NetBSD/sys/dev/pci/if_re.c

2125 lines
53 KiB
C

/* $NetBSD: if_re.c,v 1.5 2004/08/21 23:48:33 thorpej Exp $ */
/*
* Copyright (c) 1997, 1998-2003
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
/* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
/*
* RealTek 8139C+/8169/8169S/8110S PCI NIC driver
*
* Written by Bill Paul <wpaul@windriver.com>
* Senior Networking Software Engineer
* Wind River Systems
*/
/*
* This driver is designed to support RealTek's next generation of
* 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
* four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
* and the RTL8110S.
*
* The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
* with the older 8139 family, however it also supports a special
* C+ mode of operation that provides several new performance enhancing
* features. These include:
*
* o Descriptor based DMA mechanism. Each descriptor represents
* a single packet fragment. Data buffers may be aligned on
* any byte boundary.
*
* o 64-bit DMA
*
* o TCP/IP checksum offload for both RX and TX
*
* o High and normal priority transmit DMA rings
*
* o VLAN tag insertion and extraction
*
* o TCP large send (segmentation offload)
*
* Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
* programming API is fairly straightforward. The RX filtering, EEPROM
* access and PHY access is the same as it is on the older 8139 series
* chips.
*
* The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
* same programming API and feature set as the 8139C+ with the following
* differences and additions:
*
* o 1000Mbps mode
*
* o Jumbo frames
*
* o GMII and TBI ports/registers for interfacing with copper
* or fiber PHYs
*
* o RX and TX DMA rings can have up to 1024 descriptors
* (the 8139C+ allows a maximum of 64)
*
* o Slight differences in register layout from the 8139C+
*
* The TX start and timer interrupt registers are at different locations
* on the 8169 than they are on the 8139C+. Also, the status word in the
* RX descriptor has a slightly different bit layout. The 8169 does not
* have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
* copper gigE PHY.
*
* The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
* (the 'S' stands for 'single-chip'). These devices have the same
* programming API as the older 8169, but also have some vendor-specific
* registers for the on-board PHY. The 8110S is a LAN-on-motherboard
* part designed to be pin-compatible with the RealTek 8100 10/100 chip.
*
* This driver takes advantage of the RX and TX checksum offload and
* VLAN tag insertion/extraction features. It also implements TX
* interrupt moderation using the timer interrupt registers, which
* significantly reduces TX interrupt load. There is also support
* for jumbo frames, however the 8169/8169S/8110S can not transmit
* jumbo frames larger than 7.5K, so the max MTU possible with this
* driver is 7500 bytes.
*/
#include "bpfilter.h"
#include "vlan.h"
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_vlanvar.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
/*
* Default to using PIO access for this driver.
*/
#define RE_USEIOSPACE
#include <dev/ic/rtl81x9reg.h>
#include <dev/ic/rtl81x9var.h>
struct re_pci_softc {
struct rtk_softc sc_rtk;
void *sc_ih;
pci_chipset_tag_t sc_pc;
pcitag_t sc_pcitag;
};
/*
* Various supported device vendors/types and their names.
*/
static struct rtk_type re_devs[] = {
{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139, RTK_HWREV_8139CPLUS,
"RealTek 8139C+ 10/100BaseTX" },
{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169, RTK_HWREV_8169,
"RealTek 8169 Gigabit Ethernet" },
{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169, RTK_HWREV_8169S,
"RealTek 8169S Single-chip Gigabit Ethernet" },
{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169, RTK_HWREV_8110S,
"RealTek 8110S Single-chip Gigabit Ethernet" },
{ 0, 0, 0, NULL }
};
static struct rtk_hwrev re_hwrevs[] = {
{ RTK_HWREV_8139, RTK_8139, "" },
{ RTK_HWREV_8139A, RTK_8139, "A" },
{ RTK_HWREV_8139AG, RTK_8139, "A-G" },
{ RTK_HWREV_8139B, RTK_8139, "B" },
{ RTK_HWREV_8130, RTK_8139, "8130" },
{ RTK_HWREV_8139C, RTK_8139, "C" },
{ RTK_HWREV_8139D, RTK_8139, "8139D/8100B/8100C" },
{ RTK_HWREV_8139CPLUS, RTK_8139CPLUS, "C+"},
{ RTK_HWREV_8169, RTK_8169, "8169"},
{ RTK_HWREV_8169S, RTK_8169, "8169S"},
{ RTK_HWREV_8110S, RTK_8169, "8110S"},
{ RTK_HWREV_8100, RTK_8139, "8100"},
{ RTK_HWREV_8101, RTK_8139, "8101"},
{ 0, 0, NULL }
};
static int re_probe(struct device *, struct cfdata *, void *);
static void re_attach(struct device *, struct device *, void *);
#if 0
static int re_detach(struct device *, int);
#endif
static int re_encap (struct rtk_softc *, struct mbuf *, int *);
static int re_allocmem (struct rtk_softc *);
static int re_newbuf (struct rtk_softc *, int, struct mbuf *);
static int re_rx_list_init (struct rtk_softc *);
static int re_tx_list_init (struct rtk_softc *);
static void re_rxeof (struct rtk_softc *);
static void re_txeof (struct rtk_softc *);
static int re_intr (void *);
static void re_tick (void *);
static void re_start (struct ifnet *);
static int re_ioctl (struct ifnet *, u_long, caddr_t);
static int re_init (struct ifnet *);
static void re_stop (struct rtk_softc *);
static void re_watchdog (struct ifnet *);
#if 0
static int re_suspend (device_t);
static int re_resume (device_t);
static void re_shutdown (device_t);
#endif
static int re_ifmedia_upd (struct ifnet *);
static void re_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static int re_gmii_readreg (struct device *, int, int);
static void re_gmii_writereg (struct device *, int, int, int);
static int re_miibus_readreg (struct device *, int, int);
static void re_miibus_writereg (struct device *, int, int, int);
static void re_miibus_statchg (struct device *);
static void re_reset (struct rtk_softc *);
static int re_diag (struct rtk_softc *);
#ifdef RE_USEIOSPACE
#define RTK_RES SYS_RES_IOPORT
#define RTK_RID RTK_PCI_LOIO
#else
#define RTK_RES SYS_RES_MEMORY
#define RTK_RID RTK_PCI_LOMEM
#endif
CFATTACH_DECL(re, sizeof(struct re_pci_softc), re_probe, re_attach, NULL,
NULL);
#define EE_SET(x) \
CSR_WRITE_1(sc, RTK_EECMD, \
CSR_READ_1(sc, RTK_EECMD) | x)
#define EE_CLR(x) \
CSR_WRITE_1(sc, RTK_EECMD, \
CSR_READ_1(sc, RTK_EECMD) & ~x)
static int
re_gmii_readreg(struct device *self, int phy, int reg)
{
struct rtk_softc *sc = (void *)self;
u_int32_t rval;
int i;
if (phy != 7)
return(0);
/* Let the rgephy driver read the GMEDIASTAT register */
if (reg == RTK_GMEDIASTAT) {
rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
return(rval);
}
CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
DELAY(1000);
for (i = 0; i < RTK_TIMEOUT; i++) {
rval = CSR_READ_4(sc, RTK_PHYAR);
if (rval & RTK_PHYAR_BUSY)
break;
DELAY(100);
}
if (i == RTK_TIMEOUT) {
printf ("%s: PHY read failed\n", sc->sc_dev.dv_xname);
return (0);
}
return (rval & RTK_PHYAR_PHYDATA);
}
static void
re_gmii_writereg(struct device *dev, int phy, int reg, int data)
{
struct rtk_softc *sc = (void *)dev;
u_int32_t rval;
int i;
CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
(data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
DELAY(1000);
for (i = 0; i < RTK_TIMEOUT; i++) {
rval = CSR_READ_4(sc, RTK_PHYAR);
if (!(rval & RTK_PHYAR_BUSY))
break;
DELAY(100);
}
if (i == RTK_TIMEOUT) {
printf ("%s: PHY write failed\n", sc->sc_dev.dv_xname);
return;
}
return;
}
static int
re_miibus_readreg(struct device *dev, int phy, int reg)
{
struct rtk_softc *sc = (void *)dev;
u_int16_t rval = 0;
u_int16_t re8139_reg = 0;
int s;
s = splnet();
if (sc->rtk_type == RTK_8169) {
rval = re_gmii_readreg(dev, phy, reg);
splx(s);
return (rval);
}
/* Pretend the internal PHY is only at address 0 */
if (phy) {
splx(s);
return(0);
}
switch(reg) {
case MII_BMCR:
re8139_reg = RTK_BMCR;
break;
case MII_BMSR:
re8139_reg = RTK_BMSR;
break;
case MII_ANAR:
re8139_reg = RTK_ANAR;
break;
case MII_ANER:
re8139_reg = RTK_ANER;
break;
case MII_ANLPAR:
re8139_reg = RTK_LPAR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
splx(s);
return(0);
/*
* Allow the rlphy driver to read the media status
* register. If we have a link partner which does not
* support NWAY, this is the register which will tell
* us the results of parallel detection.
*/
case RTK_MEDIASTAT:
rval = CSR_READ_1(sc, RTK_MEDIASTAT);
splx(s);
return(rval);
default:
printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
splx(s);
return(0);
}
rval = CSR_READ_2(sc, re8139_reg);
splx(s);
return(rval);
}
static void
re_miibus_writereg(struct device *dev, int phy, int reg, int data)
{
struct rtk_softc *sc = (void *)dev;
u_int16_t re8139_reg = 0;
int s;
s = splnet();
if (sc->rtk_type == RTK_8169) {
re_gmii_writereg(dev, phy, reg, data);
splx(s);
return;
}
/* Pretend the internal PHY is only at address 0 */
if (phy) {
splx(s);
return;
}
switch(reg) {
case MII_BMCR:
re8139_reg = RTK_BMCR;
break;
case MII_BMSR:
re8139_reg = RTK_BMSR;
break;
case MII_ANAR:
re8139_reg = RTK_ANAR;
break;
case MII_ANER:
re8139_reg = RTK_ANER;
break;
case MII_ANLPAR:
re8139_reg = RTK_LPAR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
splx(s);
return;
break;
default:
printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
splx(s);
return;
}
CSR_WRITE_2(sc, re8139_reg, data);
splx(s);
return;
}
static void
re_miibus_statchg(struct device *dev)
{
return;
}
static void
re_reset(struct rtk_softc *sc)
{
register int i;
CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
for (i = 0; i < RTK_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
break;
}
if (i == RTK_TIMEOUT)
printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
CSR_WRITE_1(sc, 0x82, 1);
return;
}
/*
* The following routine is designed to test for a defect on some
* 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
* lines connected to the bus, however for a 32-bit only card, they
* should be pulled high. The result of this defect is that the
* NIC will not work right if you plug it into a 64-bit slot: DMA
* operations will be done with 64-bit transfers, which will fail
* because the 64-bit data lines aren't connected.
*
* There's no way to work around this (short of talking a soldering
* iron to the board), however we can detect it. The method we use
* here is to put the NIC into digital loopback mode, set the receiver
* to promiscuous mode, and then try to send a frame. We then compare
* the frame data we sent to what was received. If the data matches,
* then the NIC is working correctly, otherwise we know the user has
* a defective NIC which has been mistakenly plugged into a 64-bit PCI
* slot. In the latter case, there's no way the NIC can work correctly,
* so we print out a message on the console and abort the device attach.
*/
static int
re_diag(struct rtk_softc *sc)
{
struct ifnet *ifp = &sc->ethercom.ec_if;
struct mbuf *m0;
struct ether_header *eh;
struct rtk_desc *cur_rx;
bus_dmamap_t dmamap;
u_int16_t status;
u_int32_t rxstat;
int total_len, i, s, error = 0;
u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
/* Allocate a single mbuf */
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 == NULL)
return(ENOBUFS);
/*
* Initialize the NIC in test mode. This sets the chip up
* so that it can send and receive frames, but performs the
* following special functions:
* - Puts receiver in promiscuous mode
* - Enables digital loopback mode
* - Leaves interrupts turned off
*/
ifp->if_flags |= IFF_PROMISC;
sc->rtk_testmode = 1;
re_init(ifp);
re_stop(sc);
DELAY(100000);
re_init(ifp);
/* Put some data in the mbuf */
eh = mtod(m0, struct ether_header *);
bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
eh->ether_type = htons(ETHERTYPE_IP);
m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
/*
* Queue the packet, start transmission.
*/
CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
s = splnet();
IF_ENQUEUE(&ifp->if_snd, m0);
re_start(ifp);
splx(s);
m0 = NULL;
/* Wait for it to propagate through the chip */
DELAY(100000);
for (i = 0; i < RTK_TIMEOUT; i++) {
status = CSR_READ_2(sc, RTK_ISR);
if ((status & (RTK_ISR_TIMEOUT_EXPIRED|RTK_ISR_RX_OK)) ==
(RTK_ISR_TIMEOUT_EXPIRED|RTK_ISR_RX_OK))
break;
DELAY(10);
}
if (i == RTK_TIMEOUT) {
printf("%s: diagnostic failed, failed to receive packet "
"in loopback mode\n", sc->sc_dev.dv_xname);
error = EIO;
goto done;
}
/*
* The packet should have been dumped into the first
* entry in the RX DMA ring. Grab it from there.
*/
dmamap = sc->rtk_ldata.rtk_rx_list_map;
bus_dmamap_sync(sc->sc_dmat,
dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat,
sc->rtk_ldata.rtk_rx_dmamap[0]);
m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
eh = mtod(m0, struct ether_header *);
cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
total_len = RTK_RXBYTES(cur_rx);
rxstat = le32toh(cur_rx->rtk_cmdstat);
if (total_len != ETHER_MIN_LEN) {
printf("%s: diagnostic failed, received short packet\n",
sc->sc_dev.dv_xname);
error = EIO;
goto done;
}
/* Test that the received packet data matches what we sent. */
if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
ntohs(eh->ether_type) != ETHERTYPE_IP) {
printf("%s: WARNING, DMA FAILURE!\n", sc->sc_dev.dv_xname);
printf("%s: expected TX data: %s",
sc->sc_dev.dv_xname, ether_sprintf(dst));
printf("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
printf("%s: received RX data: %s",
sc->sc_dev.dv_xname,
ether_sprintf(eh->ether_dhost));
printf("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
ntohs(eh->ether_type));
printf("%s: You may have a defective 32-bit NIC plugged "
"into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
printf("%s: Please re-install the NIC in a 32-bit slot "
"for proper operation.\n", sc->sc_dev.dv_xname);
printf("%s: Read the re(4) man page for more details.\n",
sc->sc_dev.dv_xname);
error = EIO;
}
done:
/* Turn interface off, release resources */
sc->rtk_testmode = 0;
ifp->if_flags &= ~IFF_PROMISC;
re_stop(sc);
if (m0 != NULL)
m_freem(m0);
return (error);
}
/*
* Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
re_probe(struct device *parent, struct cfdata *match, void *aux)
{
struct rtk_type *t;
struct pci_attach_args *pa = aux;
bus_space_tag_t rtk_btag;
bus_space_handle_t rtk_bhandle;
bus_size_t bsize;
u_int32_t hwrev;
t = re_devs;
while(t->rtk_name != NULL) {
if ((PCI_VENDOR(pa->pa_id) == t->rtk_vid) &&
(PCI_PRODUCT(pa->pa_id) == t->rtk_did)) {
/*
* Temporarily map the I/O space
* so we can read the chip ID register.
*/
if (pci_mapreg_map(pa, RTK_PCI_LOIO,
PCI_MAPREG_TYPE_IO, 0, &rtk_btag,
&rtk_bhandle, NULL, &bsize)) {
printf("can't map i/o space\n");
return 0;
}
hwrev = bus_space_read_4(rtk_btag, rtk_bhandle,
RTK_TXCFG) & RTK_TXCFG_HWREV;
bus_space_unmap(rtk_btag, rtk_bhandle, bsize);
if (t->rtk_basetype == hwrev)
return 2; /* defeat rtk(4) */
}
t++;
}
return 0;
}
static int
re_allocmem(struct rtk_softc *sc)
{
int error;
int nseg, rseg;
int i;
nseg = 32;
/* Allocate DMA'able memory for the TX ring */
error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ, 1,
RTK_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
&sc->rtk_ldata.rtk_tx_list_map);
error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ,
RTK_ETHER_ALIGN, 0,
&sc->rtk_ldata.rtk_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
if (error)
return (ENOMEM);
/* Load the map for the TX ring. */
error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
1, RTK_TX_LIST_SZ,
(caddr_t *)&sc->rtk_ldata.rtk_tx_list, BUS_DMA_NOWAIT);
memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
error = bus_dmamap_load(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map,
sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
/* Create DMA maps for TX buffers */
for (i = 0; i < RTK_TX_DESC_CNT; i++) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
MCLBYTES, 0, BUS_DMA_ALLOCNOW,
&sc->rtk_ldata.rtk_tx_dmamap[i]);
if (error) {
printf("%s: can't create DMA map for TX\n",
sc->sc_dev.dv_xname);
return(ENOMEM);
}
}
/* Allocate DMA'able memory for the RX ring */
error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
&sc->rtk_ldata.rtk_rx_list_map);
error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ, RTK_RING_ALIGN,
0, &sc->rtk_ldata.rtk_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
if (error)
return (ENOMEM);
/* Load the map for the RX ring. */
error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
1, RTK_RX_LIST_SZ,
(caddr_t *)&sc->rtk_ldata.rtk_rx_list, BUS_DMA_NOWAIT);
memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_TX_LIST_SZ);
error = bus_dmamap_load(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map,
sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
/* Create DMA maps for RX buffers */
for (i = 0; i < RTK_RX_DESC_CNT; i++) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
MCLBYTES, 0, BUS_DMA_ALLOCNOW,
&sc->rtk_ldata.rtk_rx_dmamap[i]);
if (error) {
printf("%s: can't create DMA map for RX\n",
sc->sc_dev.dv_xname);
return(ENOMEM);
}
}
return(0);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static void
re_attach(struct device *parent, struct device *self, void *aux)
{
u_char eaddr[ETHER_ADDR_LEN];
u_int16_t val;
struct re_pci_softc *psc = (void *)self;
struct rtk_softc *sc = &psc->sc_rtk;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
struct ifnet *ifp;
struct rtk_hwrev *hw_rev;
struct rtk_type *t;
int hwrev;
int error = 0, i, addr_len;
pcireg_t command;
#if 0 /*ndef BURN_BRIDGES*/
/*
* Handle power management nonsense.
*/
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, RTK_PCI_LOIO, 4);
membase = pci_read_config(dev, RTK_PCI_LOMEM, 4);
irq = pci_read_config(dev, RTK_PCI_INTLINE, 4);
/* Reset the power state. */
printf("%s: chip is is in D%d power mode "
"-- setting to D0\n", unit,
pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
/* Restore PCI config data. */
pci_write_config(dev, RTK_PCI_LOIO, iobase, 4);
pci_write_config(dev, RTK_PCI_LOMEM, membase, 4);
pci_write_config(dev, RTK_PCI_INTLINE, irq, 4);
}
#endif
/*
* Map control/status registers.
*/
command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
command |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
#ifdef RE_USEIOSPACE
if (pci_mapreg_map(pa, RTK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
&sc->rtk_btag, &sc->rtk_bhandle, NULL, NULL)) {
printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
error = ENXIO;
goto fail;
}
#else
if (pci_mapreg_map(pa, RTK_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
&sc->rtk_btag, &sc->rtk_bhandle, NULL, NULL)) {
printf("%s: can't map mem space\n", sc->sc_dev.dv_xname);
error = ENXIO;
goto fail;
}
#endif
t = re_devs;
hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
while(t->rtk_name != NULL) {
if ((PCI_VENDOR(pa->pa_id) == t->rtk_vid) &&
(PCI_PRODUCT(pa->pa_id) == t->rtk_did)) {
if (t->rtk_basetype == hwrev)
break;
}
t++;
}
printf(": %s\n", t->rtk_name);
sc->sc_dmat = pa->pa_dmat;
sc->sc_flags |= RTK_ENABLED;
/* Reset the adapter. */
re_reset(sc);
hw_rev = re_hwrevs;
hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
while (hw_rev->rtk_desc != NULL) {
if (hw_rev->rtk_rev == hwrev) {
sc->rtk_type = hw_rev->rtk_type;
break;
}
hw_rev++;
}
if (sc->rtk_type == RTK_8169) {
/* Set RX length mask */
sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
/* Force station address autoload from the EEPROM */
CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
for (i = 0; i < RTK_TIMEOUT; i++) {
if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
break;
DELAY(100);
}
if (i == RTK_TIMEOUT)
printf ("%s: eeprom autoload timed out\n", sc->sc_dev.dv_xname);
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
} else {
/* Set RX length mask */
sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
addr_len = RTK_EEADDR_LEN1;
else
addr_len = RTK_EEADDR_LEN0;
/*
* Get station address from the EEPROM.
*/
for (i = 0; i < 3; i++) {
val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
eaddr[(i * 2) + 0] = val & 0xff;
eaddr[(i * 2) + 1] = val >> 8;
}
}
error = re_allocmem(sc);
if (error)
goto fail;
ifp = &sc->ethercom.ec_if;
ifp->if_softc = sc;
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = re_ioctl;
sc->ethercom.ec_capabilities |=
ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
ifp->if_start = re_start;
ifp->if_capabilities |=
IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
ifp->if_watchdog = re_watchdog;
ifp->if_init = re_init;
if (sc->rtk_type == RTK_8169)
ifp->if_baudrate = 1000000000;
else
ifp->if_baudrate = 100000000;
ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
ifp->if_capenable = ifp->if_capabilities;
IFQ_SET_READY(&ifp->if_snd);
callout_init(&sc->rtk_tick_ch);
/* Do MII setup */
sc->mii.mii_ifp = ifp;
sc->mii.mii_readreg = re_miibus_readreg;
sc->mii.mii_writereg = re_miibus_writereg;
sc->mii.mii_statchg = re_miibus_statchg;
ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
re_ifmedia_sts);
mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
/*
* Call MI attach routine.
*/
if_attach(ifp);
ether_ifattach(ifp, eaddr);
/* Perform hardware diagnostic. */
error = re_diag(sc);
if (error) {
printf("%s: attach aborted due to hardware diag failure\n",
sc->sc_dev.dv_xname);
ether_ifdetach(ifp);
if_detach(ifp);
goto fail;
}
/* Hook interrupt last to avoid having to lock softc */
/* Allocate interrupt */
if (pci_intr_map(pa, &ih)) {
printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
error = ENXIO;
ether_ifdetach(ifp);
if_detach(ifp);
goto fail;
}
intrstr = pci_intr_string(pc, ih);
psc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, re_intr, sc);
if (psc->sc_ih == NULL) {
printf("%s: couldn't establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
ether_ifdetach(ifp);
if_detach(ifp);
return;
}
aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
fail:
#if 0
if (error)
re_detach(sc);
#endif
return;
}
#if 0
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
re_detach(struct device *self, int flags)
{
struct rtk_softc *sc;
struct ifnet *ifp;
int i;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->rtk_mtx), ("rl mutex not initialized"));
RTK_LOCK(sc);
ifp = &sc->ethercom.ec_if;
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
re_stop(sc);
/*
* Force off the IFF_UP flag here, in case someone
* still had a BPF descriptor attached to this
* interface. If they do, ether_ifattach() will cause
* the BPF code to try and clear the promisc mode
* flag, which will bubble down to re_ioctl(),
* which will try to call re_init() again. This will
* turn the NIC back on and restart the MII ticker,
* which will panic the system when the kernel tries
* to invoke the re_tick() function that isn't there
* anymore.
*/
ifp->if_flags &= ~IFF_UP;
ether_ifdetach(ifp);
}
if (sc->rtk_miibus)
device_delete_child(dev, sc->rtk_miibus);
bus_generic_detach(dev);
if (sc->rtk_intrhand)
bus_teardown_intr(dev, sc->rtk_irq, sc->rtk_intrhand);
if (sc->rtk_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rtk_irq);
if (sc->rtk_res)
bus_release_resource(dev, RTK_RES, RTK_RID, sc->rtk_res);
/* Unload and free the RX DMA ring memory and map */
bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
bus_dmamem_free(sc->sc_dmat,
sc->rtk_ldata.rtk_rx_list,
sc->rtk_ldata.rtk_rx_list_map);
/* Unload and free the TX DMA ring memory and map */
bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
bus_dmamem_free(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list,
sc->rtk_ldata.rtk_tx_list_map);
/* Destroy all the RX and TX buffer maps */
for (i = 0; i < RTK_TX_DESC_CNT; i++)
bus_dmamap_destroy(sc->sc_dmat,
sc->rtk_ldata.rtk_tx_dmamap[i]);
for (i = 0; i < RTK_RX_DESC_CNT; i++)
bus_dmamap_destroy(sc->sc_dmat,
sc->rtk_ldata.rtk_rx_dmamap[i]);
/* Unload and free the stats buffer and map */
if (sc->rtk_ldata.rtk_stag) {
bus_dmamap_unload(sc->rtk_ldata.rtk_stag,
sc->rtk_ldata.rtk_rx_list_map);
bus_dmamem_free(sc->rtk_ldata.rtk_stag,
sc->rtk_ldata.rtk_stats,
sc->rtk_ldata.rtk_smap);
bus_dma_tag_destroy(sc->rtk_ldata.rtk_stag);
}
if (sc->rtk_parent_tag)
bus_dma_tag_destroy(sc->rtk_parent_tag);
RTK_UNLOCK(sc);
mtx_destroy(&sc->rtk_mtx);
return(0);
}
#endif
static int
re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
{
struct mbuf *n = NULL;
bus_dmamap_t map;
struct rtk_desc *d;
u_int32_t cmdstat;
int error;
if (m == NULL) {
MGETHDR(n, M_DONTWAIT, MT_DATA);
if (n == NULL)
return(ENOBUFS);
m = n;
MCLGET(m, M_DONTWAIT);
if (! (m->m_flags & M_EXT)) {
m_freem(m);
return(ENOBUFS);
}
} else
m->m_data = m->m_ext.ext_buf;
/*
* Initialize mbuf length fields and fixup
* alignment so that the frame payload is
* longword aligned.
*/
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, RTK_ETHER_ALIGN);
map = sc->rtk_ldata.rtk_rx_dmamap[idx];
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
if (map->dm_nsegs > 1)
goto out;
if (error)
goto out;
d = &sc->rtk_ldata.rtk_rx_list[idx];
if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
goto out;
cmdstat = map->dm_segs[0].ds_len;
d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
cmdstat |= RTK_TDESC_CMD_SOF;
if (idx == (RTK_RX_DESC_CNT - 1))
cmdstat |= RTK_TDESC_CMD_EOR;
d->rtk_cmdstat = htole32(cmdstat);
d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |= htole32(RTK_RDESC_CMD_OWN);
sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
BUS_DMASYNC_PREREAD);
return 0;
out:
if (n != NULL)
m_freem(n);
return ENOMEM;
}
static int
re_tx_list_init(struct rtk_softc *sc)
{
memset((char *)sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
memset((char *)&sc->rtk_ldata.rtk_tx_mbuf, 0,
(RTK_TX_DESC_CNT * sizeof(struct mbuf *)));
bus_dmamap_sync(sc->sc_dmat,
sc->rtk_ldata.rtk_tx_list_map, 0,
sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
sc->rtk_ldata.rtk_tx_prodidx = 0;
sc->rtk_ldata.rtk_tx_considx = 0;
sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT;
return(0);
}
static int
re_rx_list_init(struct rtk_softc *sc)
{
int i;
memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
(RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
for (i = 0; i < RTK_RX_DESC_CNT; i++) {
if (re_newbuf(sc, i, NULL) == ENOBUFS)
return(ENOBUFS);
}
/* Flush the RX descriptors */
bus_dmamap_sync(sc->sc_dmat,
sc->rtk_ldata.rtk_rx_list_map,
0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
sc->rtk_ldata.rtk_rx_prodidx = 0;
sc->rtk_head = sc->rtk_tail = NULL;
return(0);
}
/*
* RX handler for C+ and 8169. For the gigE chips, we support
* the reception of jumbo frames that have been fragmented
* across multiple 2K mbuf cluster buffers.
*/
static void
re_rxeof(struct rtk_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp;
int i, total_len;
struct rtk_desc *cur_rx;
struct m_tag *mtag;
u_int32_t rxstat, rxvlan;
ifp = &sc->ethercom.ec_if;
i = sc->rtk_ldata.rtk_rx_prodidx;
/* Invalidate the descriptor memory */
bus_dmamap_sync(sc->sc_dmat,
sc->rtk_ldata.rtk_rx_list_map,
0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
m = sc->rtk_ldata.rtk_rx_mbuf[i];
total_len = RTK_RXBYTES(cur_rx);
rxstat = le32toh(cur_rx->rtk_cmdstat);
rxvlan = le32toh(cur_rx->rtk_vlanctl);
/* Invalidate the RX mbuf and unload its map */
bus_dmamap_sync(sc->sc_dmat,
sc->rtk_ldata.rtk_rx_dmamap[i],
0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat,
sc->rtk_ldata.rtk_rx_dmamap[i]);
if (!(rxstat & RTK_RDESC_STAT_EOF)) {
m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
if (sc->rtk_head == NULL)
sc->rtk_head = sc->rtk_tail = m;
else {
m->m_flags &= ~M_PKTHDR;
sc->rtk_tail->m_next = m;
sc->rtk_tail = m;
}
re_newbuf(sc, i, NULL);
RTK_DESC_INC(i);
continue;
}
/*
* NOTE: for the 8139C+, the frame length field
* is always 12 bits in size, but for the gigE chips,
* it is 13 bits (since the max RX frame length is 16K).
* Unfortunately, all 32 bits in the status word
* were already used, so to make room for the extra
* length bit, RealTek took out the 'frame alignment
* error' bit and shifted the other status bits
* over one slot. The OWN, EOR, FS and LS bits are
* still in the same places. We have already extracted
* the frame length and checked the OWN bit, so rather
* than using an alternate bit mapping, we shift the
* status bits one space to the right so we can evaluate
* them using the 8169 status as though it was in the
* same format as that of the 8139C+.
*/
if (sc->rtk_type == RTK_8169)
rxstat >>= 1;
if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
ifp->if_ierrors++;
/*
* If this is part of a multi-fragment packet,
* discard all the pieces.
*/
if (sc->rtk_head != NULL) {
m_freem(sc->rtk_head);
sc->rtk_head = sc->rtk_tail = NULL;
}
re_newbuf(sc, i, m);
RTK_DESC_INC(i);
continue;
}
/*
* If allocating a replacement mbuf fails,
* reload the current one.
*/
if (re_newbuf(sc, i, NULL)) {
ifp->if_ierrors++;
if (sc->rtk_head != NULL) {
m_freem(sc->rtk_head);
sc->rtk_head = sc->rtk_tail = NULL;
}
re_newbuf(sc, i, m);
RTK_DESC_INC(i);
continue;
}
RTK_DESC_INC(i);
if (sc->rtk_head != NULL) {
m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
/*
* Special case: if there's 4 bytes or less
* in this buffer, the mbuf can be discarded:
* the last 4 bytes is the CRC, which we don't
* care about anyway.
*/
if (m->m_len <= ETHER_CRC_LEN) {
sc->rtk_tail->m_len -=
(ETHER_CRC_LEN - m->m_len);
m_freem(m);
} else {
m->m_len -= ETHER_CRC_LEN;
m->m_flags &= ~M_PKTHDR;
sc->rtk_tail->m_next = m;
}
m = sc->rtk_head;
sc->rtk_head = sc->rtk_tail = NULL;
m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
} else
m->m_pkthdr.len = m->m_len =
(total_len - ETHER_CRC_LEN);
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
/* Do RX checksumming if enabled */
if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
/* Check IP header checksum */
if (rxstat & RTK_RDESC_STAT_PROTOID)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
}
/* Check TCP/UDP checksum */
if (RTK_TCPPKT(rxstat) &&
(ifp->if_capenable & IFCAP_CSUM_TCPv4)) {
m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
}
if (RTK_UDPPKT(rxstat) &&
(ifp->if_capenable & IFCAP_CSUM_UDPv4)) {
m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
}
if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
M_NOWAIT);
if (mtag == NULL) {
ifp->if_ierrors++;
m_freem(m);
continue;
}
*(u_int *)(mtag + 1) =
be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA);
m_tag_prepend(m, mtag);
}
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
(*ifp->if_input)(ifp, m);
}
/* Flush the RX DMA ring */
bus_dmamap_sync(sc->sc_dmat,
sc->rtk_ldata.rtk_rx_list_map,
0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
sc->rtk_ldata.rtk_rx_prodidx = i;
return;
}
static void
re_txeof(struct rtk_softc *sc)
{
struct ifnet *ifp;
u_int32_t txstat;
int idx;
ifp = &sc->ethercom.ec_if;
idx = sc->rtk_ldata.rtk_tx_considx;
/* Invalidate the TX descriptor list */
bus_dmamap_sync(sc->sc_dmat,
sc->rtk_ldata.rtk_tx_list_map,
0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
while (idx != sc->rtk_ldata.rtk_tx_prodidx) {
txstat = le32toh(sc->rtk_ldata.rtk_tx_list[idx].rtk_cmdstat);
if (txstat & RTK_TDESC_CMD_OWN)
break;
/*
* We only stash mbufs in the last descriptor
* in a fragment chain, which also happens to
* be the only place where the TX status bits
* are valid.
*/
if (txstat & RTK_TDESC_CMD_EOF) {
m_freem(sc->rtk_ldata.rtk_tx_mbuf[idx]);
sc->rtk_ldata.rtk_tx_mbuf[idx] = NULL;
bus_dmamap_unload(sc->sc_dmat,
sc->rtk_ldata.rtk_tx_dmamap[idx]);
if (txstat & (RTK_TDESC_STAT_EXCESSCOL|
RTK_TDESC_STAT_COLCNT))
ifp->if_collisions++;
if (txstat & RTK_TDESC_STAT_TXERRSUM)
ifp->if_oerrors++;
else
ifp->if_opackets++;
}
sc->rtk_ldata.rtk_tx_free++;
RTK_DESC_INC(idx);
}
/* No changes made to the TX ring, so no flush needed */
if (idx != sc->rtk_ldata.rtk_tx_considx) {
sc->rtk_ldata.rtk_tx_considx = idx;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_timer = 0;
}
/*
* If not all descriptors have been released reaped yet,
* reload the timer so that we will eventually get another
* interrupt that will cause us to re-enter this routine.
* This is done in case the transmitter has gone idle.
*/
if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT)
CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
return;
}
static void
re_tick(void *xsc)
{
struct rtk_softc *sc = xsc;
int s = splnet();
mii_tick(&sc->mii);
splx(s);
callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
}
#ifdef DEVICE_POLLING
static void
re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct rtk_softc *sc = ifp->if_softc;
RTK_LOCK(sc);
if (!(ifp->if_capenable & IFCAP_POLLING)) {
ether_poll_deregister(ifp);
cmd = POLL_DEREGISTER;
}
if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
goto done;
}
sc->rxcycles = count;
re_rxeof(sc);
re_txeof(sc);
if (ifp->if_snd.ifq_head != NULL)
(*ifp->if_start)(ifp);
if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
u_int16_t status;
status = CSR_READ_2(sc, RTK_ISR);
if (status == 0xffff)
goto done;
if (status)
CSR_WRITE_2(sc, RTK_ISR, status);
/*
* XXX check behaviour on receiver stalls.
*/
if (status & RTK_ISR_SYSTEM_ERR) {
re_reset(sc);
re_init(sc);
}
}
done:
RTK_UNLOCK(sc);
}
#endif /* DEVICE_POLLING */
static int
re_intr(void *arg)
{
struct rtk_softc *sc = arg;
struct ifnet *ifp;
u_int16_t status;
int handled = 0;
#if 0
if (sc->suspended) {
return 0;
}
#endif
ifp = &sc->ethercom.ec_if;
if (!(ifp->if_flags & IFF_UP))
return 0;
#ifdef DEVICE_POLLING
if (ifp->if_flags & IFF_POLLING)
goto done;
if ((ifp->if_capenable & IFCAP_POLLING) &&
ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
CSR_WRITE_2(sc, RTK_IMR, 0x0000);
re_poll(ifp, 0, 1);
goto done;
}
#endif /* DEVICE_POLLING */
for (;;) {
status = CSR_READ_2(sc, RTK_ISR);
/* If the card has gone away the read returns 0xffff. */
if (status == 0xffff)
break;
if (status) {
handled = 1;
CSR_WRITE_2(sc, RTK_ISR, status);
}
if ((status & RTK_INTRS_CPLUS) == 0)
break;
if (status & RTK_ISR_RX_OK)
re_rxeof(sc);
if (status & RTK_ISR_RX_ERR)
re_rxeof(sc);
if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
(status & RTK_ISR_TX_ERR) ||
(status & RTK_ISR_TX_DESC_UNAVAIL))
re_txeof(sc);
if (status & RTK_ISR_SYSTEM_ERR) {
re_reset(sc);
re_init(ifp);
}
if (status & RTK_ISR_LINKCHG) {
callout_stop(&sc->rtk_tick_ch);
re_tick(sc);
}
}
if (ifp->if_snd.ifq_head != NULL)
(*ifp->if_start)(ifp);
#ifdef DEVICE_POLLING
done:
#endif
return handled;
}
static int
re_encap(struct rtk_softc *sc, struct mbuf *m_head, int *idx)
{
bus_dmamap_t map;
int error, i, curidx;
struct m_tag *mtag;
struct rtk_desc *d;
u_int32_t cmdstat, rtk_flags;
if (sc->rtk_ldata.rtk_tx_free <= 4)
return(EFBIG);
/*
* Set up checksum offload. Note: checksum offload bits must
* appear in all descriptors of a multi-descriptor transmit
* attempt. (This is according to testing done with an 8169
* chip. I'm not sure if this is a requirement or a bug.)
*/
rtk_flags = 0;
if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
rtk_flags |= RTK_TDESC_CMD_IPCSUM;
if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
map = sc->rtk_ldata.rtk_tx_dmamap[*idx];
error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
m_head, BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
return ENOBUFS;
}
if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4)
return ENOBUFS;
/*
* Map the segment array into descriptors. Note that we set the
* start-of-frame and end-of-frame markers for either TX or RX, but
* they really only have meaning in the TX case. (In the RX case,
* it's the chip that tells us where packets begin and end.)
* We also keep track of the end of the ring and set the
* end-of-ring bits as needed, and we set the ownership bits
* in all except the very first descriptor. (The caller will
* set this descriptor later when it start transmission or
* reception.)
*/
i = 0;
curidx = *idx;
while (1) {
d = &sc->rtk_ldata.rtk_tx_list[curidx];
if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
return ENOBUFS;
cmdstat = map->dm_segs[i].ds_len;
d->rtk_bufaddr_lo =
htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
d->rtk_bufaddr_hi =
htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
if (i == 0)
cmdstat |= RTK_TDESC_CMD_SOF;
else
cmdstat |= RTK_TDESC_CMD_OWN;
if (curidx == (RTK_RX_DESC_CNT - 1))
cmdstat |= RTK_TDESC_CMD_EOR;
d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
i++;
if (i == map->dm_nsegs)
break;
RTK_DESC_INC(curidx);
}
d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
/*
* Insure that the map for this transmission
* is placed at the array index of the last descriptor
* in this chain.
*/
sc->rtk_ldata.rtk_tx_dmamap[*idx] =
sc->rtk_ldata.rtk_tx_dmamap[curidx];
sc->rtk_ldata.rtk_tx_dmamap[curidx] = map;
sc->rtk_ldata.rtk_tx_mbuf[curidx] = m_head;
sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
/*
* Set up hardware VLAN tagging. Note: vlan tag info must
* appear in the first descriptor of a multi-descriptor
* transmission attempt.
*/
if (sc->ethercom.ec_nvlans &&
(mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL)) != NULL)
sc->rtk_ldata.rtk_tx_list[*idx].rtk_vlanctl =
htole32(htons(*(u_int *)(mtag + 1)) |
RTK_TDESC_VLANCTL_TAG);
/* Transfer ownership of packet to the chip. */
sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
htole32(RTK_TDESC_CMD_OWN);
if (*idx != curidx)
sc->rtk_ldata.rtk_tx_list[*idx].rtk_cmdstat |=
htole32(RTK_TDESC_CMD_OWN);
RTK_DESC_INC(curidx);
*idx = curidx;
return 0;
}
/*
* Main transmit routine for C+ and gigE NICs.
*/
static void
re_start(struct ifnet *ifp)
{
struct rtk_softc *sc;
struct mbuf *m_head = NULL;
int idx;
sc = ifp->if_softc;
idx = sc->rtk_ldata.rtk_tx_prodidx;
while (sc->rtk_ldata.rtk_tx_mbuf[idx] == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (re_encap(sc, m_head, &idx)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m_head);
#endif
}
/* Flush the TX descriptors */
bus_dmamap_sync(sc->sc_dmat,
sc->rtk_ldata.rtk_tx_list_map,
0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
sc->rtk_ldata.rtk_tx_prodidx = idx;
/*
* RealTek put the TX poll request register in a different
* location on the 8169 gigE chip. I don't know why.
*/
if (sc->rtk_type == RTK_8169)
CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
else
CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
/*
* Use the countdown timer for interrupt moderation.
* 'TX done' interrupts are disabled. Instead, we reset the
* countdown timer, which will begin counting until it hits
* the value in the TIMERINT register, and then trigger an
* interrupt. Each time we write to the TIMERCNT register,
* the timer count is reset to 0.
*/
CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static int
re_init(struct ifnet *ifp)
{
struct rtk_softc *sc = ifp->if_softc;
u_int32_t rxcfg = 0;
u_int32_t reg;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
re_stop(sc);
/*
* Enable C+ RX and TX mode, as well as VLAN stripping and
* RX checksum offload. We must configure the C+ register
* before all others.
*/
CSR_WRITE_2(sc, RTK_CPLUS_CMD, RTK_CPLUSCMD_RXENB|
RTK_CPLUSCMD_TXENB|RTK_CPLUSCMD_PCI_MRW|
RTK_CPLUSCMD_VLANSTRIP|
(ifp->if_capenable &
(IFCAP_CSUM_IPv4 |IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ?
RTK_CPLUSCMD_RXCSUM_ENB : 0));
/*
* Init our MAC address. Even though the chipset
* documentation doesn't mention it, we need to enter "Config
* register write enable" mode to modify the ID registers.
*/
CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
memcpy(&reg, LLADDR(ifp->if_sadl), 4);
CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
reg = 0;
memcpy(&reg, LLADDR(ifp->if_sadl) + 4, 4);
CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
/*
* For C+ mode, initialize the RX descriptors and mbufs.
*/
re_rx_list_init(sc);
re_tx_list_init(sc);
/*
* Enable transmit and receive.
*/
CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
/*
* Set the initial TX and RX configuration.
*/
if (sc->rtk_testmode) {
if (sc->rtk_type == RTK_8169)
CSR_WRITE_4(sc, RTK_TXCFG,
RTK_TXCFG_CONFIG|RTK_LOOPTEST_ON);
else
CSR_WRITE_4(sc, RTK_TXCFG,
RTK_TXCFG_CONFIG|RTK_LOOPTEST_ON_CPLUS);
} else
CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
/* Set the individual bit to receive frames for this host only. */
rxcfg = CSR_READ_4(sc, RTK_RXCFG);
rxcfg |= RTK_RXCFG_RX_INDIV;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
rxcfg |= RTK_RXCFG_RX_ALLPHYS;
CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
} else {
rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
}
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
rxcfg |= RTK_RXCFG_RX_BROAD;
CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
} else {
rxcfg &= ~RTK_RXCFG_RX_BROAD;
CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
}
/*
* Program the multicast filter, if necessary.
*/
rtk_setmulti(sc);
#ifdef DEVICE_POLLING
/*
* Disable interrupts if we are polling.
*/
if (ifp->if_flags & IFF_POLLING)
CSR_WRITE_2(sc, RTK_IMR, 0);
else /* otherwise ... */
#endif /* DEVICE_POLLING */
/*
* Enable interrupts.
*/
if (sc->rtk_testmode)
CSR_WRITE_2(sc, RTK_IMR, 0);
else
CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
/* Start RX/TX process. */
CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
#ifdef notdef
/* Enable receiver and transmitter. */
CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
#endif
/*
* Load the addresses of the RX and TX lists into the chip.
*/
CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
/*
* Initialize the timer interrupt register so that
* a timer interrupt will be generated once the timer
* reaches a certain number of ticks. The timer is
* reloaded on each transmit. This gives us TX interrupt
* moderation, which dramatically improves TX frame rate.
*/
if (sc->rtk_type == RTK_8169)
CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
else
CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
/*
* For 8169 gigE NICs, set the max allowed RX packet
* size so we can receive jumbo frames.
*/
if (sc->rtk_type == RTK_8169)
CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
if (sc->rtk_testmode)
return 0;
mii_mediachg(&sc->mii);
CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
return 0;
}
/*
* Set media options.
*/
static int
re_ifmedia_upd(struct ifnet *ifp)
{
struct rtk_softc *sc;
sc = ifp->if_softc;
return (mii_mediachg(&sc->mii));
}
/*
* Report current media status.
*/
static void
re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct rtk_softc *sc;
sc = ifp->if_softc;
mii_pollstat(&sc->mii);
ifmr->ifm_active = sc->mii.mii_media_active;
ifmr->ifm_status = sc->mii.mii_media_status;
return;
}
static int
re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct rtk_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splnet();
switch(command) {
case SIOCSIFMTU:
if (ifr->ifr_mtu > RTK_JUMBO_MTU)
error = EINVAL;
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
re_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
re_stop(sc);
}
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
if (error == ENETRESET) {
if (RTK_IS_ENABLED(sc))
rtk_setmulti(sc);
error = 0;
}
break;
}
splx(s);
return(error);
}
static void
re_watchdog(struct ifnet *ifp)
{
struct rtk_softc *sc;
int s;
sc = ifp->if_softc;
s = splnet();
printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
re_txeof(sc);
re_rxeof(sc);
re_init(ifp);
splx(s);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
re_stop(struct rtk_softc *sc)
{
register int i;
struct ifnet *ifp;
ifp = &sc->ethercom.ec_if;
ifp->if_timer = 0;
callout_stop(&sc->rtk_tick_ch);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
#ifdef DEVICE_POLLING
ether_poll_deregister(ifp);
#endif /* DEVICE_POLLING */
CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
CSR_WRITE_2(sc, RTK_IMR, 0x0000);
if (sc->rtk_head != NULL) {
m_freem(sc->rtk_head);
sc->rtk_head = sc->rtk_tail = NULL;
}
/* Free the TX list buffers. */
for (i = 0; i < RTK_TX_DESC_CNT; i++) {
if (sc->rtk_ldata.rtk_tx_mbuf[i] != NULL) {
bus_dmamap_unload(sc->sc_dmat,
sc->rtk_ldata.rtk_tx_dmamap[i]);
m_freem(sc->rtk_ldata.rtk_tx_mbuf[i]);
sc->rtk_ldata.rtk_tx_mbuf[i] = NULL;
}
}
/* Free the RX list buffers. */
for (i = 0; i < RTK_RX_DESC_CNT; i++) {
if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
bus_dmamap_unload(sc->sc_dmat,
sc->rtk_ldata.rtk_rx_dmamap[i]);
m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
}
}
return;
}
#if 0
/*
* Device suspend routine. Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
re_suspend(device_t dev)
{
register int i;
struct rtk_softc *sc;
sc = device_get_softc(dev);
re_stop(sc);
for (i = 0; i < 5; i++)
sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
sc->suspended = 1;
return (0);
}
/*
* Device resume routine. Restore some PCI settings in case the BIOS
* doesn't, re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
re_resume(device_t dev)
{
register int i;
struct rtk_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = &sc->ethercom.ec_if;
/* better way to do this? */
for (i = 0; i < 5; i++)
pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
/* reenable busmastering */
pci_enable_busmaster(dev);
pci_enable_io(dev, RTK_RES);
/* reinitialize interface if necessary */
if (ifp->if_flags & IFF_UP)
re_init(sc);
sc->suspended = 0;
return (0);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
re_shutdown(device_t dev)
{
struct rtk_softc *sc;
sc = device_get_softc(dev);
re_stop(sc);
return;
}
#endif