NetBSD/lib/libcrypto/man/d2i_DSAPublicKey.3

232 lines
6.9 KiB
Groff

.\" $NetBSD: d2i_DSAPublicKey.3,v 1.5 2005/11/25 21:09:35 christos Exp $
.\"
.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.14
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sh \" Subsection heading
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. | will give a
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
.\" expand to `' in nroff, nothing in troff, for use with C<>.
.tr \(*W-|\(bv\*(Tr
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
'br\}
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. nr % 0
. rr F
.\}
.\"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.hy 0
.if n .na
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "d2i_DSAPublicKey 3"
.TH d2i_DSAPublicKey 3 "2004-03-19" "0.9.8a" "OpenSSL"
.SH "NAME"
d2i_DSAPublicKey, i2d_DSAPublicKey, d2i_DSAPrivateKey, i2d_DSAPrivateKey,
d2i_DSA_PUBKEY, i2d_DSA_PUBKEY, d2i_DSA_SIG, i2d_DSA_SIG \- DSA key encoding
and parsing functions.
.SH "LIBRARY"
libcrypto, -lcrypto
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 2
\& #include <openssl/dsa.h>
\& #include <openssl/x509.h>
.Ve
.PP
.Vb 1
\& DSA * d2i_DSAPublicKey(DSA **a, const unsigned char **pp, long length);
.Ve
.PP
.Vb 1
\& int i2d_DSAPublicKey(const DSA *a, unsigned char **pp);
.Ve
.PP
.Vb 1
\& DSA * d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length);
.Ve
.PP
.Vb 1
\& int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp);
.Ve
.PP
.Vb 1
\& DSA * d2i_DSAPrivateKey(DSA **a, const unsigned char **pp, long length);
.Ve
.PP
.Vb 1
\& int i2d_DSAPrivateKey(const DSA *a, unsigned char **pp);
.Ve
.PP
.Vb 1
\& DSA * d2i_DSAparams(DSA **a, const unsigned char **pp, long length);
.Ve
.PP
.Vb 1
\& int i2d_DSAparams(const DSA *a, unsigned char **pp);
.Ve
.PP
.Vb 1
\& DSA * d2i_DSA_SIG(DSA_SIG **a, const unsigned char **pp, long length);
.Ve
.PP
.Vb 1
\& int i2d_DSA_SIG(const DSA_SIG *a, unsigned char **pp);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
\&\fId2i_DSAPublicKey()\fR and \fIi2d_DSAPublicKey()\fR decode and encode the \s-1DSA\s0 public key
components structure.
.PP
\&\fId2i_DSA_PUBKEY()\fR and \fIi2d_DSA_PUBKEY()\fR decode and encode an \s-1DSA\s0 public key using
a SubjectPublicKeyInfo (certificate public key) structure.
.PP
\&\fId2i_DSAPrivateKey()\fR, \fIi2d_DSAPrivateKey()\fR decode and encode the \s-1DSA\s0 private key
components.
.PP
\&\fId2i_DSAparams()\fR, \fIi2d_DSAparams()\fR decode and encode the \s-1DSA\s0 parameters using
a \fBDss-Parms\fR structure as defined in \s-1RFC2459\s0.
.PP
\&\fId2i_DSA_SIG()\fR, \fIi2d_DSA_SIG()\fR decode and encode a \s-1DSA\s0 signature using a
\&\fBDss-Sig-Value\fR structure as defined in \s-1RFC2459\s0.
.PP
The usage of all of these functions is similar to the \fId2i_X509()\fR and
\&\fIi2d_X509()\fR described in the \fId2i_X509\fR\|(3) manual page.
.SH "NOTES"
.IX Header "NOTES"
The \fB\s-1DSA\s0\fR structure passed to the private key encoding functions should have
all the private key components present.
.PP
The data encoded by the private key functions is unencrypted and therefore
offers no private key security.
.PP
The \fB\s-1DSA_PUBKEY\s0\fR functions should be used in preference to the \fBDSAPublicKey\fR
functions when encoding public keys because they use a standard format.
.PP
The \fBDSAPublicKey\fR functions use an non standard format the actual data encoded
depends on the value of the \fBwrite_params\fR field of the \fBa\fR key parameter.
If \fBwrite_params\fR is zero then only the \fBpub_key\fR field is encoded as an
\&\fB\s-1INTEGER\s0\fR. If \fBwrite_params\fR is 1 then a \fB\s-1SEQUENCE\s0\fR consisting of the
\&\fBp\fR, \fBq\fR, \fBg\fR and \fBpub_key\fR respectively fields are encoded.
.PP
The \fBDSAPrivateKey\fR functions also use a non standard structure consiting
consisting of a \s-1SEQUENCE\s0 containing the \fBp\fR, \fBq\fR, \fBg\fR and \fBpub_key\fR and
\&\fBpriv_key\fR fields respectively.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fId2i_X509\fR\|(3)
.SH "HISTORY"
.IX Header "HISTORY"
\&\s-1TBA\s0