58e867556f
check into the inline functions as well the fourth argument for bpf_attach.
2135 lines
53 KiB
C
2135 lines
53 KiB
C
/* $NetBSD: elink3.c,v 1.131 2010/04/05 07:19:34 joerg Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org>
|
|
* Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Herb Peyerl.
|
|
* 4. The name of Herb Peyerl may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.131 2010/04/05 07:19:34 joerg Exp $");
|
|
|
|
#include "opt_inet.h"
|
|
#include "rnd.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/select.h>
|
|
#include <sys/device.h>
|
|
#if NRND > 0
|
|
#include <sys/rnd.h>
|
|
#endif
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/bpfdesc.h>
|
|
|
|
#include <sys/cpu.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
#include <dev/mii/mii_bitbang.h>
|
|
|
|
#include <dev/ic/elink3var.h>
|
|
#include <dev/ic/elink3reg.h>
|
|
|
|
#ifdef DEBUG
|
|
int epdebug = 0;
|
|
#endif
|
|
|
|
/*
|
|
* XXX endian workaround for big-endian CPUs with pcmcia:
|
|
* if stream methods for bus_space_multi are not provided, define them
|
|
* using non-stream bus_space_{read,write}_multi_.
|
|
* Assumes host CPU is same endian-ness as bus.
|
|
*/
|
|
#ifndef __BUS_SPACE_HAS_STREAM_METHODS
|
|
#define bus_space_read_multi_stream_2 bus_space_read_multi_2
|
|
#define bus_space_read_multi_stream_4 bus_space_read_multi_4
|
|
#define bus_space_write_multi_stream_2 bus_space_write_multi_2
|
|
#define bus_space_write_multi_stream_4 bus_space_write_multi_4
|
|
#endif /* __BUS_SPACE_HAS_STREAM_METHODS */
|
|
|
|
/*
|
|
* Structure to map media-present bits in boards to ifmedia codes and
|
|
* printable media names. Used for table-driven ifmedia initialization.
|
|
*/
|
|
struct ep_media {
|
|
int epm_mpbit; /* media present bit */
|
|
const char *epm_name; /* name of medium */
|
|
int epm_ifmedia; /* ifmedia word for medium */
|
|
int epm_epmedia; /* ELINKMEDIA_* constant */
|
|
};
|
|
|
|
/*
|
|
* Media table for the Demon/Vortex/Boomerang chipsets.
|
|
*
|
|
* Note that MII on the Demon and Vortex (3c59x) indicates an external
|
|
* MII connector (for connecting an external PHY) ... I think. Treat
|
|
* it as `manual' on these chips.
|
|
*
|
|
* Any Boomerang (3c90x) chips with MII really do have an internal
|
|
* MII and real PHYs attached; no `native' media.
|
|
*/
|
|
const struct ep_media ep_vortex_media[] = {
|
|
{ ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
|
|
ELINKMEDIA_10BASE_T },
|
|
{ ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
|
|
ELINKMEDIA_10BASE_T },
|
|
{ ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
|
|
ELINKMEDIA_AUI },
|
|
{ ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
|
|
ELINKMEDIA_10BASE_2 },
|
|
{ ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
|
|
ELINKMEDIA_100BASE_TX },
|
|
{ ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
|
|
ELINKMEDIA_100BASE_TX },
|
|
{ ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
|
|
ELINKMEDIA_100BASE_FX },
|
|
{ ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
|
|
ELINKMEDIA_MII },
|
|
{ ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
|
|
ELINKMEDIA_100BASE_T4 },
|
|
{ 0, NULL, 0,
|
|
0 },
|
|
};
|
|
|
|
/*
|
|
* Media table for the older 3Com Etherlink III chipset, used
|
|
* in the 3c509, 3c579, and 3c589.
|
|
*/
|
|
const struct ep_media ep_509_media[] = {
|
|
{ ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
|
|
ELINKMEDIA_10BASE_T },
|
|
{ ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
|
|
ELINKMEDIA_AUI },
|
|
{ ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
|
|
ELINKMEDIA_10BASE_2 },
|
|
{ 0, NULL, 0,
|
|
0 },
|
|
};
|
|
|
|
void ep_internalconfig(struct ep_softc *sc);
|
|
void ep_vortex_probemedia(struct ep_softc *sc);
|
|
void ep_509_probemedia(struct ep_softc *sc);
|
|
|
|
static void eptxstat(struct ep_softc *);
|
|
static int epstatus(struct ep_softc *);
|
|
int epinit(struct ifnet *);
|
|
void epstop(struct ifnet *, int);
|
|
int epioctl(struct ifnet *, u_long, void *);
|
|
void epstart(struct ifnet *);
|
|
void epwatchdog(struct ifnet *);
|
|
void epreset(struct ep_softc *);
|
|
static bool epshutdown(device_t, int);
|
|
void epread(struct ep_softc *);
|
|
struct mbuf *epget(struct ep_softc *, int);
|
|
void epmbuffill(void *);
|
|
void epmbufempty(struct ep_softc *);
|
|
void epsetfilter(struct ep_softc *);
|
|
void ep_roadrunner_mii_enable(struct ep_softc *);
|
|
void epsetmedia(struct ep_softc *);
|
|
|
|
/* ifmedia callbacks */
|
|
int ep_media_change(struct ifnet *ifp);
|
|
void ep_media_status(struct ifnet *ifp, struct ifmediareq *req);
|
|
|
|
/* MII callbacks */
|
|
int ep_mii_readreg(device_t, int, int);
|
|
void ep_mii_writereg(device_t, int, int, int);
|
|
void ep_statchg(device_t);
|
|
|
|
void ep_tick(void *);
|
|
|
|
static int epbusyeeprom(struct ep_softc *);
|
|
u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
|
|
static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg);
|
|
static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
|
|
static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
|
|
static inline int ep_w1_reg(struct ep_softc *, int);
|
|
|
|
/*
|
|
* MII bit-bang glue.
|
|
*/
|
|
u_int32_t ep_mii_bitbang_read(device_t);
|
|
void ep_mii_bitbang_write(device_t, u_int32_t);
|
|
|
|
const struct mii_bitbang_ops ep_mii_bitbang_ops = {
|
|
ep_mii_bitbang_read,
|
|
ep_mii_bitbang_write,
|
|
{
|
|
PHYSMGMT_DATA, /* MII_BIT_MDO */
|
|
PHYSMGMT_DATA, /* MII_BIT_MDI */
|
|
PHYSMGMT_CLK, /* MII_BIT_MDC */
|
|
PHYSMGMT_DIR, /* MII_BIT_DIR_HOST_PHY */
|
|
0, /* MII_BIT_DIR_PHY_HOST */
|
|
}
|
|
};
|
|
|
|
/*
|
|
* Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
|
|
* Window 1 registers offset!
|
|
*/
|
|
static inline int
|
|
ep_w1_reg(struct ep_softc *sc, int reg)
|
|
{
|
|
|
|
switch (sc->ep_chipset) {
|
|
case ELINK_CHIPSET_CORKSCREW:
|
|
return (reg + 0x10);
|
|
|
|
case ELINK_CHIPSET_ROADRUNNER:
|
|
switch (reg) {
|
|
case ELINK_W1_FREE_TX:
|
|
case ELINK_W1_RUNNER_RDCTL:
|
|
case ELINK_W1_RUNNER_WRCTL:
|
|
return (reg);
|
|
}
|
|
return (reg + 0x10);
|
|
}
|
|
|
|
return (reg);
|
|
}
|
|
|
|
/*
|
|
* Wait for any pending reset to complete.
|
|
* On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
|
|
* but older hardware doesn't implement it and we must delay.
|
|
*/
|
|
static inline void
|
|
ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 10000; i++) {
|
|
if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
|
|
COMMAND_IN_PROGRESS) == 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Issue a (reset) command, and be sure it has completed.
|
|
* Used for global reset, TX_RESET, RX_RESET.
|
|
*/
|
|
static inline void
|
|
ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
|
|
bus_space_write_2(iot, ioh, cmd, arg);
|
|
ep_finish_reset(iot, ioh);
|
|
}
|
|
|
|
|
|
static inline void
|
|
ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
|
|
{
|
|
int i;
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
|
|
|
|
/*
|
|
* Spin for about 1 msec, to avoid forcing a DELAY() between
|
|
* every received packet (adding latency and limiting pkt-recv rate).
|
|
* On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
|
|
* is about right.
|
|
*/
|
|
for (i = 0; i < 8000; i++) {
|
|
if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
|
|
COMMAND_IN_PROGRESS) == 0)
|
|
return;
|
|
}
|
|
|
|
/* Didn't complete in a hurry. Do DELAY()s. */
|
|
ep_finish_reset(iot, ioh);
|
|
}
|
|
|
|
/*
|
|
* Back-end attach and configure.
|
|
*/
|
|
int
|
|
epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
u_int16_t i;
|
|
u_int8_t myla[ETHER_ADDR_LEN];
|
|
|
|
callout_init(&sc->sc_mii_callout, 0);
|
|
callout_init(&sc->sc_mbuf_callout, 0);
|
|
|
|
sc->ep_chipset = chipset;
|
|
|
|
/*
|
|
* We could have been groveling around in other register
|
|
* windows in the front-end; make sure we're in window 0
|
|
* to read the EEPROM.
|
|
*/
|
|
GO_WINDOW(0);
|
|
|
|
if (enaddr == NULL) {
|
|
/*
|
|
* Read the station address from the eeprom.
|
|
*/
|
|
for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
|
|
u_int16_t x = ep_read_eeprom(sc, i);
|
|
myla[(i << 1)] = x >> 8;
|
|
myla[(i << 1) + 1] = x;
|
|
}
|
|
enaddr = myla;
|
|
}
|
|
|
|
/*
|
|
* Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
|
|
* allow FDDI-sized (4500) byte packets. Commands only take an
|
|
* 11-bit parameter, and 11 bits isn't enough to hold a full-size
|
|
* packet length.
|
|
* Commands to these cards implicitly upshift a packet size
|
|
* or threshold by 2 bits.
|
|
* To detect cards with large-packet support, we probe by setting
|
|
* the transmit threshold register, then change windows and
|
|
* read back the threshold register directly, and see if the
|
|
* threshold value was shifted or not.
|
|
*/
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
|
|
GO_WINDOW(5);
|
|
i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
|
|
GO_WINDOW(1);
|
|
switch (i) {
|
|
case ELINK_LARGEWIN_PROBE:
|
|
case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
|
|
sc->ep_pktlenshift = 0;
|
|
break;
|
|
|
|
case (ELINK_LARGEWIN_PROBE << 2):
|
|
sc->ep_pktlenshift = 2;
|
|
break;
|
|
|
|
default:
|
|
aprint_error_dev(sc->sc_dev,
|
|
"wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
|
|
"Interface disabled\n",
|
|
ELINK_LARGEWIN_PROBE, (int) i);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Ensure Tx-available interrupts are enabled for
|
|
* start the interface.
|
|
* XXX should be in epinit()?
|
|
*/
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
|
|
|
|
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_start = epstart;
|
|
ifp->if_ioctl = epioctl;
|
|
ifp->if_watchdog = epwatchdog;
|
|
ifp->if_init = epinit;
|
|
ifp->if_stop = epstop;
|
|
ifp->if_flags =
|
|
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, enaddr);
|
|
|
|
/*
|
|
* Finish configuration:
|
|
* determine chipset if the front-end couldn't do so,
|
|
* show board details, set media.
|
|
*/
|
|
|
|
/*
|
|
* Print RAM size. We also print the Ethernet address in here.
|
|
* It's extracted from the ifp, so we have to make sure it's
|
|
* been attached first.
|
|
*/
|
|
ep_internalconfig(sc);
|
|
GO_WINDOW(0);
|
|
|
|
/*
|
|
* Display some additional information, if pertinent.
|
|
*/
|
|
if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
|
|
aprint_normal_dev(sc->sc_dev, "RoadRunner FIFO buffer enabled\n");
|
|
|
|
/*
|
|
* Initialize our media structures and MII info. We'll
|
|
* probe the MII if we discover that we have one.
|
|
*/
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = ep_mii_readreg;
|
|
sc->sc_mii.mii_writereg = ep_mii_writereg;
|
|
sc->sc_mii.mii_statchg = ep_statchg;
|
|
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ep_media_change,
|
|
ep_media_status);
|
|
|
|
/*
|
|
* All CORKSCREW chips have MII.
|
|
*/
|
|
if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
|
|
sc->ep_flags |= ELINK_FLAGS_MII;
|
|
|
|
/*
|
|
* Now, determine which media we have.
|
|
*/
|
|
switch (sc->ep_chipset) {
|
|
case ELINK_CHIPSET_ROADRUNNER:
|
|
if (sc->ep_flags & ELINK_FLAGS_MII) {
|
|
ep_roadrunner_mii_enable(sc);
|
|
GO_WINDOW(0);
|
|
}
|
|
/* FALLTHROUGH */
|
|
|
|
case ELINK_CHIPSET_CORKSCREW:
|
|
case ELINK_CHIPSET_BOOMERANG:
|
|
/*
|
|
* If the device has MII, probe it. We won't be using
|
|
* any `native' media in this case, only PHYs. If
|
|
* we don't, just treat the Boomerang like the Vortex.
|
|
*/
|
|
if (sc->ep_flags & ELINK_FLAGS_MII) {
|
|
mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
|
|
MII_PHY_ANY, MII_OFFSET_ANY, 0);
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->sc_mii.mii_media,
|
|
IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media,
|
|
IFM_ETHER|IFM_NONE);
|
|
} else {
|
|
ifmedia_set(&sc->sc_mii.mii_media,
|
|
IFM_ETHER|IFM_AUTO);
|
|
}
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
|
|
case ELINK_CHIPSET_VORTEX:
|
|
ep_vortex_probemedia(sc);
|
|
break;
|
|
|
|
default:
|
|
ep_509_probemedia(sc);
|
|
break;
|
|
}
|
|
|
|
GO_WINDOW(1); /* Window 1 is operating window */
|
|
|
|
#if NRND > 0
|
|
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
|
|
RND_TYPE_NET, 0);
|
|
#endif
|
|
|
|
sc->tx_start_thresh = 20; /* probably a good starting point. */
|
|
|
|
/* Establish callback to reset card when we reboot. */
|
|
if (pmf_device_register1(sc->sc_dev, NULL, NULL, epshutdown))
|
|
pmf_class_network_register(sc->sc_dev, ifp);
|
|
else
|
|
aprint_error_dev(sc->sc_dev,
|
|
"couldn't establish power handler\n");
|
|
|
|
ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
|
|
ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
|
|
|
|
/* The attach is successful. */
|
|
sc->sc_flags |= ELINK_FLAGS_ATTACHED;
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Show interface-model-independent info from window 3
|
|
* internal-configuration register.
|
|
*/
|
|
void
|
|
ep_internalconfig(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
|
|
u_int config0;
|
|
u_int config1;
|
|
|
|
int ram_size, ram_width, ram_split;
|
|
/*
|
|
* NVRAM buffer Rx:Tx config names for busmastering cards
|
|
* (Demon, Vortex, and later).
|
|
*/
|
|
const char *const onboard_ram_config[] = {
|
|
"5:3", "3:1", "1:1", "3:5" };
|
|
|
|
GO_WINDOW(3);
|
|
config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
|
|
config1 = (u_int)bus_space_read_2(iot, ioh,
|
|
ELINK_W3_INTERNAL_CONFIG + 2);
|
|
GO_WINDOW(0);
|
|
|
|
ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
|
|
ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
|
|
|
|
ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
|
|
|
|
aprint_normal_dev(sc->sc_dev, "address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
|
|
ether_sprintf(CLLADDR(sc->sc_ethercom.ec_if.if_sadl)),
|
|
8 << ram_size,
|
|
(ram_width) ? "word" : "byte",
|
|
onboard_ram_config[ram_split]);
|
|
}
|
|
|
|
|
|
/*
|
|
* Find supported media on 3c509-generation hardware that doesn't have
|
|
* a "reset_options" register in window 3.
|
|
* Use the config_cntrl register in window 0 instead.
|
|
* Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
|
|
* that implement CONFIG_CTRL. We don't have a good way to set the
|
|
* default active medium; punt to ifconfig instead.
|
|
*/
|
|
void
|
|
ep_509_probemedia(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct ifmedia *ifm = &sc->sc_mii.mii_media;
|
|
u_int16_t ep_w0_config, port;
|
|
const struct ep_media *epm;
|
|
const char *sep = "", *defmedianame = NULL;
|
|
int defmedia = 0;
|
|
|
|
GO_WINDOW(0);
|
|
ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
|
|
|
|
aprint_normal_dev(sc->sc_dev, "");
|
|
|
|
/* Sanity check that there are any media! */
|
|
if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
|
|
aprint_error("no media present!\n");
|
|
ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Get the default media from the EEPROM.
|
|
*/
|
|
port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
|
|
|
|
#define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
|
|
|
|
for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
|
|
if (ep_w0_config & epm->epm_mpbit) {
|
|
/*
|
|
* This simple test works because 509 chipsets
|
|
* don't do full-duplex.
|
|
*/
|
|
if (epm->epm_epmedia == port || defmedia == 0) {
|
|
defmedia = epm->epm_ifmedia;
|
|
defmedianame = epm->epm_name;
|
|
}
|
|
ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
|
|
NULL);
|
|
PRINT(epm->epm_name);
|
|
}
|
|
}
|
|
|
|
#undef PRINT
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (defmedia == 0)
|
|
panic("ep_509_probemedia: impossible");
|
|
#endif
|
|
|
|
aprint_normal(" (default %s)\n", defmedianame);
|
|
ifmedia_set(ifm, defmedia);
|
|
}
|
|
|
|
/*
|
|
* Find media present on large-packet-capable elink3 devices.
|
|
* Show onboard configuration of large-packet-capable elink3 devices
|
|
* (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
|
|
* Use media and card-version info in window 3 instead.
|
|
*/
|
|
void
|
|
ep_vortex_probemedia(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct ifmedia *ifm = &sc->sc_mii.mii_media;
|
|
const struct ep_media *epm;
|
|
u_int config1;
|
|
int reset_options;
|
|
int default_media; /* 3-bit encoding of default (EEPROM) media */
|
|
int defmedia = 0;
|
|
const char *sep = "", *defmedianame = NULL;
|
|
|
|
GO_WINDOW(3);
|
|
config1 = (u_int)bus_space_read_2(iot, ioh,
|
|
ELINK_W3_INTERNAL_CONFIG + 2);
|
|
reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
|
|
GO_WINDOW(0);
|
|
|
|
default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
|
|
|
|
aprint_normal_dev(sc->sc_dev, "");
|
|
|
|
/* Sanity check that there are any media! */
|
|
if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
|
|
aprint_error("no media present!\n");
|
|
ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
|
|
return;
|
|
}
|
|
|
|
#define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
|
|
|
|
for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
|
|
if (reset_options & epm->epm_mpbit) {
|
|
/*
|
|
* Default media is a little more complicated
|
|
* on the Vortex. We support full-duplex which
|
|
* uses the same reset options bit.
|
|
*
|
|
* XXX Check EEPROM for default to FDX?
|
|
*/
|
|
if (epm->epm_epmedia == default_media) {
|
|
if ((epm->epm_ifmedia & IFM_FDX) == 0) {
|
|
defmedia = epm->epm_ifmedia;
|
|
defmedianame = epm->epm_name;
|
|
}
|
|
} else if (defmedia == 0) {
|
|
defmedia = epm->epm_ifmedia;
|
|
defmedianame = epm->epm_name;
|
|
}
|
|
ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
|
|
NULL);
|
|
PRINT(epm->epm_name);
|
|
}
|
|
}
|
|
|
|
#undef PRINT
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (defmedia == 0)
|
|
panic("ep_vortex_probemedia: impossible");
|
|
#endif
|
|
|
|
aprint_normal(" (default %s)\n", defmedianame);
|
|
ifmedia_set(ifm, defmedia);
|
|
}
|
|
|
|
/*
|
|
* One second timer, used to tick the MII.
|
|
*/
|
|
void
|
|
ep_tick(void *arg)
|
|
{
|
|
struct ep_softc *sc = arg;
|
|
int s;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
|
|
panic("ep_tick");
|
|
#endif
|
|
|
|
if (!device_is_active(sc->sc_dev))
|
|
return;
|
|
|
|
s = splnet();
|
|
mii_tick(&sc->sc_mii);
|
|
splx(s);
|
|
|
|
callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* Bring device up.
|
|
*
|
|
* The order in here seems important. Otherwise we may not receive
|
|
* interrupts. ?!
|
|
*/
|
|
int
|
|
epinit(struct ifnet *ifp)
|
|
{
|
|
struct ep_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int i, error;
|
|
const u_int8_t *addr;
|
|
|
|
if (!sc->enabled && (error = epenable(sc)) != 0)
|
|
return (error);
|
|
|
|
/* Make sure any pending reset has completed before touching board */
|
|
ep_finish_reset(iot, ioh);
|
|
|
|
/*
|
|
* Cancel any pending I/O.
|
|
*/
|
|
epstop(ifp, 0);
|
|
|
|
if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
|
|
&& sc->bustype != ELINK_BUS_MCA) {
|
|
GO_WINDOW(0);
|
|
bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
|
|
bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
|
|
ENABLE_DRQ_IRQ);
|
|
}
|
|
|
|
if (sc->bustype == ELINK_BUS_PCMCIA) {
|
|
bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
|
|
}
|
|
|
|
GO_WINDOW(2);
|
|
/* Reload the ether_addr. */
|
|
addr = CLLADDR(ifp->if_sadl);
|
|
for (i = 0; i < 6; i += 2)
|
|
bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
|
|
(addr[i] << 0) | (addr[i + 1] << 8));
|
|
|
|
/*
|
|
* Reset the station-address receive filter.
|
|
* A bug workaround for busmastering (Vortex, Demon) cards.
|
|
*/
|
|
for (i = 0; i < 6; i += 2)
|
|
bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
|
|
|
|
ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
|
|
ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
|
|
|
|
GO_WINDOW(1); /* Window 1 is operating window */
|
|
for (i = 0; i < 31; i++)
|
|
(void)bus_space_read_2(iot, ioh,
|
|
ep_w1_reg(sc, ELINK_W1_TX_STATUS));
|
|
|
|
/* Set threshold for Tx-space available interrupt. */
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
|
|
|
|
if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
|
|
/*
|
|
* Enable options in the PCMCIA LAN COR register, via
|
|
* RoadRunner Window 1.
|
|
*
|
|
* XXX MAGIC CONSTANTS!
|
|
*/
|
|
u_int16_t cor;
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
|
|
|
|
cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
|
|
if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
|
|
cor |= 0x10;
|
|
if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
|
|
cor |= 0x20;
|
|
bus_space_write_2(iot, ioh, 0, cor);
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
|
|
bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
|
|
|
|
if (sc->ep_flags & ELINK_FLAGS_MII) {
|
|
ep_roadrunner_mii_enable(sc);
|
|
GO_WINDOW(1);
|
|
}
|
|
}
|
|
|
|
/* Enable interrupts. */
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
SET_RD_0_MASK | WATCHED_INTERRUPTS);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
SET_INTR_MASK | WATCHED_INTERRUPTS);
|
|
|
|
/*
|
|
* Attempt to get rid of any stray interrupts that occurred during
|
|
* configuration. On the i386 this isn't possible because one may
|
|
* already be queued. However, a single stray interrupt is
|
|
* unimportant.
|
|
*/
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
|
|
|
|
epsetfilter(sc);
|
|
epsetmedia(sc);
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
|
|
|
|
epmbuffill(sc);
|
|
|
|
/* Interface is now `running', with no output active. */
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
if (sc->ep_flags & ELINK_FLAGS_MII) {
|
|
/* Start the one second clock. */
|
|
callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
|
|
}
|
|
|
|
/* Attempt to start output, if any. */
|
|
epstart(ifp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Set multicast receive filter.
|
|
* elink3 hardware has no selective multicast filter in hardware.
|
|
* Enable reception of all multicasts and filter in software.
|
|
*/
|
|
void
|
|
epsetfilter(struct ep_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
GO_WINDOW(1); /* Window 1 is operating window */
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
|
|
SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
|
|
((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
|
|
((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
|
|
}
|
|
|
|
int
|
|
ep_media_change(struct ifnet *ifp)
|
|
{
|
|
struct ep_softc *sc = ifp->if_softc;
|
|
|
|
if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
|
|
epreset(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Reset and enable the MII on the RoadRunner.
|
|
*/
|
|
void
|
|
ep_roadrunner_mii_enable(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
|
|
GO_WINDOW(3);
|
|
bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
|
|
ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
|
|
delay(1000);
|
|
bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
|
|
ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
|
|
ELINK_RUNNER_ENABLE_MII);
|
|
ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
|
|
ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
|
|
delay(1000);
|
|
bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
|
|
ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
|
|
}
|
|
|
|
/*
|
|
* Set the card to use the specified media.
|
|
*/
|
|
void
|
|
epsetmedia(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
|
|
/* Turn everything off. First turn off linkbeat and UTP. */
|
|
GO_WINDOW(4);
|
|
bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
|
|
|
|
/* Turn off coax */
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
|
|
delay(1000);
|
|
|
|
/*
|
|
* If the device has MII, select it, and then tell the
|
|
* PHY which media to use.
|
|
*/
|
|
if (sc->ep_flags & ELINK_FLAGS_MII) {
|
|
int config0, config1;
|
|
|
|
GO_WINDOW(3);
|
|
|
|
if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
|
|
int resopt;
|
|
|
|
resopt = bus_space_read_2(iot, ioh,
|
|
ELINK_W3_RESET_OPTIONS);
|
|
bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
|
|
resopt | ELINK_RUNNER_ENABLE_MII);
|
|
}
|
|
|
|
config0 = (u_int)bus_space_read_2(iot, ioh,
|
|
ELINK_W3_INTERNAL_CONFIG);
|
|
config1 = (u_int)bus_space_read_2(iot, ioh,
|
|
ELINK_W3_INTERNAL_CONFIG + 2);
|
|
|
|
config1 = config1 & ~CONFIG_MEDIAMASK;
|
|
config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
|
|
bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
|
|
config1);
|
|
GO_WINDOW(1); /* back to operating window */
|
|
|
|
mii_mediachg(&sc->sc_mii);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now turn on the selected media/transceiver.
|
|
*/
|
|
GO_WINDOW(4);
|
|
switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
|
|
case IFM_10_T:
|
|
bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
|
|
JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
|
|
break;
|
|
|
|
case IFM_10_2:
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
|
|
DELAY(1000); /* 50ms not enmough? */
|
|
break;
|
|
|
|
case IFM_100_TX:
|
|
case IFM_100_FX:
|
|
case IFM_100_T4: /* XXX check documentation */
|
|
bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
|
|
LINKBEAT_ENABLE);
|
|
DELAY(1000); /* not strictly necessary? */
|
|
break;
|
|
|
|
case IFM_10_5:
|
|
bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
|
|
SQE_ENABLE);
|
|
DELAY(1000); /* not strictly necessary? */
|
|
break;
|
|
|
|
case IFM_MANUAL:
|
|
/*
|
|
* Nothing to do here; we are actually enabling the
|
|
* external PHY on the MII port.
|
|
*/
|
|
break;
|
|
|
|
case IFM_NONE:
|
|
printf("%s: interface disabled\n", device_xname(sc->sc_dev));
|
|
return;
|
|
|
|
default:
|
|
panic("epsetmedia: impossible");
|
|
}
|
|
|
|
/*
|
|
* Tell the chip which port to use.
|
|
*/
|
|
switch (sc->ep_chipset) {
|
|
case ELINK_CHIPSET_VORTEX:
|
|
case ELINK_CHIPSET_BOOMERANG:
|
|
{
|
|
int mctl, config0, config1;
|
|
|
|
GO_WINDOW(3);
|
|
config0 = (u_int)bus_space_read_2(iot, ioh,
|
|
ELINK_W3_INTERNAL_CONFIG);
|
|
config1 = (u_int)bus_space_read_2(iot, ioh,
|
|
ELINK_W3_INTERNAL_CONFIG + 2);
|
|
|
|
config1 = config1 & ~CONFIG_MEDIAMASK;
|
|
config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
|
|
CONFIG_MEDIAMASK_SHIFT);
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
|
|
bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
|
|
config1);
|
|
|
|
mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
|
|
if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
|
|
mctl |= MAC_CONTROL_FDX;
|
|
else
|
|
mctl &= ~MAC_CONTROL_FDX;
|
|
bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
int w0_addr_cfg;
|
|
|
|
GO_WINDOW(0);
|
|
w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
|
|
w0_addr_cfg &= 0x3fff;
|
|
bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
|
|
(sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
|
|
DELAY(1000);
|
|
break;
|
|
}
|
|
}
|
|
|
|
GO_WINDOW(1); /* Window 1 is operating window */
|
|
}
|
|
|
|
/*
|
|
* Get currently-selected media from card.
|
|
* (if_media callback, may be called before interface is brought up).
|
|
*/
|
|
void
|
|
ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
|
|
{
|
|
struct ep_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
|
|
if (sc->enabled == 0) {
|
|
req->ifm_active = IFM_ETHER|IFM_NONE;
|
|
req->ifm_status = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we have MII, go ask the PHY what's going on.
|
|
*/
|
|
if (sc->ep_flags & ELINK_FLAGS_MII) {
|
|
mii_pollstat(&sc->sc_mii);
|
|
req->ifm_active = sc->sc_mii.mii_media_active;
|
|
req->ifm_status = sc->sc_mii.mii_media_status;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Ok, at this point we claim that our active media is
|
|
* the currently selected media. We'll update our status
|
|
* if our chipset allows us to detect link.
|
|
*/
|
|
req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
|
|
req->ifm_status = 0;
|
|
|
|
switch (sc->ep_chipset) {
|
|
case ELINK_CHIPSET_VORTEX:
|
|
case ELINK_CHIPSET_BOOMERANG:
|
|
GO_WINDOW(4);
|
|
req->ifm_status = IFM_AVALID;
|
|
if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
|
|
LINKBEAT_DETECT)
|
|
req->ifm_status |= IFM_ACTIVE;
|
|
GO_WINDOW(1); /* back to operating window */
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Start outputting on the interface.
|
|
* Always called as splnet().
|
|
*/
|
|
void
|
|
epstart(struct ifnet *ifp)
|
|
{
|
|
struct ep_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct mbuf *m, *m0;
|
|
int sh, len, pad;
|
|
bus_size_t txreg;
|
|
|
|
/* Don't transmit if interface is busy or not running */
|
|
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
startagain:
|
|
/* Sneak a peek at the next packet */
|
|
IFQ_POLL(&ifp->if_snd, m0);
|
|
if (m0 == 0)
|
|
return;
|
|
|
|
/* We need to use m->m_pkthdr.len, so require the header */
|
|
if ((m0->m_flags & M_PKTHDR) == 0)
|
|
panic("epstart: no header mbuf");
|
|
len = m0->m_pkthdr.len;
|
|
|
|
pad = (4 - len) & 3;
|
|
|
|
/*
|
|
* The 3c509 automatically pads short packets to minimum ethernet
|
|
* length, but we drop packets that are too large. Perhaps we should
|
|
* truncate them instead?
|
|
*/
|
|
if (len + pad > ETHER_MAX_LEN) {
|
|
/* packet is obviously too large: toss it */
|
|
++ifp->if_oerrors;
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
m_freem(m0);
|
|
goto readcheck;
|
|
}
|
|
|
|
if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
|
|
len + pad + 4) {
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
SET_TX_AVAIL_THRESH |
|
|
((len + pad + 4) >> sc->ep_pktlenshift));
|
|
/* not enough room in FIFO */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
return;
|
|
} else {
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
|
|
}
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m0 == 0) /* not really needed */
|
|
return;
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
|
|
((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
|
|
|
|
bpf_mtap(ifp, m0);
|
|
|
|
/*
|
|
* Do the output at a high interrupt priority level so that an
|
|
* interrupt from another device won't cause a FIFO underrun.
|
|
* We choose splsched() since that blocks essentially everything
|
|
* except for interrupts from serial devices (which typically
|
|
* lose data if their interrupt isn't serviced fast enough).
|
|
*
|
|
* XXX THIS CAN CAUSE CLOCK DRIFT!
|
|
*/
|
|
sh = splsched();
|
|
|
|
txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
|
|
|
|
if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
|
|
/*
|
|
* Prime the FIFO buffer counter (number of 16-bit
|
|
* words about to be written to the FIFO).
|
|
*
|
|
* NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
|
|
* COUNTER IS NON-ZERO!
|
|
*/
|
|
bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
|
|
(len + pad) >> 1);
|
|
}
|
|
|
|
bus_space_write_2(iot, ioh, txreg, len);
|
|
bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
|
|
if (ELINK_IS_BUS_32(sc->bustype)) {
|
|
for (m = m0; m;) {
|
|
if (m->m_len > 3) {
|
|
/* align our reads from core */
|
|
if (mtod(m, u_long) & 3) {
|
|
u_long count =
|
|
4 - (mtod(m, u_long) & 3);
|
|
bus_space_write_multi_1(iot, ioh,
|
|
txreg, mtod(m, u_int8_t *), count);
|
|
m->m_data =
|
|
(void *)(mtod(m, u_long) + count);
|
|
m->m_len -= count;
|
|
}
|
|
bus_space_write_multi_stream_4(iot, ioh,
|
|
txreg, mtod(m, u_int32_t *), m->m_len >> 2);
|
|
m->m_data = (void *)(mtod(m, u_long) +
|
|
(u_long)(m->m_len & ~3));
|
|
m->m_len -= m->m_len & ~3;
|
|
}
|
|
if (m->m_len) {
|
|
bus_space_write_multi_1(iot, ioh,
|
|
txreg, mtod(m, u_int8_t *), m->m_len);
|
|
}
|
|
MFREE(m, m0);
|
|
m = m0;
|
|
}
|
|
} else {
|
|
for (m = m0; m;) {
|
|
if (m->m_len > 1) {
|
|
if (mtod(m, u_long) & 1) {
|
|
bus_space_write_1(iot, ioh,
|
|
txreg, *(mtod(m, u_int8_t *)));
|
|
m->m_data =
|
|
(void *)(mtod(m, u_long) + 1);
|
|
m->m_len -= 1;
|
|
}
|
|
bus_space_write_multi_stream_2(iot, ioh,
|
|
txreg, mtod(m, u_int16_t *),
|
|
m->m_len >> 1);
|
|
}
|
|
if (m->m_len & 1) {
|
|
bus_space_write_1(iot, ioh, txreg,
|
|
*(mtod(m, u_int8_t *) + m->m_len - 1));
|
|
}
|
|
MFREE(m, m0);
|
|
m = m0;
|
|
}
|
|
}
|
|
while (pad--)
|
|
bus_space_write_1(iot, ioh, txreg, 0);
|
|
|
|
splx(sh);
|
|
|
|
++ifp->if_opackets;
|
|
|
|
readcheck:
|
|
if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
|
|
ERR_INCOMPLETE) == 0) {
|
|
/* We received a complete packet. */
|
|
u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
|
|
|
|
if ((status & INTR_LATCH) == 0) {
|
|
/*
|
|
* No interrupt, read the packet and continue
|
|
* Is this supposed to happen? Is my motherboard
|
|
* completely busted?
|
|
*/
|
|
epread(sc);
|
|
} else {
|
|
/* Got an interrupt, return so that it gets serviced. */
|
|
return;
|
|
}
|
|
} else {
|
|
/* Check if we are stuck and reset [see XXX comment] */
|
|
if (epstatus(sc)) {
|
|
if (ifp->if_flags & IFF_DEBUG)
|
|
printf("%s: adapter reset\n",
|
|
device_xname(sc->sc_dev));
|
|
epreset(sc);
|
|
}
|
|
}
|
|
|
|
goto startagain;
|
|
}
|
|
|
|
|
|
/*
|
|
* XXX: The 3c509 card can get in a mode where both the fifo status bit
|
|
* FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
|
|
* We detect this situation and we reset the adapter.
|
|
* It happens at times when there is a lot of broadcast traffic
|
|
* on the cable (once in a blue moon).
|
|
*/
|
|
static int
|
|
epstatus(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
u_int16_t fifost;
|
|
|
|
/*
|
|
* Check the FIFO status and act accordingly
|
|
*/
|
|
GO_WINDOW(4);
|
|
fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
|
|
GO_WINDOW(1);
|
|
|
|
if (fifost & FIFOS_RX_UNDERRUN) {
|
|
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
|
|
printf("%s: RX underrun\n", device_xname(sc->sc_dev));
|
|
epreset(sc);
|
|
return 0;
|
|
}
|
|
|
|
if (fifost & FIFOS_RX_STATUS_OVERRUN) {
|
|
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
|
|
printf("%s: RX Status overrun\n", device_xname(sc->sc_dev));
|
|
return 1;
|
|
}
|
|
|
|
if (fifost & FIFOS_RX_OVERRUN) {
|
|
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
|
|
printf("%s: RX overrun\n", device_xname(sc->sc_dev));
|
|
return 1;
|
|
}
|
|
|
|
if (fifost & FIFOS_TX_OVERRUN) {
|
|
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
|
|
printf("%s: TX overrun\n", device_xname(sc->sc_dev));
|
|
epreset(sc);
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
eptxstat(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int i;
|
|
|
|
/*
|
|
* We need to read+write TX_STATUS until we get a 0 status
|
|
* in order to turn off the interrupt flag.
|
|
*/
|
|
while ((i = bus_space_read_2(iot, ioh,
|
|
ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
|
|
bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
|
|
0x0);
|
|
|
|
if (i & TXS_JABBER) {
|
|
++sc->sc_ethercom.ec_if.if_oerrors;
|
|
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
|
|
printf("%s: jabber (%x)\n",
|
|
device_xname(sc->sc_dev), i);
|
|
epreset(sc);
|
|
} else if (i & TXS_UNDERRUN) {
|
|
++sc->sc_ethercom.ec_if.if_oerrors;
|
|
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
|
|
printf("%s: fifo underrun (%x) @%d\n",
|
|
device_xname(sc->sc_dev), i,
|
|
sc->tx_start_thresh);
|
|
if (sc->tx_succ_ok < 100)
|
|
sc->tx_start_thresh = min(ETHER_MAX_LEN,
|
|
sc->tx_start_thresh + 20);
|
|
sc->tx_succ_ok = 0;
|
|
epreset(sc);
|
|
} else if (i & TXS_MAX_COLLISION) {
|
|
++sc->sc_ethercom.ec_if.if_collisions;
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
|
|
sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
|
|
} else
|
|
sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
|
|
}
|
|
}
|
|
|
|
int
|
|
epintr(void *arg)
|
|
{
|
|
struct ep_softc *sc = arg;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
u_int16_t status;
|
|
int ret = 0;
|
|
|
|
if (sc->enabled == 0 || !device_is_active(sc->sc_dev))
|
|
return (0);
|
|
|
|
|
|
for (;;) {
|
|
status = bus_space_read_2(iot, ioh, ELINK_STATUS);
|
|
|
|
if ((status & WATCHED_INTERRUPTS) == 0) {
|
|
if ((status & INTR_LATCH) == 0) {
|
|
#if 0
|
|
printf("%s: intr latch cleared\n",
|
|
device_xname(&sc->sc_dev));
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
/*
|
|
* Acknowledge any interrupts. It's important that we do this
|
|
* first, since there would otherwise be a race condition.
|
|
* Due to the i386 interrupt queueing, we may get spurious
|
|
* interrupts occasionally.
|
|
*/
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
|
|
(status & (INTR_LATCH | ALL_INTERRUPTS)));
|
|
|
|
#if 0
|
|
status = bus_space_read_2(iot, ioh, ELINK_STATUS);
|
|
|
|
printf("%s: intr%s%s%s%s\n", device_xname(&sc->sc_dev),
|
|
(status & RX_COMPLETE)?" RX_COMPLETE":"",
|
|
(status & TX_COMPLETE)?" TX_COMPLETE":"",
|
|
(status & TX_AVAIL)?" TX_AVAIL":"",
|
|
(status & CARD_FAILURE)?" CARD_FAILURE":"");
|
|
#endif
|
|
|
|
if (status & RX_COMPLETE) {
|
|
epread(sc);
|
|
}
|
|
if (status & TX_AVAIL) {
|
|
sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
|
|
epstart(&sc->sc_ethercom.ec_if);
|
|
}
|
|
if (status & CARD_FAILURE) {
|
|
printf("%s: adapter failure (%x)\n",
|
|
device_xname(sc->sc_dev), status);
|
|
#if 1
|
|
epinit(ifp);
|
|
#else
|
|
epreset(sc);
|
|
#endif
|
|
return (1);
|
|
}
|
|
if (status & TX_COMPLETE) {
|
|
eptxstat(sc);
|
|
epstart(ifp);
|
|
}
|
|
|
|
#if NRND > 0
|
|
if (status)
|
|
rnd_add_uint32(&sc->rnd_source, status);
|
|
#endif
|
|
}
|
|
|
|
/* no more interrupts */
|
|
return (ret);
|
|
}
|
|
|
|
void
|
|
epread(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct mbuf *m;
|
|
int len;
|
|
|
|
len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
|
|
|
|
again:
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
int err = len & ERR_MASK;
|
|
const char *s = NULL;
|
|
|
|
if (len & ERR_INCOMPLETE)
|
|
s = "incomplete packet";
|
|
else if (err == ERR_OVERRUN)
|
|
s = "packet overrun";
|
|
else if (err == ERR_RUNT)
|
|
s = "runt packet";
|
|
else if (err == ERR_ALIGNMENT)
|
|
s = "bad alignment";
|
|
else if (err == ERR_CRC)
|
|
s = "bad crc";
|
|
else if (err == ERR_OVERSIZE)
|
|
s = "oversized packet";
|
|
else if (err == ERR_DRIBBLE)
|
|
s = "dribble bits";
|
|
|
|
if (s)
|
|
printf("%s: %s\n", device_xname(sc->sc_dev), s);
|
|
}
|
|
|
|
if (len & ERR_INCOMPLETE)
|
|
return;
|
|
|
|
if (len & ERR_RX) {
|
|
++ifp->if_ierrors;
|
|
goto abort;
|
|
}
|
|
|
|
len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
|
|
|
|
/* Pull packet off interface. */
|
|
m = epget(sc, len);
|
|
if (m == 0) {
|
|
ifp->if_ierrors++;
|
|
goto abort;
|
|
}
|
|
|
|
++ifp->if_ipackets;
|
|
|
|
/*
|
|
* Check if there's a BPF listener on this interface.
|
|
* If so, hand off the raw packet to BPF.
|
|
*/
|
|
bpf_mtap(ifp, m);
|
|
|
|
(*ifp->if_input)(ifp, m);
|
|
|
|
/*
|
|
* In periods of high traffic we can actually receive enough
|
|
* packets so that the fifo overrun bit will be set at this point,
|
|
* even though we just read a packet. In this case we
|
|
* are not going to receive any more interrupts. We check for
|
|
* this condition and read again until the fifo is not full.
|
|
* We could simplify this test by not using epstatus(), but
|
|
* rechecking the RX_STATUS register directly. This test could
|
|
* result in unnecessary looping in cases where there is a new
|
|
* packet but the fifo is not full, but it will not fix the
|
|
* stuck behavior.
|
|
*
|
|
* Even with this improvement, we still get packet overrun errors
|
|
* which are hurting performance. Maybe when I get some more time
|
|
* I'll modify epread() so that it can handle RX_EARLY interrupts.
|
|
*/
|
|
if (epstatus(sc)) {
|
|
len = bus_space_read_2(iot, ioh,
|
|
ep_w1_reg(sc, ELINK_W1_RX_STATUS));
|
|
/* Check if we are stuck and reset [see XXX comment] */
|
|
if (len & ERR_INCOMPLETE) {
|
|
if (ifp->if_flags & IFF_DEBUG)
|
|
printf("%s: adapter reset\n",
|
|
device_xname(sc->sc_dev));
|
|
epreset(sc);
|
|
return;
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
return;
|
|
|
|
abort:
|
|
ep_discard_rxtop(iot, ioh);
|
|
|
|
}
|
|
|
|
struct mbuf *
|
|
epget(struct ep_softc *sc, int totlen)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct mbuf *m;
|
|
bus_size_t rxreg;
|
|
int len, remaining;
|
|
int s;
|
|
void *newdata;
|
|
u_long offset;
|
|
|
|
m = sc->mb[sc->next_mb];
|
|
sc->mb[sc->next_mb] = 0;
|
|
if (m == 0) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0)
|
|
return 0;
|
|
} else {
|
|
/* If the queue is no longer full, refill. */
|
|
if (sc->last_mb == sc->next_mb)
|
|
callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
|
|
|
|
/* Convert one of our saved mbuf's. */
|
|
sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
|
|
m->m_data = m->m_pktdat;
|
|
m->m_flags = M_PKTHDR;
|
|
memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = totlen;
|
|
len = MHLEN;
|
|
|
|
/*
|
|
* Allocate big enough space to hold whole packet, to avoid
|
|
* allocating new mbufs on splsched().
|
|
*/
|
|
if (totlen + ALIGNBYTES > len) {
|
|
if (totlen + ALIGNBYTES > MCLBYTES) {
|
|
len = ALIGN(totlen + ALIGNBYTES);
|
|
MEXTMALLOC(m, len, M_DONTWAIT);
|
|
} else {
|
|
len = MCLBYTES;
|
|
MCLGET(m, M_DONTWAIT);
|
|
}
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_free(m);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* align the struct ip header */
|
|
newdata = (char *)ALIGN(m->m_data + sizeof(struct ether_header))
|
|
- sizeof(struct ether_header);
|
|
m->m_data = newdata;
|
|
m->m_len = totlen;
|
|
|
|
rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
|
|
remaining = totlen;
|
|
offset = mtod(m, u_long);
|
|
|
|
/*
|
|
* We read the packet at a high interrupt priority level so that
|
|
* an interrupt from another device won't cause the card's packet
|
|
* buffer to overflow. We choose splsched() since that blocks
|
|
* essentially everything except for interrupts from serial
|
|
* devices (which typically lose data if their interrupt isn't
|
|
* serviced fast enough).
|
|
*
|
|
* XXX THIS CAN CAUSE CLOCK DRIFT!
|
|
*/
|
|
s = splsched();
|
|
|
|
if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
|
|
/*
|
|
* Prime the FIFO buffer counter (number of 16-bit
|
|
* words about to be read from the FIFO).
|
|
*
|
|
* NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
|
|
* COUNTER IS NON-ZERO!
|
|
*/
|
|
bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
|
|
}
|
|
|
|
if (ELINK_IS_BUS_32(sc->bustype)) {
|
|
/*
|
|
* Read bytes up to the point where we are aligned.
|
|
* (We can align to 4 bytes, rather than ALIGNBYTES,
|
|
* here because we're later reading 4-byte chunks.)
|
|
*/
|
|
if ((remaining > 3) && (offset & 3)) {
|
|
int count = (4 - (offset & 3));
|
|
bus_space_read_multi_1(iot, ioh,
|
|
rxreg, (u_int8_t *) offset, count);
|
|
offset += count;
|
|
remaining -= count;
|
|
}
|
|
if (remaining > 3) {
|
|
bus_space_read_multi_stream_4(iot, ioh,
|
|
rxreg, (u_int32_t *) offset,
|
|
remaining >> 2);
|
|
offset += remaining & ~3;
|
|
remaining &= 3;
|
|
}
|
|
if (remaining) {
|
|
bus_space_read_multi_1(iot, ioh,
|
|
rxreg, (u_int8_t *) offset, remaining);
|
|
}
|
|
} else {
|
|
if ((remaining > 1) && (offset & 1)) {
|
|
bus_space_read_multi_1(iot, ioh,
|
|
rxreg, (u_int8_t *) offset, 1);
|
|
remaining -= 1;
|
|
offset += 1;
|
|
}
|
|
if (remaining > 1) {
|
|
bus_space_read_multi_stream_2(iot, ioh,
|
|
rxreg, (u_int16_t *) offset,
|
|
remaining >> 1);
|
|
offset += remaining & ~1;
|
|
}
|
|
if (remaining & 1) {
|
|
bus_space_read_multi_1(iot, ioh,
|
|
rxreg, (u_int8_t *) offset, remaining & 1);
|
|
}
|
|
}
|
|
|
|
ep_discard_rxtop(iot, ioh);
|
|
|
|
if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
|
|
bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
|
|
splx(s);
|
|
|
|
return (m);
|
|
}
|
|
|
|
int
|
|
epioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct ep_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
if (sc->enabled == 0) {
|
|
error = EIO;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
epreset(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
epreset(struct ep_softc *sc)
|
|
{
|
|
int s;
|
|
|
|
s = splnet();
|
|
epinit(&sc->sc_ethercom.ec_if);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
epwatchdog(struct ifnet *ifp)
|
|
{
|
|
struct ep_softc *sc = ifp->if_softc;
|
|
|
|
log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
|
|
++sc->sc_ethercom.ec_if.if_oerrors;
|
|
|
|
epreset(sc);
|
|
}
|
|
|
|
void
|
|
epstop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct ep_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
|
|
if (sc->ep_flags & ELINK_FLAGS_MII) {
|
|
/* Stop the one second clock. */
|
|
callout_stop(&sc->sc_mbuf_callout);
|
|
|
|
/* Down the MII. */
|
|
mii_down(&sc->sc_mii);
|
|
}
|
|
|
|
if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
|
|
/*
|
|
* Clear the FIFO buffer count, thus halting
|
|
* any currently-running transactions.
|
|
*/
|
|
GO_WINDOW(1); /* sanity */
|
|
bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
|
|
bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
|
|
}
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
|
|
ep_discard_rxtop(iot, ioh);
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
|
|
|
|
ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
|
|
ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
|
|
|
|
epmbufempty(sc);
|
|
|
|
if (disable)
|
|
epdisable(sc);
|
|
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
}
|
|
|
|
|
|
/*
|
|
* Before reboots, reset card completely.
|
|
*/
|
|
static bool
|
|
epshutdown(device_t self, int howto)
|
|
{
|
|
struct ep_softc *sc = device_private(self);
|
|
int s = splnet();
|
|
|
|
if (sc->enabled) {
|
|
epstop(&sc->sc_ethercom.ec_if, 0);
|
|
ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
|
|
epdisable(sc);
|
|
sc->enabled = 0;
|
|
}
|
|
splx(s);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* We get eeprom data from the id_port given an offset into the
|
|
* eeprom. Basically; after the ID_sequence is sent to all of
|
|
* the cards; they enter the ID_CMD state where they will accept
|
|
* command requests. 0x80-0xbf loads the eeprom data. We then
|
|
* read the port 16 times and with every read; the cards check
|
|
* for contention (ie: if one card writes a 0 bit and another
|
|
* writes a 1 bit then the host sees a 0. At the end of the cycle;
|
|
* each card compares the data on the bus; if there is a difference
|
|
* then that card goes into ID_WAIT state again). In the meantime;
|
|
* one bit of data is returned in the AX register which is conveniently
|
|
* returned to us by bus_space_read_2(). Hence; we read 16 times getting one
|
|
* bit of data with each read.
|
|
*
|
|
* NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
|
|
*/
|
|
u_int16_t
|
|
epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
|
|
{
|
|
u_int16_t data = 0;
|
|
int i;
|
|
|
|
bus_space_write_2(iot, ioh, 0, 0x80 + offset);
|
|
delay(1000);
|
|
for (i = 0; i < 16; i++)
|
|
data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
|
|
return (data);
|
|
}
|
|
|
|
static int
|
|
epbusyeeprom(struct ep_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
bus_size_t eecmd;
|
|
int i = 100, j;
|
|
uint16_t busybit;
|
|
|
|
if (sc->bustype == ELINK_BUS_PCMCIA) {
|
|
delay(1000);
|
|
return 0;
|
|
}
|
|
|
|
if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
|
|
eecmd = CORK_ASIC_EEPROM_COMMAND;
|
|
busybit = CORK_EEPROM_BUSY;
|
|
} else {
|
|
eecmd = ELINK_W0_EEPROM_COMMAND;
|
|
busybit = EEPROM_BUSY;
|
|
}
|
|
|
|
j = 0; /* bad GCC flow analysis */
|
|
while (i--) {
|
|
j = bus_space_read_2(iot, ioh, eecmd);
|
|
if (j & busybit)
|
|
delay(100);
|
|
else
|
|
break;
|
|
}
|
|
if (i == 0) {
|
|
aprint_normal("\n");
|
|
aprint_error_dev(sc->sc_dev, "eeprom failed to come ready\n");
|
|
return (1);
|
|
}
|
|
if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
|
|
(j & EEPROM_TST_MODE) != 0) {
|
|
/* XXX PnP mode? */
|
|
printf("\n%s: erase pencil mark!\n", device_xname(sc->sc_dev));
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
u_int16_t
|
|
ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
|
|
{
|
|
bus_size_t eecmd, eedata;
|
|
u_int16_t readcmd;
|
|
|
|
if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
|
|
eecmd = CORK_ASIC_EEPROM_COMMAND;
|
|
eedata = CORK_ASIC_EEPROM_DATA;
|
|
} else {
|
|
eecmd = ELINK_W0_EEPROM_COMMAND;
|
|
eedata = ELINK_W0_EEPROM_DATA;
|
|
}
|
|
|
|
/*
|
|
* RoadRunner has a larger EEPROM, so a different read command
|
|
* is required.
|
|
*/
|
|
if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
|
|
readcmd = READ_EEPROM_RR;
|
|
else
|
|
readcmd = READ_EEPROM;
|
|
|
|
if (epbusyeeprom(sc))
|
|
return (0); /* XXX why is eeprom busy? */
|
|
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
|
|
|
|
if (epbusyeeprom(sc))
|
|
return (0); /* XXX why is eeprom busy? */
|
|
|
|
return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
|
|
}
|
|
|
|
void
|
|
epmbuffill(void *v)
|
|
{
|
|
struct ep_softc *sc = v;
|
|
struct mbuf *m;
|
|
int s, i;
|
|
|
|
s = splnet();
|
|
i = sc->last_mb;
|
|
do {
|
|
if (sc->mb[i] == 0) {
|
|
MGET(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0)
|
|
break;
|
|
sc->mb[i] = m;
|
|
}
|
|
i = (i + 1) % MAX_MBS;
|
|
} while (i != sc->next_mb);
|
|
sc->last_mb = i;
|
|
/* If the queue was not filled, try again. */
|
|
if (sc->last_mb != sc->next_mb)
|
|
callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
epmbufempty(struct ep_softc *sc)
|
|
{
|
|
int s, i;
|
|
|
|
s = splnet();
|
|
for (i = 0; i < MAX_MBS; i++) {
|
|
if (sc->mb[i]) {
|
|
m_freem(sc->mb[i]);
|
|
sc->mb[i] = NULL;
|
|
}
|
|
}
|
|
sc->last_mb = sc->next_mb = 0;
|
|
callout_stop(&sc->sc_mbuf_callout);
|
|
splx(s);
|
|
}
|
|
|
|
int
|
|
epenable(struct ep_softc *sc)
|
|
{
|
|
|
|
if (sc->enabled == 0 && sc->enable != NULL) {
|
|
if ((*sc->enable)(sc) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "device enable failed\n");
|
|
return (EIO);
|
|
}
|
|
}
|
|
|
|
sc->enabled = 1;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
epdisable(struct ep_softc *sc)
|
|
{
|
|
|
|
if (sc->enabled != 0 && sc->disable != NULL) {
|
|
(*sc->disable)(sc);
|
|
sc->enabled = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ep_activate:
|
|
*
|
|
* Handle device activation/deactivation requests.
|
|
*/
|
|
int
|
|
ep_activate(device_t self, enum devact act)
|
|
{
|
|
struct ep_softc *sc = device_private(self);
|
|
|
|
switch (act) {
|
|
case DVACT_DEACTIVATE:
|
|
if_deactivate(&sc->sc_ethercom.ec_if);
|
|
return 0;
|
|
default:
|
|
return EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ep_detach:
|
|
*
|
|
* Detach a elink3 interface.
|
|
*/
|
|
int
|
|
ep_detach(device_t self, int flags)
|
|
{
|
|
struct ep_softc *sc = device_private(self);
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/* Succeed now if there's no work to do. */
|
|
if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
|
|
return (0);
|
|
|
|
epdisable(sc);
|
|
|
|
callout_stop(&sc->sc_mii_callout);
|
|
callout_stop(&sc->sc_mbuf_callout);
|
|
|
|
if (sc->ep_flags & ELINK_FLAGS_MII) {
|
|
/* Detach all PHYs */
|
|
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
|
|
}
|
|
|
|
/* Delete all remaining media. */
|
|
ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
|
|
|
|
#if NRND > 0
|
|
rnd_detach_source(&sc->rnd_source);
|
|
#endif
|
|
ether_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
|
|
pmf_device_deregister(sc->sc_dev);
|
|
|
|
return (0);
|
|
}
|
|
|
|
u_int32_t
|
|
ep_mii_bitbang_read(device_t self)
|
|
{
|
|
struct ep_softc *sc = device_private(self);
|
|
|
|
/* We're already in Window 4. */
|
|
return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
|
|
ELINK_W4_BOOM_PHYSMGMT));
|
|
}
|
|
|
|
void
|
|
ep_mii_bitbang_write(device_t self, u_int32_t val)
|
|
{
|
|
struct ep_softc *sc = device_private(self);
|
|
|
|
/* We're already in Window 4. */
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh,
|
|
ELINK_W4_BOOM_PHYSMGMT, val);
|
|
}
|
|
|
|
int
|
|
ep_mii_readreg(device_t self, int phy, int reg)
|
|
{
|
|
struct ep_softc *sc = device_private(self);
|
|
int val;
|
|
|
|
GO_WINDOW(4);
|
|
|
|
val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
|
|
|
|
GO_WINDOW(1);
|
|
|
|
return (val);
|
|
}
|
|
|
|
void
|
|
ep_mii_writereg(device_t self, int phy, int reg, int val)
|
|
{
|
|
struct ep_softc *sc = device_private(self);
|
|
|
|
GO_WINDOW(4);
|
|
|
|
mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
|
|
|
|
GO_WINDOW(1);
|
|
}
|
|
|
|
void
|
|
ep_statchg(device_t self)
|
|
{
|
|
struct ep_softc *sc = device_private(self);
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int mctl;
|
|
|
|
GO_WINDOW(3);
|
|
mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
|
|
if (sc->sc_mii.mii_media_active & IFM_FDX)
|
|
mctl |= MAC_CONTROL_FDX;
|
|
else
|
|
mctl &= ~MAC_CONTROL_FDX;
|
|
bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
|
|
GO_WINDOW(1); /* back to operating window */
|
|
}
|
|
|
|
void
|
|
ep_power(int why, void *arg)
|
|
{
|
|
struct ep_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
int s;
|
|
|
|
s = splnet();
|
|
switch (why) {
|
|
case PWR_SUSPEND:
|
|
case PWR_STANDBY:
|
|
epstop(ifp, 1);
|
|
break;
|
|
case PWR_RESUME:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
(void)epinit(ifp);
|
|
}
|
|
break;
|
|
case PWR_SOFTSUSPEND:
|
|
case PWR_SOFTSTANDBY:
|
|
case PWR_SOFTRESUME:
|
|
break;
|
|
}
|
|
splx(s);
|
|
}
|