NetBSD/sys/dev/pci/auich.c
2005-01-27 21:49:29 +00:00

1561 lines
42 KiB
C

/* $NetBSD: auich.c,v 1.88 2005/01/27 21:49:29 jdolecek Exp $ */
/*-
* Copyright (c) 2000, 2004 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe and by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2000 Michael Shalayeff
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* from OpenBSD: ich.c,v 1.3 2000/08/11 06:17:18 mickey Exp
*/
/*
* Copyright (c) 2000 Katsurajima Naoto <raven@katsurajima.seya.yokohama.jp>
* Copyright (c) 2001 Cameron Grant <cg@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHERIN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THEPOSSIBILITY OF
* SUCH DAMAGE.
*
* auich_calibrate() was from FreeBSD: ich.c,v 1.22 2002/06/27 22:36:01 scottl Exp
*/
/* #define AUICH_DEBUG */
/*
* AC'97 audio found on Intel 810/820/440MX chipsets.
* http://developer.intel.com/design/chipsets/datashts/290655.htm
* http://developer.intel.com/design/chipsets/manuals/298028.htm
* ICH3:http://www.intel.com/design/chipsets/datashts/290716.htm
* ICH4:http://www.intel.com/design/chipsets/datashts/290744.htm
* ICH5:http://www.intel.com/design/chipsets/datashts/252516.htm
* AMD8111:
* http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24674.pdf
* http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25720.pdf
*
* TODO:
* - Add support for the dedicated microphone input.
*
* NOTE:
* - The 440MX B-stepping at running 100MHz has a hardware erratum.
* It causes PCI master abort and hangups until cold reboot.
* http://www.intel.com/design/chipsets/specupdt/245051.htm
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: auich.c,v 1.88 2005/01/27 21:49:29 jdolecek Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/fcntl.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <uvm/uvm_extern.h> /* for PAGE_SIZE */
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/auichreg.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/mulaw.h>
#include <dev/auconv.h>
#include <machine/bus.h>
#include <dev/ic/ac97reg.h>
#include <dev/ic/ac97var.h>
struct auich_dma {
bus_dmamap_t map;
caddr_t addr;
bus_dma_segment_t segs[1];
int nsegs;
size_t size;
struct auich_dma *next;
};
#define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
#define KERNADDR(p) ((void *)((p)->addr))
struct auich_cdata {
struct auich_dmalist ic_dmalist_pcmo[ICH_DMALIST_MAX];
struct auich_dmalist ic_dmalist_pcmi[ICH_DMALIST_MAX];
struct auich_dmalist ic_dmalist_mici[ICH_DMALIST_MAX];
};
#define ICH_CDOFF(x) offsetof(struct auich_cdata, x)
#define ICH_PCMO_OFF(x) ICH_CDOFF(ic_dmalist_pcmo[(x)])
#define ICH_PCMI_OFF(x) ICH_CDOFF(ic_dmalist_pcmi[(x)])
#define ICH_MICI_OFF(x) ICH_CDOFF(ic_dmalist_mici[(x)])
struct auich_softc {
struct device sc_dev;
void *sc_ih;
struct device *sc_audiodev;
audio_device_t sc_audev;
pci_chipset_tag_t sc_pc;
pcitag_t sc_pt;
bus_space_tag_t iot;
bus_space_handle_t mix_ioh;
bus_size_t mix_size;
bus_space_handle_t aud_ioh;
bus_size_t aud_size;
bus_dma_tag_t dmat;
struct ac97_codec_if *codec_if;
struct ac97_host_if host_if;
/* DMA scatter-gather lists. */
bus_dmamap_t sc_cddmamap;
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
struct auich_cdata *sc_cdata;
struct auich_ring {
int qptr;
struct auich_dmalist *dmalist;
uint32_t start, p, end;
int blksize;
void (*intr)(void *);
void *arg;
} pcmo, pcmi, mici;
struct auich_dma *sc_dmas;
/* SiS 7012 hack */
int sc_sample_shift;
int sc_sts_reg;
/* 440MX workaround */
int sc_dmamap_flags;
/* Power Management */
void *sc_powerhook;
int sc_suspend;
struct pci_conf_state sc_pciconf;
/* sysctl */
struct sysctllog *sc_log;
uint32_t sc_ac97_clock;
int sc_ac97_clock_mib;
#define AUICH_NFORMATS 3
struct audio_format sc_formats[AUICH_NFORMATS];
struct audio_encoding_set *sc_encodings;
};
/* Debug */
#ifdef AUICH_DEBUG
#define DPRINTF(l,x) do { if (auich_debug & (l)) printf x; } while(0)
int auich_debug = 0xfffe;
#define ICH_DEBUG_CODECIO 0x0001
#define ICH_DEBUG_DMA 0x0002
#define ICH_DEBUG_INTR 0x0004
#else
#define DPRINTF(x,y) /* nothing */
#endif
static int auich_match(struct device *, struct cfdata *, void *);
static void auich_attach(struct device *, struct device *, void *);
static int auich_detach(struct device *, int);
static int auich_activate(struct device *, enum devact);
static int auich_intr(void *);
CFATTACH_DECL(auich, sizeof(struct auich_softc),
auich_match, auich_attach, auich_detach, auich_activate);
static int auich_query_encoding(void *, struct audio_encoding *);
static int auich_set_params(void *, int, int, audio_params_t *,
audio_params_t *, stream_filter_list_t *,
stream_filter_list_t *);
static int auich_round_blocksize(void *, int, int, const audio_params_t *);
static int auich_halt_output(void *);
static int auich_halt_input(void *);
static int auich_getdev(void *, struct audio_device *);
static int auich_set_port(void *, mixer_ctrl_t *);
static int auich_get_port(void *, mixer_ctrl_t *);
static int auich_query_devinfo(void *, mixer_devinfo_t *);
static void *auich_allocm(void *, int, size_t, struct malloc_type *, int);
static void auich_freem(void *, void *, struct malloc_type *);
static size_t auich_round_buffersize(void *, int, size_t);
static paddr_t auich_mappage(void *, void *, off_t, int);
static int auich_get_props(void *);
static int auich_trigger_output(void *, void *, void *, int,
void (*)(void *), void *, const audio_params_t *);
static int auich_trigger_input(void *, void *, void *, int,
void (*)(void *), void *, const audio_params_t *);
static int auich_alloc_cdata(struct auich_softc *);
static int auich_allocmem(struct auich_softc *, size_t, size_t,
struct auich_dma *);
static int auich_freemem(struct auich_softc *, struct auich_dma *);
static void auich_powerhook(int, void *);
static int auich_set_rate(struct auich_softc *, int, u_long);
static int auich_sysctl_verify(SYSCTLFN_ARGS);
static void auich_finish_attach(struct device *);
static void auich_calibrate(struct auich_softc *);
static int auich_attach_codec(void *, struct ac97_codec_if *);
static int auich_read_codec(void *, uint8_t, uint16_t *);
static int auich_write_codec(void *, uint8_t, uint16_t);
static int auich_reset_codec(void *);
const struct audio_hw_if auich_hw_if = {
NULL, /* open */
NULL, /* close */
NULL, /* drain */
auich_query_encoding,
auich_set_params,
auich_round_blocksize,
NULL, /* commit_setting */
NULL, /* init_output */
NULL, /* init_input */
NULL, /* start_output */
NULL, /* start_input */
auich_halt_output,
auich_halt_input,
NULL, /* speaker_ctl */
auich_getdev,
NULL, /* getfd */
auich_set_port,
auich_get_port,
auich_query_devinfo,
auich_allocm,
auich_freem,
auich_round_buffersize,
auich_mappage,
auich_get_props,
auich_trigger_output,
auich_trigger_input,
NULL, /* dev_ioctl */
};
#define AUICH_FORMATS_4CH 1
#define AUICH_FORMATS_6CH 2
static const struct audio_format auich_formats[AUICH_NFORMATS] = {
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
2, AUFMT_STEREO, 0, {8000, 48000}},
{NULL, AUMODE_PLAY, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
4, AUFMT_SURROUND4, 0, {8000, 48000}},
{NULL, AUMODE_PLAY, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
6, AUFMT_DOLBY_5_1, 0, {8000, 48000}},
};
#define PCI_ID_CODE0(v, p) PCI_ID_CODE(PCI_VENDOR_##v, PCI_PRODUCT_##v##_##p)
#define PCIID_ICH PCI_ID_CODE0(INTEL, 82801AA_ACA)
#define PCIID_ICH0 PCI_ID_CODE0(INTEL, 82801AB_ACA)
#define PCIID_ICH2 PCI_ID_CODE0(INTEL, 82801BA_ACA)
#define PCIID_440MX PCI_ID_CODE0(INTEL, 82440MX_ACA)
#define PCIID_ICH3 PCI_ID_CODE0(INTEL, 82801CA_AC)
#define PCIID_ICH4 PCI_ID_CODE0(INTEL, 82801DB_AC)
#define PCIID_ICH5 PCI_ID_CODE0(INTEL, 82801EB_AC)
#define PCIID_ICH6 PCI_ID_CODE0(INTEL, 82801FB_AC)
#define PCIID_SIS7012 PCI_ID_CODE0(SIS, 7012_AC)
#define PCIID_NFORCE PCI_ID_CODE0(NVIDIA, NFORCE_MCP_AC)
#define PCIID_NFORCE2 PCI_ID_CODE0(NVIDIA, NFORCE2_MCPT_AC)
#define PCIID_NFORCE2_400 PCI_ID_CODE0(NVIDIA, NFORCE2_400_MCPT_AC)
#define PCIID_NFORCE3 PCI_ID_CODE0(NVIDIA, NFORCE3_MCPT_AC)
#define PCIID_NFORCE3_250 PCI_ID_CODE0(NVIDIA, NFORCE3_250_MCPT_AC)
#define PCIID_NFORCE4 PCI_ID_CODE0(NVIDIA, NFORCE4_AC)
#define PCIID_AMD768 PCI_ID_CODE0(AMD, PBC768_AC)
#define PCIID_AMD8111 PCI_ID_CODE0(AMD, PBC8111_AC)
static const struct auich_devtype {
pcireg_t id;
const char *name;
const char *shortname; /* must be less than 11 characters */
} auich_devices[] = {
{ PCIID_ICH, "i82801AA (ICH) AC-97 Audio", "ICH" },
{ PCIID_ICH0, "i82801AB (ICH0) AC-97 Audio", "ICH0" },
{ PCIID_ICH2, "i82801BA (ICH2) AC-97 Audio", "ICH2" },
{ PCIID_440MX, "i82440MX AC-97 Audio", "440MX" },
{ PCIID_ICH3, "i82801CA (ICH3) AC-97 Audio", "ICH3" },
{ PCIID_ICH4, "i82801DB/DBM (ICH4/ICH4M) AC-97 Audio", "ICH4" },
{ PCIID_ICH5, "i82801EB (ICH5) AC-97 Audio", "ICH5" },
{ PCIID_ICH6, "i82801FB (ICH6) AC-97 Audio", "ICH6" },
{ PCIID_SIS7012, "SiS 7012 AC-97 Audio", "SiS7012" },
{ PCIID_NFORCE, "nForce MCP AC-97 Audio", "nForce" },
{ PCIID_NFORCE2, "nForce2 MCP-T AC-97 Audio", "nForce2" },
{ PCIID_NFORCE2_400, "nForce2 400 MCP-T AC-97 Audio", "nForce2" },
{ PCIID_NFORCE3, "nForce3 MCP-T AC-97 Audio", "nForce3" },
{ PCIID_NFORCE3_250, "nForce3 250 MCP-T AC-97 Audio", "nForce3" },
{ PCIID_NFORCE4, "nForce4 AC-97 Audio", "nForce4" },
{ PCIID_AMD768, "AMD768 AC-97 Audio", "AMD768" },
{ PCIID_AMD8111,"AMD8111 AC-97 Audio", "AMD8111" },
{ 0, NULL, NULL },
};
static const struct auich_devtype *
auich_lookup(struct pci_attach_args *pa)
{
const struct auich_devtype *d;
for (d = auich_devices; d->name != NULL; d++) {
if (pa->pa_id == d->id)
return d;
}
return NULL;
}
static int
auich_match(struct device *parent, struct cfdata *match, void *aux)
{
struct pci_attach_args *pa;
pa = aux;
if (auich_lookup(pa) != NULL)
return 1;
return 0;
}
static void
auich_attach(struct device *parent, struct device *self, void *aux)
{
struct auich_softc *sc;
struct pci_attach_args *pa;
pci_intr_handle_t ih;
pcireg_t v;
const char *intrstr;
const struct auich_devtype *d;
struct sysctlnode *node;
int err, node_mib, i;
sc = (struct auich_softc *)self;
pa = aux;
aprint_naive(": Audio controller\n");
d = auich_lookup(pa);
if (d == NULL)
panic("auich_attach: impossible");
sc->sc_pc = pa->pa_pc;
sc->sc_pt = pa->pa_tag;
aprint_normal(": %s\n", d->name);
if (d->id == PCIID_ICH4 || d->id == PCIID_ICH5 || d->id == PCIID_ICH6) {
/*
* Use native mode for ICH4/ICH5/ICH6
*/
if (pci_mapreg_map(pa, ICH_MMBAR, PCI_MAPREG_TYPE_MEM, 0,
&sc->iot, &sc->mix_ioh, NULL, &sc->mix_size)) {
v = pci_conf_read(pa->pa_pc, pa->pa_tag, ICH_CFG);
pci_conf_write(pa->pa_pc, pa->pa_tag, ICH_CFG,
v | ICH_CFG_IOSE);
if (pci_mapreg_map(pa, ICH_NAMBAR, PCI_MAPREG_TYPE_IO,
0, &sc->iot, &sc->mix_ioh, NULL,
&sc->mix_size)) {
aprint_error("%s: can't map codec i/o space\n",
sc->sc_dev.dv_xname);
return;
}
}
if (pci_mapreg_map(pa, ICH_MBBAR, PCI_MAPREG_TYPE_MEM, 0,
&sc->iot, &sc->aud_ioh, NULL, &sc->aud_size)) {
v = pci_conf_read(pa->pa_pc, pa->pa_tag, ICH_CFG);
pci_conf_write(pa->pa_pc, pa->pa_tag, ICH_CFG,
v | ICH_CFG_IOSE);
if (pci_mapreg_map(pa, ICH_NABMBAR, PCI_MAPREG_TYPE_IO,
0, &sc->iot, &sc->aud_ioh, NULL,
&sc->aud_size)) {
aprint_error("%s: can't map device i/o space\n",
sc->sc_dev.dv_xname);
return;
}
}
} else {
if (pci_mapreg_map(pa, ICH_NAMBAR, PCI_MAPREG_TYPE_IO, 0,
&sc->iot, &sc->mix_ioh, NULL, &sc->mix_size)) {
aprint_error("%s: can't map codec i/o space\n",
sc->sc_dev.dv_xname);
return;
}
if (pci_mapreg_map(pa, ICH_NABMBAR, PCI_MAPREG_TYPE_IO, 0,
&sc->iot, &sc->aud_ioh, NULL, &sc->aud_size)) {
aprint_error("%s: can't map device i/o space\n",
sc->sc_dev.dv_xname);
return;
}
}
sc->dmat = pa->pa_dmat;
/* enable bus mastering */
v = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
v | PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_BACKTOBACK_ENABLE);
/* Map and establish the interrupt. */
if (pci_intr_map(pa, &ih)) {
aprint_error("%s: can't map interrupt\n", sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pa->pa_pc, ih);
sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO,
auich_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error("%s: can't establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
aprint_normal(" at %s", intrstr);
aprint_normal("\n");
return;
}
aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
snprintf(sc->sc_audev.name, MAX_AUDIO_DEV_LEN, "%s AC97", d->shortname);
snprintf(sc->sc_audev.version, MAX_AUDIO_DEV_LEN,
"0x%02x", PCI_REVISION(pa->pa_class));
strlcpy(sc->sc_audev.config, sc->sc_dev.dv_xname, MAX_AUDIO_DEV_LEN);
/* SiS 7012 needs special handling */
if (d->id == PCIID_SIS7012) {
sc->sc_sts_reg = ICH_PICB;
sc->sc_sample_shift = 0;
/* Un-mute output. From Linux. */
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_SIS_NV_CTL,
bus_space_read_4(sc->iot, sc->aud_ioh, ICH_SIS_NV_CTL) |
ICH_SIS_CTL_UNMUTE);
} else {
sc->sc_sts_reg = ICH_STS;
sc->sc_sample_shift = 1;
}
/* Workaround for a 440MX B-stepping erratum */
sc->sc_dmamap_flags = BUS_DMA_COHERENT;
if (d->id == PCIID_440MX) {
sc->sc_dmamap_flags |= BUS_DMA_NOCACHE;
printf("%s: DMA bug workaround enabled\n", sc->sc_dev.dv_xname);
}
/* Set up DMA lists. */
sc->pcmo.qptr = sc->pcmi.qptr = sc->mici.qptr = 0;
auich_alloc_cdata(sc);
DPRINTF(ICH_DEBUG_DMA, ("auich_attach: lists %p %p %p\n",
sc->pcmo.dmalist, sc->pcmi.dmalist, sc->mici.dmalist));
sc->host_if.arg = sc;
sc->host_if.attach = auich_attach_codec;
sc->host_if.read = auich_read_codec;
sc->host_if.write = auich_write_codec;
sc->host_if.reset = auich_reset_codec;
if (ac97_attach(&sc->host_if, self) != 0)
return;
/* setup audio_format */
memcpy(sc->sc_formats, auich_formats, sizeof(auich_formats));
if (!AC97_IS_4CH(sc->codec_if))
AUFMT_INVALIDATE(&sc->sc_formats[AUICH_FORMATS_4CH]);
if (!AC97_IS_6CH(sc->codec_if))
AUFMT_INVALIDATE(&sc->sc_formats[AUICH_FORMATS_6CH]);
if (AC97_IS_FIXED_RATE(sc->codec_if)) {
for (i = 0; i < AUICH_NFORMATS; i++) {
sc->sc_formats[i].frequency_type = 1;
sc->sc_formats[i].frequency[0] = 48000;
}
}
if (0 != auconv_create_encodings(sc->sc_formats, AUICH_NFORMATS,
&sc->sc_encodings)) {
return;
}
/* Watch for power change */
sc->sc_suspend = PWR_RESUME;
sc->sc_powerhook = powerhook_establish(auich_powerhook, sc);
config_interrupts(self, auich_finish_attach);
/* sysctl setup */
if (AC97_IS_FIXED_RATE(sc->codec_if))
return;
err = sysctl_createv(&sc->sc_log, 0, NULL, NULL, 0,
CTLTYPE_NODE, "hw", NULL, NULL, 0, NULL, 0,
CTL_HW, CTL_EOL);
if (err != 0)
goto sysctl_err;
err = sysctl_createv(&sc->sc_log, 0, NULL, &node, 0,
CTLTYPE_NODE, sc->sc_dev.dv_xname, NULL, NULL, 0,
NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (err != 0)
goto sysctl_err;
node_mib = node->sysctl_num;
/* passing the sc address instead of &sc->sc_ac97_clock */
err = sysctl_createv(&sc->sc_log, 0, NULL, &node, CTLFLAG_READWRITE,
CTLTYPE_INT, "ac97rate",
SYSCTL_DESCR("AC'97 codec link rate"),
auich_sysctl_verify, 0, sc, 0,
CTL_HW, node_mib, CTL_CREATE, CTL_EOL);
if (err != 0)
goto sysctl_err;
sc->sc_ac97_clock_mib = node->sysctl_num;
return;
sysctl_err:
printf("%s: failed to add sysctl nodes. (%d)\n",
sc->sc_dev.dv_xname, err);
return; /* failure of sysctl is not fatal. */
}
static int
auich_activate(struct device *self, enum devact act)
{
struct auich_softc *sc;
int ret;
sc = (struct auich_softc *)self;
ret = 0;
switch (act) {
case DVACT_ACTIVATE:
return EOPNOTSUPP;
case DVACT_DEACTIVATE:
if (sc->sc_audiodev != NULL)
ret = config_deactivate(sc->sc_audiodev);
return ret;
}
return EOPNOTSUPP;
}
static int
auich_detach(struct device *self, int flags)
{
struct auich_softc *sc;
sc = (struct auich_softc *)self;
/* audio */
if (sc->sc_audiodev != NULL)
config_detach(sc->sc_audiodev, flags);
/* sysctl */
sysctl_teardown(&sc->sc_log);
/* audio_encoding_set */
auconv_delete_encodings(sc->sc_encodings);
/* ac97 */
if (sc->codec_if != NULL)
sc->codec_if->vtbl->detach(sc->codec_if);
/* PCI */
if (sc->sc_ih != NULL)
pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
if (sc->mix_size != 0)
bus_space_unmap(sc->iot, sc->mix_ioh, sc->mix_size);
if (sc->aud_size != 0)
bus_space_unmap(sc->iot, sc->aud_ioh, sc->aud_size);
return 0;
}
static int
auich_sysctl_verify(SYSCTLFN_ARGS)
{
int error, tmp;
struct sysctlnode node;
struct auich_softc *sc;
node = *rnode;
sc = rnode->sysctl_data;
tmp = sc->sc_ac97_clock;
node.sysctl_data = &tmp;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (node.sysctl_num == sc->sc_ac97_clock_mib) {
if (tmp < 48000 || tmp > 96000)
return EINVAL;
sc->sc_ac97_clock = tmp;
}
return 0;
}
static void
auich_finish_attach(struct device *self)
{
struct auich_softc *sc;
sc = (void *)self;
if (!AC97_IS_FIXED_RATE(sc->codec_if))
auich_calibrate(sc);
sc->sc_audiodev = audio_attach_mi(&auich_hw_if, sc, &sc->sc_dev);
}
#define ICH_CODECIO_INTERVAL 10
static int
auich_read_codec(void *v, uint8_t reg, uint16_t *val)
{
struct auich_softc *sc;
int i;
uint32_t status;
sc = v;
/* wait for an access semaphore */
for (i = ICH_SEMATIMO / ICH_CODECIO_INTERVAL; i-- &&
bus_space_read_1(sc->iot, sc->aud_ioh, ICH_CAS) & 1;
DELAY(ICH_CODECIO_INTERVAL));
if (i > 0) {
*val = bus_space_read_2(sc->iot, sc->mix_ioh, reg);
DPRINTF(ICH_DEBUG_CODECIO,
("auich_read_codec(%x, %x)\n", reg, *val));
status = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GSTS);
if (status & ICH_RCS) {
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GSTS,
status & ~(ICH_SRI|ICH_PRI|ICH_GSCI));
*val = 0xffff;
DPRINTF(ICH_DEBUG_CODECIO,
("%s: read_codec error\n", sc->sc_dev.dv_xname));
return -1;
}
return 0;
} else {
DPRINTF(ICH_DEBUG_CODECIO,
("%s: read_codec timeout\n", sc->sc_dev.dv_xname));
return -1;
}
}
static int
auich_write_codec(void *v, uint8_t reg, uint16_t val)
{
struct auich_softc *sc;
int i;
DPRINTF(ICH_DEBUG_CODECIO, ("auich_write_codec(%x, %x)\n", reg, val));
sc = v;
/* wait for an access semaphore */
for (i = ICH_SEMATIMO / ICH_CODECIO_INTERVAL; i-- &&
bus_space_read_1(sc->iot, sc->aud_ioh, ICH_CAS) & 1;
DELAY(ICH_CODECIO_INTERVAL));
if (i > 0) {
bus_space_write_2(sc->iot, sc->mix_ioh, reg, val);
return 0;
} else {
DPRINTF(ICH_DEBUG_CODECIO,
("%s: write_codec timeout\n", sc->sc_dev.dv_xname));
return -1;
}
}
static int
auich_attach_codec(void *v, struct ac97_codec_if *cif)
{
struct auich_softc *sc;
sc = v;
sc->codec_if = cif;
return 0;
}
static int
auich_reset_codec(void *v)
{
struct auich_softc *sc;
int i;
uint32_t control, status;
sc = v;
control = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GCTRL);
control &= ~(ICH_ACLSO | ICH_PCM246_MASK);
control |= (control & ICH_CRESET) ? ICH_WRESET : ICH_CRESET;
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GCTRL, control);
for (i = 500000; i >= 0; i--) {
status = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GSTS);
if (status & (ICH_PCR | ICH_SCR | ICH_S2CR))
break;
DELAY(1);
}
if (i <= 0) {
printf("%s: auich_reset_codec: time out\n", sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
#ifdef DEBUG
if (status & ICH_SCR)
printf("%s: The 2nd codec is ready.\n",
sc->sc_dev.dv_xname);
if (status & ICH_S2CR)
printf("%s: The 3rd codec is ready.\n",
sc->sc_dev.dv_xname);
#endif
return 0;
}
static int
auich_query_encoding(void *v, struct audio_encoding *aep)
{
struct auich_softc *sc;
sc = (struct auich_softc *)v;
return auconv_query_encoding(sc->sc_encodings, aep);
}
static int
auich_set_rate(struct auich_softc *sc, int mode, u_long srate)
{
int ret;
u_int ratetmp;
sc->codec_if->vtbl->set_clock(sc->codec_if, sc->sc_ac97_clock);
ratetmp = srate;
if (mode == AUMODE_RECORD)
return sc->codec_if->vtbl->set_rate(sc->codec_if,
AC97_REG_PCM_LR_ADC_RATE, &ratetmp);
ret = sc->codec_if->vtbl->set_rate(sc->codec_if,
AC97_REG_PCM_FRONT_DAC_RATE, &ratetmp);
if (ret)
return ret;
ratetmp = srate;
ret = sc->codec_if->vtbl->set_rate(sc->codec_if,
AC97_REG_PCM_SURR_DAC_RATE, &ratetmp);
if (ret)
return ret;
ratetmp = srate;
ret = sc->codec_if->vtbl->set_rate(sc->codec_if,
AC97_REG_PCM_LFE_DAC_RATE, &ratetmp);
return ret;
}
static int
auich_set_params(void *v, int setmode, int usemode, audio_params_t *play,
audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
{
struct auich_softc *sc;
audio_params_t *p;
stream_filter_list_t *fil;
int mode, index;
uint32_t control;
sc = v;
for (mode = AUMODE_RECORD; mode != -1;
mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
if ((setmode & mode) == 0)
continue;
p = mode == AUMODE_PLAY ? play : rec;
fil = mode == AUMODE_PLAY ? pfil : rfil;
if (p == NULL)
continue;
if (p->sample_rate < 8000 ||
p->sample_rate > 48000)
return EINVAL;
index = auconv_set_converter(sc->sc_formats, AUICH_NFORMATS,
mode, p, TRUE, fil);
if (index < 0)
return EINVAL;
if (fil->req_size > 0)
p = &fil->filters[0].param;
/* p represents HW encoding */
if (sc->sc_formats[index].frequency_type != 1
&& auich_set_rate(sc, mode, p->sample_rate))
return EINVAL;
if (mode == AUMODE_PLAY) {
control = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GCTRL);
control &= ~ICH_PCM246_MASK;
if (p->channels == 4) {
control |= ICH_PCM4;
} else if (p->channels == 6) {
control |= ICH_PCM6;
}
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GCTRL, control);
}
}
return 0;
}
static int
auich_round_blocksize(void *v, int blk, int mode, const audio_params_t *param)
{
return blk & ~0x3f; /* keep good alignment */
}
static int
auich_halt_output(void *v)
{
struct auich_softc *sc;
sc = v;
DPRINTF(ICH_DEBUG_DMA, ("%s: halt_output\n", sc->sc_dev.dv_xname));
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_CTRL, ICH_RR);
sc->pcmo.intr = NULL;
return 0;
}
static int
auich_halt_input(void *v)
{
struct auich_softc *sc;
sc = v;
DPRINTF(ICH_DEBUG_DMA,
("%s: halt_input\n", sc->sc_dev.dv_xname));
/* XXX halt both unless known otherwise */
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RR);
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_MICI + ICH_CTRL, ICH_RR);
sc->pcmi.intr = NULL;
return 0;
}
static int
auich_getdev(void *v, struct audio_device *adp)
{
struct auich_softc *sc;
sc = v;
*adp = sc->sc_audev;
return 0;
}
static int
auich_set_port(void *v, mixer_ctrl_t *cp)
{
struct auich_softc *sc;
sc = v;
return sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp);
}
static int
auich_get_port(void *v, mixer_ctrl_t *cp)
{
struct auich_softc *sc;
sc = v;
return sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp);
}
static int
auich_query_devinfo(void *v, mixer_devinfo_t *dp)
{
struct auich_softc *sc;
sc = v;
return sc->codec_if->vtbl->query_devinfo(sc->codec_if, dp);
}
static void *
auich_allocm(void *v, int direction, size_t size, struct malloc_type *pool,
int flags)
{
struct auich_softc *sc;
struct auich_dma *p;
int error;
if (size > (ICH_DMALIST_MAX * ICH_DMASEG_MAX))
return NULL;
p = malloc(sizeof(*p), pool, flags|M_ZERO);
if (p == NULL)
return NULL;
sc = v;
error = auich_allocmem(sc, size, 0, p);
if (error) {
free(p, pool);
return NULL;
}
p->next = sc->sc_dmas;
sc->sc_dmas = p;
return KERNADDR(p);
}
static void
auich_freem(void *v, void *ptr, struct malloc_type *pool)
{
struct auich_softc *sc;
struct auich_dma *p, **pp;
sc = v;
for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
if (KERNADDR(p) == ptr) {
auich_freemem(sc, p);
*pp = p->next;
free(p, pool);
return;
}
}
}
static size_t
auich_round_buffersize(void *v, int direction, size_t size)
{
if (size > (ICH_DMALIST_MAX * ICH_DMASEG_MAX))
size = ICH_DMALIST_MAX * ICH_DMASEG_MAX;
return size;
}
static paddr_t
auich_mappage(void *v, void *mem, off_t off, int prot)
{
struct auich_softc *sc;
struct auich_dma *p;
if (off < 0)
return -1;
sc = v;
for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
continue;
if (!p)
return -1;
return bus_dmamem_mmap(sc->dmat, p->segs, p->nsegs,
off, prot, BUS_DMA_WAITOK);
}
static int
auich_get_props(void *v)
{
struct auich_softc *sc;
int props;
props = AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
sc = v;
/*
* Even if the codec is fixed-rate, set_param() succeeds for any sample
* rate because of aurateconv. Applications can't know what rate the
* device can process in the case of mmap().
*/
if (!AC97_IS_FIXED_RATE(sc->codec_if))
props |= AUDIO_PROP_MMAP;
return props;
}
static int
auich_intr(void *v)
{
struct auich_softc *sc;
int ret, gsts;
#ifdef DIAGNOSTIC
int csts;
#endif
sc = v;
ret = 0;
#ifdef DIAGNOSTIC
csts = pci_conf_read(sc->sc_pc, sc->sc_pt, PCI_COMMAND_STATUS_REG);
if (csts & PCI_STATUS_MASTER_ABORT) {
printf("auich_intr: PCI master abort\n");
}
#endif
gsts = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GSTS);
DPRINTF(ICH_DEBUG_INTR, ("auich_intr: gsts=0x%x\n", gsts));
if (gsts & ICH_POINT) {
int sts;
sts = bus_space_read_2(sc->iot, sc->aud_ioh,
ICH_PCMO + sc->sc_sts_reg);
DPRINTF(ICH_DEBUG_INTR,
("auich_intr: osts=0x%x\n", sts));
if (sts & ICH_FIFOE)
printf("%s: fifo underrun\n", sc->sc_dev.dv_xname);
if (sts & ICH_BCIS) {
struct auich_dmalist *q;
int blksize, qptr, i;
blksize = sc->pcmo.blksize;
qptr = sc->pcmo.qptr;
i = bus_space_read_1(sc->iot, sc->aud_ioh,
ICH_PCMO + ICH_CIV);
while (qptr != i) {
q = &sc->pcmo.dmalist[qptr];
q->base = sc->pcmo.p;
q->len = (blksize >> sc->sc_sample_shift) |
ICH_DMAF_IOC;
DPRINTF(ICH_DEBUG_INTR,
("auich_intr: %p, %p = %x @ 0x%x\n",
&sc->pcmo.dmalist[i], q, q->len, q->base));
sc->pcmo.p += blksize;
if (sc->pcmo.p >= sc->pcmo.end)
sc->pcmo.p = sc->pcmo.start;
qptr = (qptr + 1) & ICH_LVI_MASK;
if (sc->pcmo.intr)
sc->pcmo.intr(sc->pcmo.arg);
}
sc->pcmo.qptr = qptr;
bus_space_write_1(sc->iot, sc->aud_ioh,
ICH_PCMO + ICH_LVI, (qptr - 1) & ICH_LVI_MASK);
}
/* int ack */
bus_space_write_2(sc->iot, sc->aud_ioh, ICH_PCMO +
sc->sc_sts_reg, sts & (ICH_BCIS | ICH_FIFOE));
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GSTS, ICH_POINT);
ret++;
}
if (gsts & ICH_PIINT) {
int sts;
sts = bus_space_read_2(sc->iot, sc->aud_ioh,
ICH_PCMI + sc->sc_sts_reg);
DPRINTF(ICH_DEBUG_INTR,
("auich_intr: ists=0x%x\n", sts));
if (sts & ICH_FIFOE)
printf("%s: fifo overrun\n", sc->sc_dev.dv_xname);
if (sts & ICH_BCIS) {
struct auich_dmalist *q;
int blksize, qptr, i;
blksize = sc->pcmi.blksize;
qptr = sc->pcmi.qptr;
i = bus_space_read_1(sc->iot, sc->aud_ioh,
ICH_PCMI + ICH_CIV);
while (qptr != i) {
q = &sc->pcmi.dmalist[qptr];
q->base = sc->pcmi.p;
q->len = (blksize >> sc->sc_sample_shift) |
ICH_DMAF_IOC;
DPRINTF(ICH_DEBUG_INTR,
("auich_intr: %p, %p = %x @ 0x%x\n",
&sc->pcmi.dmalist[i], q, q->len, q->base));
sc->pcmi.p += blksize;
if (sc->pcmi.p >= sc->pcmi.end)
sc->pcmi.p = sc->pcmi.start;
qptr = (qptr + 1) & ICH_LVI_MASK;
if (sc->pcmi.intr)
sc->pcmi.intr(sc->pcmi.arg);
}
sc->pcmi.qptr = qptr;
bus_space_write_1(sc->iot, sc->aud_ioh,
ICH_PCMI + ICH_LVI, (qptr - 1) & ICH_LVI_MASK);
}
/* int ack */
bus_space_write_2(sc->iot, sc->aud_ioh, ICH_PCMI +
sc->sc_sts_reg, sts & (ICH_BCIS | ICH_FIFOE));
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GSTS, ICH_PIINT);
ret++;
}
if (gsts & ICH_MIINT) {
int sts;
sts = bus_space_read_2(sc->iot, sc->aud_ioh,
ICH_MICI + sc->sc_sts_reg);
DPRINTF(ICH_DEBUG_INTR,
("auich_intr: ists=0x%x\n", sts));
if (sts & ICH_FIFOE)
printf("%s: fifo overrun\n", sc->sc_dev.dv_xname);
/* TODO mic input DMA */
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GSTS, ICH_MIINT);
}
return ret;
}
static int
auich_trigger_output(void *v, void *start, void *end, int blksize,
void (*intr)(void *), void *arg, const audio_params_t *param)
{
struct auich_softc *sc;
struct auich_dmalist *q;
struct auich_dma *p;
size_t size;
int qptr;
#ifdef DIAGNOSTIC
int csts;
#endif
DPRINTF(ICH_DEBUG_DMA,
("auich_trigger_output(%p, %p, %d, %p, %p, %p)\n",
start, end, blksize, intr, arg, param));
sc = v;
sc->pcmo.intr = intr;
sc->pcmo.arg = arg;
#ifdef DIAGNOSTIC
csts = pci_conf_read(sc->sc_pc, sc->sc_pt, PCI_COMMAND_STATUS_REG);
if (csts & PCI_STATUS_MASTER_ABORT) {
printf("auich_trigger_output: PCI master abort\n");
}
#endif
for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
continue;
if (!p) {
printf("auich_trigger_output: bad addr %p\n", start);
return EINVAL;
}
size = (size_t)((caddr_t)end - (caddr_t)start);
/*
* The logic behind this is:
* setup one buffer to play, then LVI dump out the rest
* to the scatter-gather chain.
*/
sc->pcmo.start = DMAADDR(p);
sc->pcmo.p = sc->pcmo.start;
sc->pcmo.end = sc->pcmo.start + size;
sc->pcmo.blksize = blksize;
for (qptr = 0; qptr < ICH_DMALIST_MAX; qptr++) {
q = &sc->pcmo.dmalist[qptr];
q->base = sc->pcmo.p;
q->len = (blksize >> sc->sc_sample_shift) | ICH_DMAF_IOC;
sc->pcmo.p += blksize;
if (sc->pcmo.p >= sc->pcmo.end)
sc->pcmo.p = sc->pcmo.start;
}
sc->pcmo.qptr = qptr = 0;
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_LVI,
(qptr - 1) & ICH_LVI_MASK);
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_BDBAR,
sc->sc_cddma + ICH_PCMO_OFF(0));
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_CTRL,
ICH_IOCE | ICH_FEIE | ICH_RPBM);
return 0;
}
static int
auich_trigger_input(void *v, void *start, void *end, int blksize,
void (*intr)(void *), void *arg, const audio_params_t *param)
{
struct auich_softc *sc;
struct auich_dmalist *q;
struct auich_dma *p;
size_t size;
int qptr;
#ifdef DIAGNOSTIC
int csts;
#endif
DPRINTF(ICH_DEBUG_DMA,
("auich_trigger_input(%p, %p, %d, %p, %p, %p)\n",
start, end, blksize, intr, arg, param));
sc = v;
sc->pcmi.intr = intr;
sc->pcmi.arg = arg;
#ifdef DIAGNOSTIC
csts = pci_conf_read(sc->sc_pc, sc->sc_pt, PCI_COMMAND_STATUS_REG);
if (csts & PCI_STATUS_MASTER_ABORT) {
printf("auich_trigger_input: PCI master abort\n");
}
#endif
for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
continue;
if (!p) {
printf("auich_trigger_input: bad addr %p\n", start);
return EINVAL;
}
size = (size_t)((caddr_t)end - (caddr_t)start);
/*
* The logic behind this is:
* setup one buffer to play, then LVI dump out the rest
* to the scatter-gather chain.
*/
sc->pcmi.start = DMAADDR(p);
sc->pcmi.p = sc->pcmi.start;
sc->pcmi.end = sc->pcmi.start + size;
sc->pcmi.blksize = blksize;
for (qptr = 0; qptr < ICH_DMALIST_MAX; qptr++) {
q = &sc->pcmi.dmalist[qptr];
q->base = sc->pcmi.p;
q->len = (blksize >> sc->sc_sample_shift) | ICH_DMAF_IOC;
sc->pcmi.p += blksize;
if (sc->pcmi.p >= sc->pcmi.end)
sc->pcmi.p = sc->pcmi.start;
}
sc->pcmi.qptr = qptr = 0;
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_LVI,
(qptr - 1) & ICH_LVI_MASK);
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_BDBAR,
sc->sc_cddma + ICH_PCMI_OFF(0));
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL,
ICH_IOCE | ICH_FEIE | ICH_RPBM);
return 0;
}
static int
auich_allocmem(struct auich_softc *sc, size_t size, size_t align,
struct auich_dma *p)
{
int error;
p->size = size;
error = bus_dmamem_alloc(sc->dmat, p->size, align, 0,
p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
&p->nsegs, BUS_DMA_NOWAIT);
if (error)
return error;
error = bus_dmamem_map(sc->dmat, p->segs, p->nsegs, p->size,
&p->addr, BUS_DMA_NOWAIT|sc->sc_dmamap_flags);
if (error)
goto free;
error = bus_dmamap_create(sc->dmat, p->size, 1, p->size,
0, BUS_DMA_NOWAIT, &p->map);
if (error)
goto unmap;
error = bus_dmamap_load(sc->dmat, p->map, p->addr, p->size, NULL,
BUS_DMA_NOWAIT);
if (error)
goto destroy;
return 0;
destroy:
bus_dmamap_destroy(sc->dmat, p->map);
unmap:
bus_dmamem_unmap(sc->dmat, p->addr, p->size);
free:
bus_dmamem_free(sc->dmat, p->segs, p->nsegs);
return error;
}
static int
auich_freemem(struct auich_softc *sc, struct auich_dma *p)
{
bus_dmamap_unload(sc->dmat, p->map);
bus_dmamap_destroy(sc->dmat, p->map);
bus_dmamem_unmap(sc->dmat, p->addr, p->size);
bus_dmamem_free(sc->dmat, p->segs, p->nsegs);
return 0;
}
static int
auich_alloc_cdata(struct auich_softc *sc)
{
bus_dma_segment_t seg;
int error, rseg;
/*
* Allocate the control data structure, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->dmat,
sizeof(struct auich_cdata),
PAGE_SIZE, 0, &seg, 1, &rseg, 0)) != 0) {
printf("%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->dmat, &seg, rseg,
sizeof(struct auich_cdata),
(caddr_t *) &sc->sc_cdata,
sc->sc_dmamap_flags)) != 0) {
printf("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->dmat, sizeof(struct auich_cdata), 1,
sizeof(struct auich_cdata), 0, 0,
&sc->sc_cddmamap)) != 0) {
printf("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->dmat, sc->sc_cddmamap,
sc->sc_cdata, sizeof(struct auich_cdata),
NULL, 0)) != 0) {
printf("%s: unable tp load control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_3;
}
sc->pcmo.dmalist = sc->sc_cdata->ic_dmalist_pcmo;
sc->pcmi.dmalist = sc->sc_cdata->ic_dmalist_pcmi;
sc->mici.dmalist = sc->sc_cdata->ic_dmalist_mici;
return 0;
fail_3:
bus_dmamap_destroy(sc->dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->dmat, (caddr_t) sc->sc_cdata,
sizeof(struct auich_cdata));
fail_1:
bus_dmamem_free(sc->dmat, &seg, rseg);
fail_0:
return error;
}
static void
auich_powerhook(int why, void *addr)
{
struct auich_softc *sc;
sc = (struct auich_softc *)addr;
switch (why) {
case PWR_SUSPEND:
case PWR_STANDBY:
/* Power down */
DPRINTF(1, ("%s: power down\n", sc->sc_dev.dv_xname));
sc->sc_suspend = why;
pci_conf_capture(sc->sc_pc, sc->sc_pt, &sc->sc_pciconf);
break;
case PWR_RESUME:
/* Wake up */
DPRINTF(1, ("%s: power resume\n", sc->sc_dev.dv_xname));
if (sc->sc_suspend == PWR_RESUME) {
printf("%s: resume without suspend.\n",
sc->sc_dev.dv_xname);
sc->sc_suspend = why;
return;
}
pci_conf_restore(sc->sc_pc, sc->sc_pt, &sc->sc_pciconf);
sc->sc_suspend = why;
auich_reset_codec(sc);
DELAY(1000);
(sc->codec_if->vtbl->restore_ports)(sc->codec_if);
break;
case PWR_SOFTSUSPEND:
case PWR_SOFTSTANDBY:
case PWR_SOFTRESUME:
break;
}
}
/*
* Calibrate card (some boards are overclocked and need scaling)
*/
static void
auich_calibrate(struct auich_softc *sc)
{
struct timeval t1, t2;
uint8_t ociv, nciv;
uint64_t wait_us;
uint32_t actual_48k_rate, bytes, ac97rate;
void *temp_buffer;
struct auich_dma *p;
u_int rate;
/*
* Grab audio from input for fixed interval and compare how
* much we actually get with what we expect. Interval needs
* to be sufficiently short that no interrupts are
* generated.
*/
/* Force the codec to a known state first. */
sc->codec_if->vtbl->set_clock(sc->codec_if, 48000);
rate = sc->sc_ac97_clock = 48000;
sc->codec_if->vtbl->set_rate(sc->codec_if, AC97_REG_PCM_LR_ADC_RATE,
&rate);
/* Setup a buffer */
bytes = 64000;
temp_buffer = auich_allocm(sc, AUMODE_RECORD, bytes, M_DEVBUF, M_WAITOK);
for (p = sc->sc_dmas; p && KERNADDR(p) != temp_buffer; p = p->next)
continue;
if (p == NULL) {
printf("auich_calibrate: bad address %p\n", temp_buffer);
return;
}
sc->pcmi.dmalist[0].base = DMAADDR(p);
sc->pcmi.dmalist[0].len = (bytes >> sc->sc_sample_shift);
/*
* our data format is stereo, 16 bit so each sample is 4 bytes.
* assuming we get 48000 samples per second, we get 192000 bytes/sec.
* we're going to start recording with interrupts disabled and measure
* the time taken for one block to complete. we know the block size,
* we know the time in microseconds, we calculate the sample rate:
*
* actual_rate [bps] = bytes / (time [s] * 4)
* actual_rate [bps] = (bytes * 1000000) / (time [us] * 4)
* actual_rate [Hz] = (bytes * 250000) / time [us]
*/
/* prepare */
ociv = bus_space_read_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CIV);
bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_BDBAR,
sc->sc_cddma + ICH_PCMI_OFF(0));
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_LVI,
(0 - 1) & ICH_LVI_MASK);
/* start */
microtime(&t1);
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RPBM);
/* wait */
nciv = ociv;
do {
microtime(&t2);
if (t2.tv_sec - t1.tv_sec > 1)
break;
nciv = bus_space_read_1(sc->iot, sc->aud_ioh,
ICH_PCMI + ICH_CIV);
} while (nciv == ociv);
microtime(&t2);
/* stop */
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, 0);
/* reset */
DELAY(100);
bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RR);
/* turn time delta into us */
wait_us = ((t2.tv_sec - t1.tv_sec) * 1000000) + t2.tv_usec - t1.tv_usec;
auich_freem(sc, temp_buffer, M_DEVBUF);
if (nciv == ociv) {
printf("%s: ac97 link rate calibration timed out after %"
PRIu64 " us\n", sc->sc_dev.dv_xname, wait_us);
return;
}
actual_48k_rate = (bytes * UINT64_C(250000)) / wait_us;
if (actual_48k_rate < 50000)
ac97rate = 48000;
else
ac97rate = ((actual_48k_rate + 500) / 1000) * 1000;
printf("%s: measured ac97 link rate at %d Hz",
sc->sc_dev.dv_xname, actual_48k_rate);
if (ac97rate != actual_48k_rate)
printf(", will use %d Hz", ac97rate);
printf("\n");
sc->sc_ac97_clock = ac97rate;
}