223 lines
5.9 KiB
C
223 lines
5.9 KiB
C
/* $NetBSD: mertwist.c,v 1.8 2008/04/28 20:24:06 martin Exp $ */
|
|
/*-
|
|
* Copyright (c) 2008 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Matt Thomas <matt@3am-software.com>.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#if defined(_KERNEL) || defined(_STANDALONE)
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <lib/libkern/libkern.h>
|
|
#else
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
#include <assert.h>
|
|
#define KASSERT(x) assert(x)
|
|
#endif
|
|
|
|
/*
|
|
* Mersenne Twister. Produces identical output compared to mt19937ar.c
|
|
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
|
|
*/
|
|
|
|
#define MATRIX_A(a) (((a) & 1) ? 0x9908b0df : 0)
|
|
#define TEMPERING_MASK_B 0x9d2c5680
|
|
#define TEMPERING_MASK_C 0xefc60000
|
|
#define UPPER_MASK 0x80000000
|
|
#define LOWER_MASK 0x7fffffff
|
|
#define MIX(u,l) (((u) & UPPER_MASK) | ((l) & LOWER_MASK))
|
|
|
|
#define KNUTH_MULTIPLIER 0x6c078965
|
|
|
|
#ifndef MTPRNG_RLEN
|
|
#define MTPRNG_RLEN 624
|
|
#endif
|
|
#define MTPRNG_POS1 397
|
|
|
|
static void mtprng_refresh(struct mtprng_state *);
|
|
|
|
/*
|
|
* Initialize the generator from a seed
|
|
*/
|
|
void
|
|
mtprng_init32(struct mtprng_state *mt, uint32_t seed)
|
|
{
|
|
size_t i;
|
|
|
|
/*
|
|
* Use Knuth's algorithm for expanding this seed over its
|
|
* portion of the key space.
|
|
*/
|
|
mt->mt_elem[0] = seed;
|
|
for (i = 1; i < MTPRNG_RLEN; i++) {
|
|
mt->mt_elem[i] = KNUTH_MULTIPLIER
|
|
* (mt->mt_elem[i-1] ^ (mt->mt_elem[i-1] >> 30)) + i;
|
|
}
|
|
|
|
mtprng_refresh(mt);
|
|
}
|
|
|
|
void
|
|
mtprng_initarray(struct mtprng_state *mt, const uint32_t *key, size_t keylen)
|
|
{
|
|
uint32_t *mp;
|
|
size_t i, j, k;
|
|
|
|
/*
|
|
* Use Knuth's algorithm for expanding this seed over its
|
|
* portion of the key space.
|
|
*/
|
|
mt->mt_elem[0] = 19650218UL;
|
|
for (i = 1; i < MTPRNG_RLEN; i++) {
|
|
mt->mt_elem[i] = KNUTH_MULTIPLIER
|
|
* (mt->mt_elem[i-1] ^ (mt->mt_elem[i-1] >> 30)) + i;
|
|
}
|
|
|
|
KASSERT(keylen > 0);
|
|
|
|
i = 1;
|
|
j = 0;
|
|
k = (keylen < MTPRNG_RLEN ? MTPRNG_RLEN : keylen);
|
|
|
|
mp = &mt->mt_elem[1];
|
|
for (; k-- > 0; mp++) {
|
|
mp[0] ^= (mp[-1] ^ (mp[-1] >> 30)) * 1664525UL;
|
|
mp[0] += key[j] + j;
|
|
if (++i == MTPRNG_RLEN) {
|
|
KASSERT(mp == mt->mt_elem + MTPRNG_RLEN - 1);
|
|
mt->mt_elem[0] = mp[0];
|
|
i = 1;
|
|
mp = mt->mt_elem;
|
|
}
|
|
if (++j == keylen)
|
|
j = 0;
|
|
}
|
|
for (j = MTPRNG_RLEN; --j > 0; mp++) {
|
|
mp[0] ^= (mp[-1] ^ (mp[-1] >> 30)) * 1566083941UL;
|
|
mp[0] -= i;
|
|
if (++i == MTPRNG_RLEN) {
|
|
KASSERT(mp == mt->mt_elem + MTPRNG_RLEN - 1);
|
|
mt->mt_elem[0] = mp[0];
|
|
i = 1;
|
|
mp = mt->mt_elem;
|
|
}
|
|
}
|
|
mt->mt_elem[0] = 0x80000000;
|
|
mtprng_refresh(mt);
|
|
}
|
|
|
|
/*
|
|
* Generate an array of 624 untempered numbers
|
|
*/
|
|
void
|
|
mtprng_refresh(struct mtprng_state *mt)
|
|
{
|
|
uint32_t y;
|
|
size_t i, j;
|
|
/*
|
|
* The following has been refactored to avoid the need for 'mod 624'
|
|
*/
|
|
for (i = 0, j = MTPRNG_POS1; j < MTPRNG_RLEN; i++, j++) {
|
|
y = MIX(mt->mt_elem[i], mt->mt_elem[i+1]);
|
|
mt->mt_elem[i] = mt->mt_elem[j] ^ (y >> 1) ^ MATRIX_A(y);
|
|
}
|
|
for (j = 0; i < MTPRNG_RLEN - 1; i++, j++) {
|
|
y = MIX(mt->mt_elem[i], mt->mt_elem[i+1]);
|
|
mt->mt_elem[i] = mt->mt_elem[j] ^ (y >> 1) ^ MATRIX_A(y);
|
|
}
|
|
y = MIX(mt->mt_elem[MTPRNG_RLEN - 1], mt->mt_elem[0]);
|
|
mt->mt_elem[MTPRNG_RLEN - 1] =
|
|
mt->mt_elem[MTPRNG_POS1 - 1] ^ (y >> 1) ^ MATRIX_A(y);
|
|
}
|
|
|
|
/*
|
|
* Extract a tempered PRN based on the current index. Then recompute a
|
|
* new value for the index. This avoids having to regenerate the array
|
|
* every 624 iterations. We can do this since recomputing only the next
|
|
* element and the [(i + 397) % 624] one.
|
|
*/
|
|
uint32_t
|
|
mtprng_rawrandom(struct mtprng_state *mt)
|
|
{
|
|
uint32_t x, y;
|
|
const size_t i = mt->mt_idx;
|
|
size_t j;
|
|
|
|
/*
|
|
* First generate the random value for the current position.
|
|
*/
|
|
x = mt->mt_elem[i];
|
|
x ^= x >> 11;
|
|
x ^= (x << 7) & TEMPERING_MASK_B;
|
|
x ^= (x << 15) & TEMPERING_MASK_C;
|
|
x ^= x >> 18;
|
|
|
|
/*
|
|
* Next recalculate the next sequence for the current position.
|
|
*/
|
|
y = mt->mt_elem[i];
|
|
if (__predict_true(i < MTPRNG_RLEN - 1)) {
|
|
/*
|
|
* Avoid doing % since it can be expensive.
|
|
* j = (i + MTPRNG_POS1) % MTPRNG_RLEN;
|
|
*/
|
|
j = i + MTPRNG_POS1;
|
|
if (j >= MTPRNG_RLEN)
|
|
j -= MTPRNG_RLEN;
|
|
mt->mt_idx++;
|
|
} else {
|
|
j = MTPRNG_POS1 - 1;
|
|
mt->mt_idx = 0;
|
|
}
|
|
y = MIX(y, mt->mt_elem[mt->mt_idx]);
|
|
mt->mt_elem[i] = mt->mt_elem[j] ^ (y >> 1) ^ MATRIX_A(y);
|
|
|
|
/*
|
|
* Return the value calculated in the first step.
|
|
*/
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
* This is a non-standard routine which attempts to return a cryptographically
|
|
* strong random number by collapsing 2 32bit values outputed by the twister
|
|
* into one 32bit value.
|
|
*/
|
|
uint32_t
|
|
mtprng_random(struct mtprng_state *mt)
|
|
{
|
|
uint32_t a;
|
|
|
|
mt->mt_count = (mt->mt_count + 13) & 31;
|
|
a = mtprng_rawrandom(mt);
|
|
a = (a << mt->mt_count) | (a >> (32 - mt->mt_count));
|
|
return a + mtprng_rawrandom(mt);
|
|
}
|