58e867556f
check into the inline functions as well the fourth argument for bpf_attach.
1421 lines
35 KiB
C
1421 lines
35 KiB
C
/* $NetBSD: aic6915.c,v 1.27 2010/04/05 07:19:33 joerg Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Device driver for the Adaptec AIC-6915 (``Starfire'')
|
|
* 10/100 Ethernet controller.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.27 2010/04/05 07:19:33 joerg Exp $");
|
|
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/ic/aic6915reg.h>
|
|
#include <dev/ic/aic6915var.h>
|
|
|
|
static void sf_start(struct ifnet *);
|
|
static void sf_watchdog(struct ifnet *);
|
|
static int sf_ioctl(struct ifnet *, u_long, void *);
|
|
static int sf_init(struct ifnet *);
|
|
static void sf_stop(struct ifnet *, int);
|
|
|
|
static bool sf_shutdown(device_t, int);
|
|
|
|
static void sf_txintr(struct sf_softc *);
|
|
static void sf_rxintr(struct sf_softc *);
|
|
static void sf_stats_update(struct sf_softc *);
|
|
|
|
static void sf_reset(struct sf_softc *);
|
|
static void sf_macreset(struct sf_softc *);
|
|
static void sf_rxdrain(struct sf_softc *);
|
|
static int sf_add_rxbuf(struct sf_softc *, int);
|
|
static uint8_t sf_read_eeprom(struct sf_softc *, int);
|
|
static void sf_set_filter(struct sf_softc *);
|
|
|
|
static int sf_mii_read(device_t, int, int);
|
|
static void sf_mii_write(device_t, int, int, int);
|
|
static void sf_mii_statchg(device_t);
|
|
|
|
static void sf_tick(void *);
|
|
|
|
#define sf_funcreg_read(sc, reg) \
|
|
bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
|
|
#define sf_funcreg_write(sc, reg, val) \
|
|
bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
|
|
|
|
static inline uint32_t
|
|
sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
|
|
{
|
|
|
|
if (__predict_false(sc->sc_iomapped)) {
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
|
|
reg);
|
|
return (bus_space_read_4(sc->sc_st, sc->sc_sh,
|
|
SF_IndirectIoDataPort));
|
|
}
|
|
|
|
return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
|
|
}
|
|
|
|
static inline void
|
|
sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
|
|
{
|
|
|
|
if (__predict_false(sc->sc_iomapped)) {
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
|
|
reg);
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
|
|
val);
|
|
return;
|
|
}
|
|
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
|
|
}
|
|
|
|
#define sf_genreg_read(sc, reg) \
|
|
sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
|
|
#define sf_genreg_write(sc, reg, val) \
|
|
sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
|
|
|
|
/*
|
|
* sf_attach:
|
|
*
|
|
* Attach a Starfire interface to the system.
|
|
*/
|
|
void
|
|
sf_attach(struct sf_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
int i, rseg, error;
|
|
bus_dma_segment_t seg;
|
|
u_int8_t enaddr[ETHER_ADDR_LEN];
|
|
|
|
callout_init(&sc->sc_tick_callout, 0);
|
|
|
|
/*
|
|
* If we're I/O mapped, the functional register handle is
|
|
* the same as the base handle. If we're memory mapped,
|
|
* carve off a chunk of the register space for the functional
|
|
* registers, to save on arithmetic later.
|
|
*/
|
|
if (sc->sc_iomapped)
|
|
sc->sc_sh_func = sc->sc_sh;
|
|
else {
|
|
if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
|
|
SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to sub-region functional "
|
|
"registers, error = %d\n",
|
|
error);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit threshold for this interface. The
|
|
* manual describes the default as 4 * 16 bytes. We start out
|
|
* at 10 * 16 bytes, to avoid a bunch of initial underruns on
|
|
* several platforms.
|
|
*/
|
|
sc->sc_txthresh = 10;
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
|
|
BUS_DMA_NOWAIT)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
|
|
error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
|
|
sizeof(struct sf_control_data), (void **)&sc->sc_control_data,
|
|
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
|
|
error);
|
|
goto fail_1;
|
|
}
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
sizeof(struct sf_control_data), 1,
|
|
sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
|
|
&sc->sc_cddmamap)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
|
|
"error = %d\n", error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
|
|
sc->sc_control_data, sizeof(struct sf_control_data), NULL,
|
|
BUS_DMA_NOWAIT)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_3;
|
|
}
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < SF_NTXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
|
|
&sc->sc_txsoft[i].ds_dmamap)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
|
|
"error = %d\n", i, error);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < SF_NRXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, BUS_DMA_NOWAIT,
|
|
&sc->sc_rxsoft[i].ds_dmamap)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
|
|
"error = %d\n", i, error);
|
|
goto fail_5;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
sf_reset(sc);
|
|
|
|
/*
|
|
* Read the Ethernet address from the EEPROM.
|
|
*/
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
|
|
|
|
printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
|
|
ether_sprintf(enaddr));
|
|
|
|
if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
|
|
printf("%s: 64-bit PCI slot detected\n", device_xname(&sc->sc_dev));
|
|
|
|
/*
|
|
* Initialize our media structures and probe the MII.
|
|
*/
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = sf_mii_read;
|
|
sc->sc_mii.mii_writereg = sf_mii_write;
|
|
sc->sc_mii.mii_statchg = sf_mii_statchg;
|
|
sc->sc_ethercom.ec_mii = &sc->sc_mii;
|
|
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
|
|
ether_mediastatus);
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, 0);
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
} else
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
|
|
strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = sf_ioctl;
|
|
ifp->if_start = sf_start;
|
|
ifp->if_watchdog = sf_watchdog;
|
|
ifp->if_init = sf_init;
|
|
ifp->if_stop = sf_stop;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* Attach the interface.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, enaddr);
|
|
|
|
/*
|
|
* Make sure the interface is shutdown during reboot.
|
|
*/
|
|
if (pmf_device_register1(&sc->sc_dev, NULL, NULL, sf_shutdown))
|
|
pmf_class_network_register(&sc->sc_dev, ifp);
|
|
else
|
|
aprint_error_dev(&sc->sc_dev,
|
|
"couldn't establish power handler\n");
|
|
return;
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order an fall through.
|
|
*/
|
|
fail_5:
|
|
for (i = 0; i < SF_NRXDESC; i++) {
|
|
if (sc->sc_rxsoft[i].ds_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_rxsoft[i].ds_dmamap);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < SF_NTXDESC; i++) {
|
|
if (sc->sc_txsoft[i].ds_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_txsoft[i].ds_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control_data,
|
|
sizeof(struct sf_control_data));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
|
|
fail_0:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* sf_shutdown:
|
|
*
|
|
* Shutdown hook -- make sure the interface is stopped at reboot.
|
|
*/
|
|
static bool
|
|
sf_shutdown(device_t self, int howto)
|
|
{
|
|
struct sf_softc *sc;
|
|
|
|
sc = device_private(self);
|
|
sf_stop(&sc->sc_ethercom.ec_if, 1);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* sf_start: [ifnet interface function]
|
|
*
|
|
* Start packet transmission on the interface.
|
|
*/
|
|
static void
|
|
sf_start(struct ifnet *ifp)
|
|
{
|
|
struct sf_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0, *m;
|
|
struct sf_txdesc0 *txd;
|
|
struct sf_descsoft *ds;
|
|
bus_dmamap_t dmamap;
|
|
int error, producer, last = -1, opending, seg;
|
|
|
|
/*
|
|
* Remember the previous number of pending transmits.
|
|
*/
|
|
opending = sc->sc_txpending;
|
|
|
|
/*
|
|
* Find out where we're sitting.
|
|
*/
|
|
producer = SF_TXDINDEX_TO_HOST(
|
|
TDQPI_HiPrTxProducerIndex_get(
|
|
sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors. Leave a blank one at the end for sanity's sake.
|
|
*/
|
|
while (sc->sc_txpending < (SF_NTXDESC - 1)) {
|
|
/*
|
|
* Grab a packet off the queue.
|
|
*/
|
|
IFQ_POLL(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
m = NULL;
|
|
|
|
/*
|
|
* Get the transmit descriptor.
|
|
*/
|
|
txd = &sc->sc_txdescs[producer];
|
|
ds = &sc->sc_txsoft[producer];
|
|
dmamap = ds->ds_dmamap;
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet either
|
|
* didn't fit in the allotted number of frags, or we were
|
|
* short on resources. In this case, we'll copy and try
|
|
* again.
|
|
*/
|
|
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n");
|
|
break;
|
|
}
|
|
if (m0->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to allocate Tx "
|
|
"cluster\n");
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
}
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
|
|
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
|
|
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, "
|
|
"error = %d\n", error);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
|
|
*/
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m != NULL) {
|
|
m_freem(m0);
|
|
m0 = m;
|
|
}
|
|
|
|
/* Initialize the descriptor. */
|
|
txd->td_word0 =
|
|
htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
|
|
if (producer == (SF_NTXDESC - 1))
|
|
txd->td_word0 |= TD_W0_END;
|
|
txd->td_word1 = htole32(dmamap->dm_nsegs);
|
|
for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
|
|
txd->td_frags[seg].fr_addr =
|
|
htole32(dmamap->dm_segs[seg].ds_addr);
|
|
txd->td_frags[seg].fr_len =
|
|
htole32(dmamap->dm_segs[seg].ds_len);
|
|
}
|
|
|
|
/* Sync the descriptor and the DMA map. */
|
|
SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Store a pointer to the packet so we can free it later.
|
|
*/
|
|
ds->ds_mbuf = m0;
|
|
|
|
/* Advance the Tx pointer. */
|
|
sc->sc_txpending++;
|
|
last = producer;
|
|
producer = SF_NEXTTX(producer);
|
|
|
|
/*
|
|
* Pass the packet to any BPF listeners.
|
|
*/
|
|
bpf_mtap(ifp, m0);
|
|
}
|
|
|
|
if (sc->sc_txpending == (SF_NTXDESC - 1)) {
|
|
/* No more slots left; notify upper layer. */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
}
|
|
|
|
if (sc->sc_txpending != opending) {
|
|
KASSERT(last != -1);
|
|
/*
|
|
* We enqueued packets. Cause a transmit interrupt to
|
|
* happen on the last packet we enqueued, and give the
|
|
* new descriptors to the chip by writing the new
|
|
* producer index.
|
|
*/
|
|
sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
|
|
SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
|
|
|
|
sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
|
|
TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
|
|
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sf_watchdog: [ifnet interface function]
|
|
*
|
|
* Watchdog timer handler.
|
|
*/
|
|
static void
|
|
sf_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct sf_softc *sc = ifp->if_softc;
|
|
|
|
printf("%s: device timeout\n", device_xname(&sc->sc_dev));
|
|
ifp->if_oerrors++;
|
|
|
|
(void) sf_init(ifp);
|
|
|
|
/* Try to get more packets going. */
|
|
sf_start(ifp);
|
|
}
|
|
|
|
/*
|
|
* sf_ioctl: [ifnet interface function]
|
|
*
|
|
* Handle control requests from the operator.
|
|
*/
|
|
static int
|
|
sf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct sf_softc *sc = ifp->if_softc;
|
|
int s, error;
|
|
|
|
s = splnet();
|
|
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
sf_set_filter(sc);
|
|
error = 0;
|
|
}
|
|
|
|
/* Try to get more packets going. */
|
|
sf_start(ifp);
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* sf_intr:
|
|
*
|
|
* Interrupt service routine.
|
|
*/
|
|
int
|
|
sf_intr(void *arg)
|
|
{
|
|
struct sf_softc *sc = arg;
|
|
uint32_t isr;
|
|
int handled = 0, wantinit = 0;
|
|
|
|
for (;;) {
|
|
/* Reading clears all interrupts we're interested in. */
|
|
isr = sf_funcreg_read(sc, SF_InterruptStatus);
|
|
if ((isr & IS_PCIPadInt) == 0)
|
|
break;
|
|
|
|
handled = 1;
|
|
|
|
/* Handle receive interrupts. */
|
|
if (isr & IS_RxQ1DoneInt)
|
|
sf_rxintr(sc);
|
|
|
|
/* Handle transmit completion interrupts. */
|
|
if (isr & (IS_TxDmaDoneInt|IS_TxQueueDoneInt))
|
|
sf_txintr(sc);
|
|
|
|
/* Handle abnormal interrupts. */
|
|
if (isr & IS_AbnormalInterrupt) {
|
|
/* Statistics. */
|
|
if (isr & IS_StatisticWrapInt)
|
|
sf_stats_update(sc);
|
|
|
|
/* DMA errors. */
|
|
if (isr & IS_DmaErrInt) {
|
|
wantinit = 1;
|
|
aprint_error_dev(&sc->sc_dev, "WARNING: DMA error\n");
|
|
}
|
|
|
|
/* Transmit FIFO underruns. */
|
|
if (isr & IS_TxDataLowInt) {
|
|
if (sc->sc_txthresh < 0xff)
|
|
sc->sc_txthresh++;
|
|
printf("%s: transmit FIFO underrun, new "
|
|
"threshold: %d bytes\n",
|
|
device_xname(&sc->sc_dev),
|
|
sc->sc_txthresh * 16);
|
|
sf_funcreg_write(sc, SF_TransmitFrameCSR,
|
|
sc->sc_TransmitFrameCSR |
|
|
TFCSR_TransmitThreshold(sc->sc_txthresh));
|
|
sf_funcreg_write(sc, SF_TxDescQueueCtrl,
|
|
sc->sc_TxDescQueueCtrl |
|
|
TDQC_TxHighPriorityFifoThreshold(
|
|
sc->sc_txthresh));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (handled) {
|
|
/* Reset the interface, if necessary. */
|
|
if (wantinit)
|
|
sf_init(&sc->sc_ethercom.ec_if);
|
|
|
|
/* Try and get more packets going. */
|
|
sf_start(&sc->sc_ethercom.ec_if);
|
|
}
|
|
|
|
return (handled);
|
|
}
|
|
|
|
/*
|
|
* sf_txintr:
|
|
*
|
|
* Helper -- handle transmit completion interrupts.
|
|
*/
|
|
static void
|
|
sf_txintr(struct sf_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct sf_descsoft *ds;
|
|
uint32_t cqci, tcd;
|
|
int consumer, producer, txidx;
|
|
|
|
try_again:
|
|
cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
|
|
|
|
consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
|
|
producer = CQPI_TxCompletionProducerIndex_get(
|
|
sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
|
|
|
|
if (consumer == producer)
|
|
return;
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
while (consumer != producer) {
|
|
SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
|
|
tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
|
|
|
|
txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
|
|
#ifdef DIAGNOSTIC
|
|
if ((tcd & TCD_PR) == 0)
|
|
aprint_error_dev(&sc->sc_dev, "Tx queue mismatch, index %d\n",
|
|
txidx);
|
|
#endif
|
|
/*
|
|
* NOTE: stats are updated later. We're just
|
|
* releasing packets that have been DMA'd to
|
|
* the chip.
|
|
*/
|
|
ds = &sc->sc_txsoft[txidx];
|
|
SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
|
|
0, ds->ds_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
m_freem(ds->ds_mbuf);
|
|
ds->ds_mbuf = NULL;
|
|
|
|
consumer = SF_NEXTTCD(consumer);
|
|
sc->sc_txpending--;
|
|
}
|
|
|
|
/* XXXJRT -- should be KDASSERT() */
|
|
KASSERT(sc->sc_txpending >= 0);
|
|
|
|
/* If all packets are done, cancel the watchdog timer. */
|
|
if (sc->sc_txpending == 0)
|
|
ifp->if_timer = 0;
|
|
|
|
/* Update the consumer index. */
|
|
sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
|
|
(cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
|
|
CQCI_TxCompletionConsumerIndex(consumer));
|
|
|
|
/* Double check for new completions. */
|
|
goto try_again;
|
|
}
|
|
|
|
/*
|
|
* sf_rxintr:
|
|
*
|
|
* Helper -- handle receive interrupts.
|
|
*/
|
|
static void
|
|
sf_rxintr(struct sf_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct sf_descsoft *ds;
|
|
struct sf_rcd_full *rcd;
|
|
struct mbuf *m;
|
|
uint32_t cqci, word0;
|
|
int consumer, producer, bufproducer, rxidx, len;
|
|
|
|
try_again:
|
|
cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
|
|
|
|
consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
|
|
producer = CQPI_RxCompletionQ1ProducerIndex_get(
|
|
sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
|
|
bufproducer = RXQ1P_RxDescQ1Producer_get(
|
|
sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
|
|
|
|
if (consumer == producer)
|
|
return;
|
|
|
|
while (consumer != producer) {
|
|
rcd = &sc->sc_rxcomp[consumer];
|
|
SF_CDRXCSYNC(sc, consumer,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
SF_CDRXCSYNC(sc, consumer,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
word0 = le32toh(rcd->rcd_word0);
|
|
rxidx = RCD_W0_EndIndex(word0);
|
|
|
|
ds = &sc->sc_rxsoft[rxidx];
|
|
|
|
consumer = SF_NEXTRCD(consumer);
|
|
bufproducer = SF_NEXTRX(bufproducer);
|
|
|
|
if ((word0 & RCD_W0_OK) == 0) {
|
|
SF_INIT_RXDESC(sc, rxidx);
|
|
continue;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
|
|
/*
|
|
* No errors; receive the packet. Note that we have
|
|
* configured the Starfire to NOT transfer the CRC
|
|
* with the packet.
|
|
*/
|
|
len = RCD_W0_Length(word0);
|
|
|
|
#ifdef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* Allocate a new mbuf cluster. If that fails, we are
|
|
* out of memory, and must drop the packet and recycle
|
|
* the buffer that's already attached to this descriptor.
|
|
*/
|
|
m = ds->ds_mbuf;
|
|
if (sf_add_rxbuf(sc, rxidx) != 0) {
|
|
ifp->if_ierrors++;
|
|
SF_INIT_RXDESC(sc, rxidx);
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
continue;
|
|
}
|
|
#else
|
|
/*
|
|
* The Starfire's receive buffer must be 4-byte aligned.
|
|
* But this means that the data after the Ethernet header
|
|
* is misaligned. We must allocate a new buffer and
|
|
* copy the data, shifted forward 2 bytes.
|
|
*/
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
dropit:
|
|
ifp->if_ierrors++;
|
|
SF_INIT_RXDESC(sc, rxidx);
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
continue;
|
|
}
|
|
if (len > (MHLEN - 2)) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
goto dropit;
|
|
}
|
|
}
|
|
m->m_data += 2;
|
|
|
|
/*
|
|
* Note that we use cluster for incoming frames, so the
|
|
* buffer is virtually contiguous.
|
|
*/
|
|
memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), len);
|
|
|
|
/* Allow the receive descriptor to continue using its mbuf. */
|
|
SF_INIT_RXDESC(sc, rxidx);
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
#endif /* __NO_STRICT_ALIGNMENT */
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
/*
|
|
* Pass this up to any BPF listeners.
|
|
*/
|
|
bpf_mtap(ifp, m);
|
|
|
|
/* Pass it on. */
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
/* Update the chip's pointers. */
|
|
sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
|
|
(cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
|
|
CQCI_RxCompletionQ1ConsumerIndex(consumer));
|
|
sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
|
|
RXQ1P_RxDescQ1Producer(bufproducer));
|
|
|
|
/* Double-check for any new completions. */
|
|
goto try_again;
|
|
}
|
|
|
|
/*
|
|
* sf_tick:
|
|
*
|
|
* One second timer, used to tick the MII and update stats.
|
|
*/
|
|
static void
|
|
sf_tick(void *arg)
|
|
{
|
|
struct sf_softc *sc = arg;
|
|
int s;
|
|
|
|
s = splnet();
|
|
mii_tick(&sc->sc_mii);
|
|
sf_stats_update(sc);
|
|
splx(s);
|
|
|
|
callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* sf_stats_update:
|
|
*
|
|
* Read the statitistics counters.
|
|
*/
|
|
static void
|
|
sf_stats_update(struct sf_softc *sc)
|
|
{
|
|
struct sf_stats stats;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
uint32_t *p;
|
|
u_int i;
|
|
|
|
p = &stats.TransmitOKFrames;
|
|
for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
|
|
*p++ = sf_genreg_read(sc,
|
|
SF_STATS_BASE + (i * sizeof(uint32_t)));
|
|
sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
|
|
}
|
|
|
|
ifp->if_opackets += stats.TransmitOKFrames;
|
|
|
|
ifp->if_collisions += stats.SingleCollisionFrames +
|
|
stats.MultipleCollisionFrames;
|
|
|
|
ifp->if_oerrors += stats.TransmitAbortDueToExcessiveCollisions +
|
|
stats.TransmitAbortDueToExcessingDeferral +
|
|
stats.FramesLostDueToInternalTransmitErrors;
|
|
|
|
ifp->if_ipackets += stats.ReceiveOKFrames;
|
|
|
|
ifp->if_ierrors += stats.ReceiveCRCErrors + stats.AlignmentErrors +
|
|
stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
|
|
stats.ReceiveFramesJabbersError +
|
|
stats.FramesLostDueToInternalReceiveErrors;
|
|
}
|
|
|
|
/*
|
|
* sf_reset:
|
|
*
|
|
* Perform a soft reset on the Starfire.
|
|
*/
|
|
static void
|
|
sf_reset(struct sf_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
|
|
|
|
sf_macreset(sc);
|
|
|
|
sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
|
|
for (i = 0; i < 1000; i++) {
|
|
delay(10);
|
|
if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
|
|
PDC_SoftReset) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == 1000) {
|
|
aprint_error_dev(&sc->sc_dev, "reset failed to complete\n");
|
|
sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
|
|
}
|
|
|
|
delay(1000);
|
|
}
|
|
|
|
/*
|
|
* sf_macreset:
|
|
*
|
|
* Reset the MAC portion of the Starfire.
|
|
*/
|
|
static void
|
|
sf_macreset(struct sf_softc *sc)
|
|
{
|
|
|
|
sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
|
|
delay(1000);
|
|
sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
|
|
}
|
|
|
|
/*
|
|
* sf_init: [ifnet interface function]
|
|
*
|
|
* Initialize the interface. Must be called at splnet().
|
|
*/
|
|
static int
|
|
sf_init(struct ifnet *ifp)
|
|
{
|
|
struct sf_softc *sc = ifp->if_softc;
|
|
struct sf_descsoft *ds;
|
|
int error = 0;
|
|
u_int i;
|
|
|
|
/*
|
|
* Cancel any pending I/O.
|
|
*/
|
|
sf_stop(ifp, 0);
|
|
|
|
/*
|
|
* Reset the Starfire to a known state.
|
|
*/
|
|
sf_reset(sc);
|
|
|
|
/* Clear the stat counters. */
|
|
for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
|
|
sf_genreg_write(sc, SF_STATS_BASE + i, 0);
|
|
|
|
/*
|
|
* Initialize the transmit descriptor ring.
|
|
*/
|
|
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
|
|
sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
|
|
sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
|
|
sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
|
|
|
|
/*
|
|
* Initialize the transmit completion ring.
|
|
*/
|
|
for (i = 0; i < SF_NTCD; i++) {
|
|
sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
|
|
SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
|
|
sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
|
|
|
|
/*
|
|
* Initialize the receive descriptor ring.
|
|
*/
|
|
for (i = 0; i < SF_NRXDESC; i++) {
|
|
ds = &sc->sc_rxsoft[i];
|
|
if (ds->ds_mbuf == NULL) {
|
|
if ((error = sf_add_rxbuf(sc, i)) != 0) {
|
|
aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx "
|
|
"buffer %d, error = %d\n",
|
|
i, error);
|
|
/*
|
|
* XXX Should attempt to run with fewer receive
|
|
* XXX buffers instead of just failing.
|
|
*/
|
|
sf_rxdrain(sc);
|
|
goto out;
|
|
}
|
|
} else
|
|
SF_INIT_RXDESC(sc, i);
|
|
}
|
|
sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
|
|
sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
|
|
sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
|
|
|
|
/*
|
|
* Initialize the receive completion ring.
|
|
*/
|
|
for (i = 0; i < SF_NRCD; i++) {
|
|
sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
|
|
sc->sc_rxcomp[i].rcd_word1 = 0;
|
|
sc->sc_rxcomp[i].rcd_word2 = 0;
|
|
sc->sc_rxcomp[i].rcd_timestamp = 0;
|
|
SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
|
|
RCQ1C_RxCompletionQ1Type(3));
|
|
sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
|
|
|
|
/*
|
|
* Initialize the Tx CSR.
|
|
*/
|
|
sc->sc_TransmitFrameCSR = 0;
|
|
sf_funcreg_write(sc, SF_TransmitFrameCSR,
|
|
sc->sc_TransmitFrameCSR |
|
|
TFCSR_TransmitThreshold(sc->sc_txthresh));
|
|
|
|
/*
|
|
* Initialize the Tx descriptor control register.
|
|
*/
|
|
sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
|
|
TDQC_TxDmaBurstSize(4) | /* default */
|
|
TDQC_MinFrameSpacing(3) | /* 128 bytes */
|
|
TDQC_TxDescType(0);
|
|
sf_funcreg_write(sc, SF_TxDescQueueCtrl,
|
|
sc->sc_TxDescQueueCtrl |
|
|
TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
|
|
|
|
/*
|
|
* Initialize the Rx descriptor control registers.
|
|
*/
|
|
sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
|
|
RDQ1C_RxQ1BufferLength(MCLBYTES) |
|
|
RDQ1C_RxDescSpacing(0));
|
|
sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
|
|
|
|
/*
|
|
* Initialize the Tx descriptor producer indices.
|
|
*/
|
|
sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
|
|
TDQPI_HiPrTxProducerIndex(0) |
|
|
TDQPI_LoPrTxProducerIndex(0));
|
|
|
|
/*
|
|
* Initialize the Rx descriptor producer indices.
|
|
*/
|
|
sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
|
|
RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
|
|
sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
|
|
RXQ2P_RxDescQ2Producer(0));
|
|
|
|
/*
|
|
* Initialize the Tx and Rx completion queue consumer indices.
|
|
*/
|
|
sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
|
|
CQCI_TxCompletionConsumerIndex(0) |
|
|
CQCI_RxCompletionQ1ConsumerIndex(0));
|
|
sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
|
|
|
|
/*
|
|
* Initialize the Rx DMA control register.
|
|
*/
|
|
sf_funcreg_write(sc, SF_RxDmaCtrl,
|
|
RDC_RxHighPriorityThreshold(6) | /* default */
|
|
RDC_RxBurstSize(4)); /* default */
|
|
|
|
/*
|
|
* Set the receive filter.
|
|
*/
|
|
sc->sc_RxAddressFilteringCtl = 0;
|
|
sf_set_filter(sc);
|
|
|
|
/*
|
|
* Set MacConfig1. When we set the media, MacConfig1 will
|
|
* actually be written and the MAC part reset.
|
|
*/
|
|
sc->sc_MacConfig1 = MC1_PadEn;
|
|
|
|
/*
|
|
* Set the media.
|
|
*/
|
|
if ((error = ether_mediachange(ifp)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Initialize the interrupt register.
|
|
*/
|
|
sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
|
|
IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
|
|
IS_StatisticWrapInt;
|
|
sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
|
|
|
|
sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
|
|
PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
|
|
|
|
/*
|
|
* Start the transmit and receive processes.
|
|
*/
|
|
sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
|
|
GEC_TxDmaEn|GEC_RxDmaEn|GEC_TransmitEn|GEC_ReceiveEn);
|
|
|
|
/* Start the on second clock. */
|
|
callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
|
|
|
|
/*
|
|
* Note that the interface is now running.
|
|
*/
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
out:
|
|
if (error) {
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
printf("%s: interface not running\n", device_xname(&sc->sc_dev));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* sf_rxdrain:
|
|
*
|
|
* Drain the receive queue.
|
|
*/
|
|
static void
|
|
sf_rxdrain(struct sf_softc *sc)
|
|
{
|
|
struct sf_descsoft *ds;
|
|
int i;
|
|
|
|
for (i = 0; i < SF_NRXDESC; i++) {
|
|
ds = &sc->sc_rxsoft[i];
|
|
if (ds->ds_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
|
|
m_freem(ds->ds_mbuf);
|
|
ds->ds_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sf_stop: [ifnet interface function]
|
|
*
|
|
* Stop transmission on the interface.
|
|
*/
|
|
static void
|
|
sf_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct sf_softc *sc = ifp->if_softc;
|
|
struct sf_descsoft *ds;
|
|
int i;
|
|
|
|
/* Stop the one second clock. */
|
|
callout_stop(&sc->sc_tick_callout);
|
|
|
|
/* Down the MII. */
|
|
mii_down(&sc->sc_mii);
|
|
|
|
/* Disable interrupts. */
|
|
sf_funcreg_write(sc, SF_InterruptEn, 0);
|
|
|
|
/* Stop the transmit and receive processes. */
|
|
sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
|
|
|
|
/*
|
|
* Release any queued transmit buffers.
|
|
*/
|
|
for (i = 0; i < SF_NTXDESC; i++) {
|
|
ds = &sc->sc_txsoft[i];
|
|
if (ds->ds_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
|
|
m_freem(ds->ds_mbuf);
|
|
ds->ds_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
|
|
if (disable)
|
|
sf_rxdrain(sc);
|
|
}
|
|
|
|
/*
|
|
* sf_read_eeprom:
|
|
*
|
|
* Read from the Starfire EEPROM.
|
|
*/
|
|
static uint8_t
|
|
sf_read_eeprom(struct sf_softc *sc, int offset)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
|
|
|
|
return ((reg >> (8 * (offset & 3))) & 0xff);
|
|
}
|
|
|
|
/*
|
|
* sf_add_rxbuf:
|
|
*
|
|
* Add a receive buffer to the indicated descriptor.
|
|
*/
|
|
static int
|
|
sf_add_rxbuf(struct sf_softc *sc, int idx)
|
|
{
|
|
struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
if (ds->ds_mbuf != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
|
|
|
|
ds->ds_mbuf = m;
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
|
|
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
|
|
BUS_DMA_READ|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
|
|
idx, error);
|
|
panic("sf_add_rxbuf"); /* XXX */
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
SF_INIT_RXDESC(sc, idx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sf_set_filter_perfect(struct sf_softc *sc, int slot, const uint8_t *enaddr)
|
|
{
|
|
uint32_t reg0, reg1, reg2;
|
|
|
|
reg0 = enaddr[5] | (enaddr[4] << 8);
|
|
reg1 = enaddr[3] | (enaddr[2] << 8);
|
|
reg2 = enaddr[1] | (enaddr[0] << 8);
|
|
|
|
sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
|
|
sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
|
|
sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
|
|
}
|
|
|
|
static void
|
|
sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
|
|
{
|
|
uint32_t hash, slot, reg;
|
|
|
|
hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
|
|
slot = hash >> 4;
|
|
|
|
reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
|
|
reg |= 1 << (hash & 0xf);
|
|
sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
|
|
}
|
|
|
|
/*
|
|
* sf_set_filter:
|
|
*
|
|
* Set the Starfire receive filter.
|
|
*/
|
|
static void
|
|
sf_set_filter(struct sf_softc *sc)
|
|
{
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
int i;
|
|
|
|
/* Start by clearing the perfect and hash tables. */
|
|
for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
|
|
sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
|
|
|
|
for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
|
|
sf_genreg_write(sc, SF_HASH_BASE + i, 0);
|
|
|
|
/*
|
|
* Clear the perfect and hash mode bits.
|
|
*/
|
|
sc->sc_RxAddressFilteringCtl &=
|
|
~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST)
|
|
sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
|
|
else
|
|
sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
|
|
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
|
|
goto allmulti;
|
|
} else
|
|
sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
|
|
|
|
/*
|
|
* Set normal perfect filtering mode.
|
|
*/
|
|
sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
|
|
|
|
/*
|
|
* First, write the station address to the perfect filter
|
|
* table.
|
|
*/
|
|
sf_set_filter_perfect(sc, 0, CLLADDR(ifp->if_sadl));
|
|
|
|
/*
|
|
* Now set the hash bits for each multicast address in our
|
|
* list.
|
|
*/
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
if (enm == NULL)
|
|
goto done;
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
sf_set_filter_hash(sc, enm->enm_addrlo);
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
|
|
/*
|
|
* Set "hash only multicast dest, match regardless of VLAN ID".
|
|
*/
|
|
sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
|
|
goto done;
|
|
|
|
allmulti:
|
|
/*
|
|
* XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
|
|
*/
|
|
sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
|
|
done:
|
|
sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
|
|
sc->sc_RxAddressFilteringCtl);
|
|
}
|
|
|
|
/*
|
|
* sf_mii_read: [mii interface function]
|
|
*
|
|
* Read from the MII.
|
|
*/
|
|
static int
|
|
sf_mii_read(device_t self, int phy, int reg)
|
|
{
|
|
struct sf_softc *sc = (void *) self;
|
|
uint32_t v;
|
|
int i;
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
|
|
if (v & MiiDataValid)
|
|
break;
|
|
delay(1);
|
|
}
|
|
|
|
if ((v & MiiDataValid) == 0)
|
|
return (0);
|
|
|
|
if (MiiRegDataPort(v) == 0xffff)
|
|
return (0);
|
|
|
|
return (MiiRegDataPort(v));
|
|
}
|
|
|
|
/*
|
|
* sf_mii_write: [mii interface function]
|
|
*
|
|
* Write to the MII.
|
|
*/
|
|
static void
|
|
sf_mii_write(device_t self, int phy, int reg, int val)
|
|
{
|
|
struct sf_softc *sc = (void *) self;
|
|
int i;
|
|
|
|
sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
|
|
MiiBusy) == 0)
|
|
return;
|
|
delay(1);
|
|
}
|
|
|
|
printf("%s: MII write timed out\n", device_xname(&sc->sc_dev));
|
|
}
|
|
|
|
/*
|
|
* sf_mii_statchg: [mii interface function]
|
|
*
|
|
* Callback from the PHY when the media changes.
|
|
*/
|
|
static void
|
|
sf_mii_statchg(device_t self)
|
|
{
|
|
struct sf_softc *sc = (void *) self;
|
|
uint32_t ipg;
|
|
|
|
if (sc->sc_mii.mii_media_active & IFM_FDX) {
|
|
sc->sc_MacConfig1 |= MC1_FullDuplex;
|
|
ipg = 0x15;
|
|
} else {
|
|
sc->sc_MacConfig1 &= ~MC1_FullDuplex;
|
|
ipg = 0x11;
|
|
}
|
|
|
|
sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
|
|
sf_macreset(sc);
|
|
|
|
sf_genreg_write(sc, SF_BkToBkIPG, ipg);
|
|
}
|