmc->xshmc_callback = callback;
SIMPLEQ_INSERT_TAIL(&xen_shm_callbacks, xshmc, xshmc_entries);
splx(s);
return 0;
}