612e86b46d
do { ... } while(/*CONSTCOND*/0) so that they can be used unadorned in if/else blocks, etc. This means that you now *have* to put a ; at the end of the "call" to these macros.
707 lines
18 KiB
C
707 lines
18 KiB
C
/* $NetBSD: netbsd32_time.c,v 1.7 2004/11/14 03:30:10 atatat Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1998, 2001 Matthew R. Green
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: netbsd32_time.c,v 1.7 2004/11/14 03:30:10 atatat Exp $");
|
|
|
|
#if defined(_KERNEL_OPT)
|
|
#include "opt_ntp.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/time.h>
|
|
#include <sys/timex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/resourcevar.h>
|
|
|
|
#include <compat/netbsd32/netbsd32.h>
|
|
#include <compat/netbsd32/netbsd32_syscallargs.h>
|
|
#include <compat/netbsd32/netbsd32_conv.h>
|
|
|
|
#ifdef NTP
|
|
int
|
|
netbsd32_ntp_gettime(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct netbsd32_ntp_gettime_args /* {
|
|
syscallarg(netbsd32_ntptimevalp_t) ntvp;
|
|
} */ *uap = v;
|
|
struct netbsd32_ntptimeval ntv32;
|
|
struct timeval atv;
|
|
struct ntptimeval ntv;
|
|
int error = 0;
|
|
int s;
|
|
|
|
/* The following are NTP variables */
|
|
extern long time_maxerror;
|
|
extern long time_esterror;
|
|
extern int time_status;
|
|
extern int time_state; /* clock state */
|
|
extern int time_status; /* clock status bits */
|
|
|
|
if (SCARG(uap, ntvp)) {
|
|
s = splclock();
|
|
#ifdef EXT_CLOCK
|
|
/*
|
|
* The microtime() external clock routine returns a
|
|
* status code. If less than zero, we declare an error
|
|
* in the clock status word and return the kernel
|
|
* (software) time variable. While there are other
|
|
* places that call microtime(), this is the only place
|
|
* that matters from an application point of view.
|
|
*/
|
|
if (microtime(&atv) < 0) {
|
|
time_status |= STA_CLOCKERR;
|
|
ntv.time = time;
|
|
} else
|
|
time_status &= ~STA_CLOCKERR;
|
|
#else /* EXT_CLOCK */
|
|
microtime(&atv);
|
|
#endif /* EXT_CLOCK */
|
|
ntv.time = atv;
|
|
ntv.maxerror = time_maxerror;
|
|
ntv.esterror = time_esterror;
|
|
(void) splx(s);
|
|
|
|
netbsd32_from_timeval(&ntv.time, &ntv32.time);
|
|
ntv32.maxerror = (netbsd32_long)ntv.maxerror;
|
|
ntv32.esterror = (netbsd32_long)ntv.esterror;
|
|
error = copyout((caddr_t)&ntv32,
|
|
(caddr_t)NETBSD32PTR64(SCARG(uap, ntvp)), sizeof(ntv32));
|
|
}
|
|
if (!error) {
|
|
|
|
/*
|
|
* Status word error decode. If any of these conditions
|
|
* occur, an error is returned, instead of the status
|
|
* word. Most applications will care only about the fact
|
|
* the system clock may not be trusted, not about the
|
|
* details.
|
|
*
|
|
* Hardware or software error
|
|
*/
|
|
if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
|
|
|
|
/*
|
|
* PPS signal lost when either time or frequency
|
|
* synchronization requested
|
|
*/
|
|
(time_status & (STA_PPSFREQ | STA_PPSTIME) &&
|
|
!(time_status & STA_PPSSIGNAL)) ||
|
|
|
|
/*
|
|
* PPS jitter exceeded when time synchronization
|
|
* requested
|
|
*/
|
|
(time_status & STA_PPSTIME &&
|
|
time_status & STA_PPSJITTER) ||
|
|
|
|
/*
|
|
* PPS wander exceeded or calibration error when
|
|
* frequency synchronization requested
|
|
*/
|
|
(time_status & STA_PPSFREQ &&
|
|
time_status & (STA_PPSWANDER | STA_PPSERROR)))
|
|
*retval = TIME_ERROR;
|
|
else
|
|
*retval = time_state;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
netbsd32_ntp_adjtime(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct netbsd32_ntp_adjtime_args /* {
|
|
syscallarg(netbsd32_timexp_t) tp;
|
|
} */ *uap = v;
|
|
struct netbsd32_timex ntv32;
|
|
struct timex ntv;
|
|
int error = 0;
|
|
int modes;
|
|
int s;
|
|
struct proc *p = l->l_proc;
|
|
extern long time_freq; /* frequency offset (scaled ppm) */
|
|
extern long time_maxerror;
|
|
extern long time_esterror;
|
|
extern int time_state; /* clock state */
|
|
extern int time_status; /* clock status bits */
|
|
extern long time_constant; /* pll time constant */
|
|
extern long time_offset; /* time offset (us) */
|
|
extern long time_tolerance; /* frequency tolerance (scaled ppm) */
|
|
extern long time_precision; /* clock precision (us) */
|
|
|
|
if ((error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
|
|
(caddr_t)&ntv32, sizeof(ntv32))))
|
|
return (error);
|
|
netbsd32_to_timex(&ntv32, &ntv);
|
|
|
|
/*
|
|
* Update selected clock variables - only the superuser can
|
|
* change anything. Note that there is no error checking here on
|
|
* the assumption the superuser should know what it is doing.
|
|
*/
|
|
modes = ntv.modes;
|
|
if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
|
|
return (error);
|
|
|
|
s = splclock();
|
|
if (modes & MOD_FREQUENCY)
|
|
#ifdef PPS_SYNC
|
|
time_freq = ntv.freq - pps_freq;
|
|
#else /* PPS_SYNC */
|
|
time_freq = ntv.freq;
|
|
#endif /* PPS_SYNC */
|
|
if (modes & MOD_MAXERROR)
|
|
time_maxerror = ntv.maxerror;
|
|
if (modes & MOD_ESTERROR)
|
|
time_esterror = ntv.esterror;
|
|
if (modes & MOD_STATUS) {
|
|
time_status &= STA_RONLY;
|
|
time_status |= ntv.status & ~STA_RONLY;
|
|
}
|
|
if (modes & MOD_TIMECONST)
|
|
time_constant = ntv.constant;
|
|
if (modes & MOD_OFFSET)
|
|
hardupdate(ntv.offset);
|
|
|
|
/*
|
|
* Retrieve all clock variables
|
|
*/
|
|
if (time_offset < 0)
|
|
ntv.offset = -(-time_offset >> SHIFT_UPDATE);
|
|
else
|
|
ntv.offset = time_offset >> SHIFT_UPDATE;
|
|
#ifdef PPS_SYNC
|
|
ntv.freq = time_freq + pps_freq;
|
|
#else /* PPS_SYNC */
|
|
ntv.freq = time_freq;
|
|
#endif /* PPS_SYNC */
|
|
ntv.maxerror = time_maxerror;
|
|
ntv.esterror = time_esterror;
|
|
ntv.status = time_status;
|
|
ntv.constant = time_constant;
|
|
ntv.precision = time_precision;
|
|
ntv.tolerance = time_tolerance;
|
|
#ifdef PPS_SYNC
|
|
ntv.shift = pps_shift;
|
|
ntv.ppsfreq = pps_freq;
|
|
ntv.jitter = pps_jitter >> PPS_AVG;
|
|
ntv.stabil = pps_stabil;
|
|
ntv.calcnt = pps_calcnt;
|
|
ntv.errcnt = pps_errcnt;
|
|
ntv.jitcnt = pps_jitcnt;
|
|
ntv.stbcnt = pps_stbcnt;
|
|
#endif /* PPS_SYNC */
|
|
(void)splx(s);
|
|
|
|
netbsd32_from_timex(&ntv, &ntv32);
|
|
error = copyout((caddr_t)&ntv32, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
|
|
sizeof(ntv32));
|
|
if (!error) {
|
|
|
|
/*
|
|
* Status word error decode. See comments in
|
|
* ntp_gettime() routine.
|
|
*/
|
|
if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
|
|
(time_status & (STA_PPSFREQ | STA_PPSTIME) &&
|
|
!(time_status & STA_PPSSIGNAL)) ||
|
|
(time_status & STA_PPSTIME &&
|
|
time_status & STA_PPSJITTER) ||
|
|
(time_status & STA_PPSFREQ &&
|
|
time_status & (STA_PPSWANDER | STA_PPSERROR)))
|
|
*retval = TIME_ERROR;
|
|
else
|
|
*retval = time_state;
|
|
}
|
|
return error;
|
|
}
|
|
#else
|
|
int
|
|
netbsd32_ntp_gettime(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
|
|
return (ENOSYS);
|
|
}
|
|
|
|
int
|
|
netbsd32_ntp_adjtime(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
|
|
return (ENOSYS);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
netbsd32_setitimer(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct netbsd32_setitimer_args /* {
|
|
syscallarg(int) which;
|
|
syscallarg(const netbsd32_itimervalp_t) itv;
|
|
syscallarg(netbsd32_itimervalp_t) oitv;
|
|
} */ *uap = v;
|
|
struct proc *p = l->l_proc;
|
|
struct netbsd32_itimerval s32it, *itvp;
|
|
int which = SCARG(uap, which);
|
|
struct netbsd32_getitimer_args getargs;
|
|
struct itimerval aitv;
|
|
int s, error;
|
|
struct ptimer *pt;
|
|
|
|
if ((u_int)which > ITIMER_PROF)
|
|
return (EINVAL);
|
|
itvp = (struct netbsd32_itimerval *)NETBSD32PTR64(SCARG(uap, itv));
|
|
if (itvp && (error = copyin(itvp, &s32it, sizeof(s32it))))
|
|
return (error);
|
|
netbsd32_to_itimerval(&s32it, &aitv);
|
|
if (SCARG(uap, oitv) != 0) {
|
|
SCARG(&getargs, which) = which;
|
|
SCARG(&getargs, itv) = SCARG(uap, oitv);
|
|
if ((error = netbsd32_getitimer(l, &getargs, retval)) != 0)
|
|
return (error);
|
|
}
|
|
if (itvp == 0)
|
|
return (0);
|
|
if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
|
|
return (EINVAL);
|
|
|
|
/* XXX there should be a way to share code with kern_time */
|
|
/* XXX just copied some from there */
|
|
/*
|
|
* Don't bother allocating data structures if the process just
|
|
* wants to clear the timer.
|
|
*/
|
|
if (!timerisset(&aitv.it_value) &&
|
|
((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)))
|
|
return (0);
|
|
|
|
if (p->p_timers == NULL)
|
|
timers_alloc(p);
|
|
if (p->p_timers->pts_timers[which] == NULL) {
|
|
pt = pool_get(&ptimer_pool, PR_WAITOK);
|
|
callout_init(&pt->pt_ch);
|
|
pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
|
|
pt->pt_overruns = 0;
|
|
pt->pt_proc = p;
|
|
pt->pt_type = which;
|
|
switch (which) {
|
|
case ITIMER_REAL:
|
|
pt->pt_ev.sigev_signo = SIGALRM;
|
|
break;
|
|
case ITIMER_VIRTUAL:
|
|
pt->pt_ev.sigev_signo = SIGVTALRM;
|
|
break;
|
|
case ITIMER_PROF:
|
|
pt->pt_ev.sigev_signo = SIGPROF;
|
|
break;
|
|
}
|
|
} else
|
|
pt = p->p_timers->pts_timers[which];
|
|
|
|
pt->pt_time = aitv;
|
|
p->p_timers->pts_timers[which] = pt;
|
|
if (which == ITIMER_REAL) {
|
|
s = splclock();
|
|
callout_stop(&pt->pt_ch);
|
|
if (timerisset(&pt->pt_time.it_value)) {
|
|
timeradd(&pt->pt_time.it_value, &time,
|
|
&pt->pt_time.it_value);
|
|
/*
|
|
* Don't need to check hzto() return value, here.
|
|
* callout_reset() does it for us.
|
|
*/
|
|
callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
|
|
realtimerexpire, pt);
|
|
}
|
|
splx(s);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
netbsd32_getitimer(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct netbsd32_getitimer_args /* {
|
|
syscallarg(int) which;
|
|
syscallarg(netbsd32_itimervalp_t) itv;
|
|
} */ *uap = v;
|
|
struct proc *p = l->l_proc;
|
|
int which = SCARG(uap, which);
|
|
struct netbsd32_itimerval s32it;
|
|
struct itimerval aitv;
|
|
int s;
|
|
|
|
if ((u_int)which > ITIMER_PROF)
|
|
return (EINVAL);
|
|
|
|
/* XXX same as setitimer */
|
|
if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)) {
|
|
timerclear(&aitv.it_value);
|
|
timerclear(&aitv.it_interval);
|
|
} else {
|
|
s = splclock();
|
|
if (which == ITIMER_REAL) {
|
|
/*
|
|
* Convert from absolute to relative time in
|
|
* .it_value part of real time timer. If time
|
|
* for real time timer has passed return 0,
|
|
* else return difference between current time
|
|
* and time for the timer to go off.
|
|
*/
|
|
aitv = p->p_timers->pts_timers[ITIMER_REAL]->pt_time;
|
|
if (timerisset(&aitv.it_value)) {
|
|
if (timercmp(&aitv.it_value, &time, <))
|
|
timerclear(&aitv.it_value);
|
|
else
|
|
timersub(&aitv.it_value, &time, &aitv.it_value);
|
|
}
|
|
} else
|
|
aitv = p->p_timers->pts_timers[which]->pt_time;
|
|
splx(s);
|
|
}
|
|
netbsd32_from_itimerval(&aitv, &s32it);
|
|
return (copyout(&s32it, (caddr_t)NETBSD32PTR64(SCARG(uap, itv)),
|
|
sizeof(s32it)));
|
|
}
|
|
|
|
int
|
|
netbsd32_gettimeofday(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct netbsd32_gettimeofday_args /* {
|
|
syscallarg(netbsd32_timevalp_t) tp;
|
|
syscallarg(netbsd32_timezonep_t) tzp;
|
|
} */ *uap = v;
|
|
struct timeval atv;
|
|
struct netbsd32_timeval tv32;
|
|
int error = 0;
|
|
struct netbsd32_timezone tzfake;
|
|
|
|
if (SCARG(uap, tp)) {
|
|
microtime(&atv);
|
|
netbsd32_from_timeval(&atv, &tv32);
|
|
error = copyout(&tv32, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
|
|
sizeof(tv32));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
if (SCARG(uap, tzp)) {
|
|
/*
|
|
* NetBSD has no kernel notion of time zone, so we just
|
|
* fake up a timezone struct and return it if demanded.
|
|
*/
|
|
tzfake.tz_minuteswest = 0;
|
|
tzfake.tz_dsttime = 0;
|
|
error = copyout(&tzfake,
|
|
(caddr_t)NETBSD32PTR64(SCARG(uap, tzp)), sizeof(tzfake));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
netbsd32_settimeofday(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct netbsd32_settimeofday_args /* {
|
|
syscallarg(const netbsd32_timevalp_t) tv;
|
|
syscallarg(const netbsd32_timezonep_t) tzp;
|
|
} */ *uap = v;
|
|
struct netbsd32_timeval atv32;
|
|
struct timeval atv;
|
|
int error;
|
|
struct proc *p = l->l_proc;
|
|
|
|
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
|
|
return (error);
|
|
/* Verify all parameters before changing time. */
|
|
if (SCARG(uap, tv) &&
|
|
(error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, tv)), &atv32,
|
|
sizeof(atv32))))
|
|
return (error);
|
|
netbsd32_to_timeval(&atv32, &atv);
|
|
if (SCARG(uap, tv))
|
|
if ((error = settime(&atv)))
|
|
return (error);
|
|
/* don't bother copying the tz in, we don't use it. */
|
|
/*
|
|
* NetBSD has no kernel notion of time zone, and only an
|
|
* obsolete program would try to set it, so we log a warning.
|
|
*/
|
|
if (SCARG(uap, tzp))
|
|
printf("pid %d attempted to set the "
|
|
"(obsolete) kernel time zone\n", p->p_pid);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
netbsd32_adjtime(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct netbsd32_adjtime_args /* {
|
|
syscallarg(const netbsd32_timevalp_t) delta;
|
|
syscallarg(netbsd32_timevalp_t) olddelta;
|
|
} */ *uap = v;
|
|
struct netbsd32_timeval atv;
|
|
int32_t ndelta, ntickdelta, odelta;
|
|
int s, error;
|
|
struct proc *p = l->l_proc;
|
|
extern long bigadj, timedelta;
|
|
extern int tickdelta;
|
|
|
|
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
|
|
return (error);
|
|
|
|
error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, delta)), &atv,
|
|
sizeof(struct timeval));
|
|
if (error)
|
|
return (error);
|
|
/*
|
|
* Compute the total correction and the rate at which to apply it.
|
|
* Round the adjustment down to a whole multiple of the per-tick
|
|
* delta, so that after some number of incremental changes in
|
|
* hardclock(), tickdelta will become zero, lest the correction
|
|
* overshoot and start taking us away from the desired final time.
|
|
*/
|
|
ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
|
|
if (ndelta > bigadj)
|
|
ntickdelta = 10 * tickadj;
|
|
else
|
|
ntickdelta = tickadj;
|
|
if (ndelta % ntickdelta)
|
|
ndelta = ndelta / ntickdelta * ntickdelta;
|
|
|
|
/*
|
|
* To make hardclock()'s job easier, make the per-tick delta negative
|
|
* if we want time to run slower; then hardclock can simply compute
|
|
* tick + tickdelta, and subtract tickdelta from timedelta.
|
|
*/
|
|
if (ndelta < 0)
|
|
ntickdelta = -ntickdelta;
|
|
s = splclock();
|
|
odelta = timedelta;
|
|
timedelta = ndelta;
|
|
tickdelta = ntickdelta;
|
|
splx(s);
|
|
|
|
if (SCARG(uap, olddelta)) {
|
|
atv.tv_sec = odelta / 1000000;
|
|
atv.tv_usec = odelta % 1000000;
|
|
(void) copyout(&atv,
|
|
(caddr_t)NETBSD32PTR64(SCARG(uap, olddelta)), sizeof(atv));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
netbsd32_clock_gettime(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct netbsd32_clock_gettime_args /* {
|
|
syscallarg(netbsd32_clockid_t) clock_id;
|
|
syscallarg(netbsd32_timespecp_t) tp;
|
|
} */ *uap = v;
|
|
clockid_t clock_id;
|
|
struct timeval atv;
|
|
struct timespec ats;
|
|
struct netbsd32_timespec ts32;
|
|
|
|
clock_id = SCARG(uap, clock_id);
|
|
if (clock_id != CLOCK_REALTIME)
|
|
return (EINVAL);
|
|
|
|
microtime(&atv);
|
|
TIMEVAL_TO_TIMESPEC(&atv,&ats);
|
|
netbsd32_from_timespec(&ats, &ts32);
|
|
|
|
return copyout(&ts32, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
|
|
sizeof(ts32));
|
|
}
|
|
|
|
int
|
|
netbsd32_clock_settime(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct netbsd32_clock_settime_args /* {
|
|
syscallarg(netbsd32_clockid_t) clock_id;
|
|
syscallarg(const netbsd32_timespecp_t) tp;
|
|
} */ *uap = v;
|
|
struct netbsd32_timespec ts32;
|
|
clockid_t clock_id;
|
|
struct timeval atv;
|
|
struct timespec ats;
|
|
int error;
|
|
struct proc *p = l->l_proc;
|
|
|
|
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
|
|
return (error);
|
|
|
|
clock_id = SCARG(uap, clock_id);
|
|
if (clock_id != CLOCK_REALTIME)
|
|
return (EINVAL);
|
|
|
|
if ((error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, tp)), &ts32,
|
|
sizeof(ts32))) != 0)
|
|
return (error);
|
|
|
|
netbsd32_to_timespec(&ts32, &ats);
|
|
TIMESPEC_TO_TIMEVAL(&atv,&ats);
|
|
if ((error = settime(&atv)))
|
|
return (error);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
netbsd32_clock_getres(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct netbsd32_clock_getres_args /* {
|
|
syscallarg(netbsd32_clockid_t) clock_id;
|
|
syscallarg(netbsd32_timespecp_t) tp;
|
|
} */ *uap = v;
|
|
struct netbsd32_timespec ts32;
|
|
clockid_t clock_id;
|
|
struct timespec ts;
|
|
int error = 0;
|
|
|
|
clock_id = SCARG(uap, clock_id);
|
|
if (clock_id != CLOCK_REALTIME)
|
|
return (EINVAL);
|
|
|
|
if (SCARG(uap, tp)) {
|
|
ts.tv_sec = 0;
|
|
ts.tv_nsec = 1000000000 / hz;
|
|
|
|
netbsd32_from_timespec(&ts, &ts32);
|
|
error = copyout(&ts, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
|
|
sizeof(ts));
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
netbsd32_nanosleep(l, v, retval)
|
|
struct lwp *l;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct netbsd32_nanosleep_args /* {
|
|
syscallarg(const netbsd32_timespecp_t) rqtp;
|
|
syscallarg(netbsd32_timespecp_t) rmtp;
|
|
} */ *uap = v;
|
|
static int nanowait;
|
|
struct netbsd32_timespec ts32;
|
|
struct timespec rqt;
|
|
struct timespec rmt;
|
|
struct timeval atv, utv;
|
|
int error, s, timo;
|
|
|
|
error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, rqtp)), (caddr_t)&ts32,
|
|
sizeof(ts32));
|
|
if (error)
|
|
return (error);
|
|
|
|
netbsd32_to_timespec(&ts32, &rqt);
|
|
TIMESPEC_TO_TIMEVAL(&atv,&rqt);
|
|
if (itimerfix(&atv))
|
|
return (EINVAL);
|
|
|
|
s = splclock();
|
|
timeradd(&atv,&time,&atv);
|
|
timo = hzto(&atv);
|
|
/*
|
|
* Avoid inadvertantly sleeping forever
|
|
*/
|
|
if (timo == 0)
|
|
timo = 1;
|
|
splx(s);
|
|
|
|
error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
if (error == EWOULDBLOCK)
|
|
error = 0;
|
|
|
|
if (SCARG(uap, rmtp)) {
|
|
int error;
|
|
|
|
s = splclock();
|
|
utv = time;
|
|
splx(s);
|
|
|
|
timersub(&atv, &utv, &utv);
|
|
if (utv.tv_sec < 0)
|
|
timerclear(&utv);
|
|
|
|
TIMEVAL_TO_TIMESPEC(&utv,&rmt);
|
|
netbsd32_from_timespec(&rmt, &ts32);
|
|
error = copyout((caddr_t)&ts32,
|
|
(caddr_t)NETBSD32PTR64(SCARG(uap,rmtp)), sizeof(ts32));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
return error;
|
|
}
|