8cfca2b5e3
Suggested by <yamt>. - Use predicts in checks for reallocation state.
1191 lines
29 KiB
C
1191 lines
29 KiB
C
/* $NetBSD: sysv_sem.c,v 1.76 2007/11/25 19:03:24 rmind Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center, and by Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Implementation of SVID semaphores
|
|
*
|
|
* Author: Daniel Boulet
|
|
*
|
|
* This software is provided ``AS IS'' without any warranties of any kind.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.76 2007/11/25 19:03:24 rmind Exp $");
|
|
|
|
#define SYSVSEM
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sem.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/mount.h> /* XXX for <sys/syscallargs.h> */
|
|
#include <sys/syscallargs.h>
|
|
#include <sys/kauth.h>
|
|
|
|
/*
|
|
* Memory areas:
|
|
* 1st: Pool of semaphore identifiers
|
|
* 2nd: Semaphores
|
|
* 3rd: Conditional variables
|
|
* 4th: Undo structures
|
|
*/
|
|
struct semid_ds *sema;
|
|
static struct __sem *sem;
|
|
static kcondvar_t *semcv;
|
|
static int *semu;
|
|
|
|
static kmutex_t semlock;
|
|
static struct sem_undo *semu_list; /* list of active undo structures */
|
|
static u_int semtot = 0; /* total number of semaphores */
|
|
|
|
static u_int sem_waiters = 0; /* total number of semop waiters */
|
|
static bool sem_realloc_state;
|
|
static kcondvar_t sem_realloc_cv;
|
|
|
|
/* Macro to find a particular sem_undo vector */
|
|
#define SEMU(s, ix) ((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
|
|
|
|
#ifdef SEM_DEBUG
|
|
#define SEM_PRINTF(a) printf a
|
|
#else
|
|
#define SEM_PRINTF(a)
|
|
#endif
|
|
|
|
struct sem_undo *semu_alloc(struct proc *);
|
|
int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
|
|
void semundo_clear(int, int);
|
|
|
|
void
|
|
seminit(void)
|
|
{
|
|
int i, sz;
|
|
vaddr_t v;
|
|
|
|
mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
|
|
cv_init(&sem_realloc_cv, "semrealc");
|
|
sem_realloc_state = false;
|
|
|
|
/* Allocate the wired memory for our structures */
|
|
sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
|
|
ALIGN(seminfo.semmns * sizeof(struct __sem)) +
|
|
ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
|
|
ALIGN(seminfo.semmnu * seminfo.semusz);
|
|
v = uvm_km_alloc(kernel_map, round_page(sz), 0,
|
|
UVM_KMF_WIRED|UVM_KMF_ZERO);
|
|
if (v == 0)
|
|
panic("sysv_sem: cannot allocate memory");
|
|
sema = (void *)v;
|
|
sem = (void *)(ALIGN(sema) +
|
|
seminfo.semmni * sizeof(struct semid_ds));
|
|
semcv = (void *)(ALIGN(sem) +
|
|
seminfo.semmns * sizeof(struct __sem));
|
|
semu = (void *)(ALIGN(semcv) +
|
|
seminfo.semmni * sizeof(kcondvar_t));
|
|
|
|
for (i = 0; i < seminfo.semmni; i++) {
|
|
sema[i]._sem_base = 0;
|
|
sema[i].sem_perm.mode = 0;
|
|
cv_init(&semcv[i], "semwait");
|
|
}
|
|
for (i = 0; i < seminfo.semmnu; i++) {
|
|
struct sem_undo *suptr = SEMU(semu, i);
|
|
suptr->un_proc = NULL;
|
|
}
|
|
semu_list = NULL;
|
|
exithook_establish(semexit, NULL);
|
|
}
|
|
|
|
static int
|
|
semrealloc(int newsemmni, int newsemmns, int newsemmnu)
|
|
{
|
|
struct semid_ds *new_sema, *old_sema;
|
|
struct __sem *new_sem;
|
|
struct sem_undo *new_semu_list, *suptr, *nsuptr;
|
|
int *new_semu;
|
|
kcondvar_t *new_semcv;
|
|
vaddr_t v;
|
|
int i, j, lsemid, nmnus, sz;
|
|
|
|
if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
|
|
return EINVAL;
|
|
|
|
/* Allocate the wired memory for our structures */
|
|
sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
|
|
ALIGN(newsemmns * sizeof(struct __sem)) +
|
|
ALIGN(newsemmni * sizeof(kcondvar_t)) +
|
|
ALIGN(newsemmnu * seminfo.semusz);
|
|
v = uvm_km_alloc(kernel_map, round_page(sz), 0,
|
|
UVM_KMF_WIRED|UVM_KMF_ZERO);
|
|
if (v == 0)
|
|
return ENOMEM;
|
|
|
|
mutex_enter(&semlock);
|
|
if (sem_realloc_state) {
|
|
mutex_exit(&semlock);
|
|
uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
|
|
return EBUSY;
|
|
}
|
|
sem_realloc_state = true;
|
|
if (sem_waiters) {
|
|
/*
|
|
* Mark reallocation state, wake-up all waiters,
|
|
* and wait while they will all exit.
|
|
*/
|
|
for (i = 0; i < seminfo.semmni; i++)
|
|
cv_broadcast(&semcv[i]);
|
|
while (sem_waiters)
|
|
cv_wait(&sem_realloc_cv, &semlock);
|
|
}
|
|
old_sema = sema;
|
|
|
|
/* Get the number of last slot */
|
|
lsemid = 0;
|
|
for (i = 0; i < seminfo.semmni; i++)
|
|
if (sema[i].sem_perm.mode & SEM_ALLOC)
|
|
lsemid = i;
|
|
|
|
/* Get the number of currently used undo structures */
|
|
nmnus = 0;
|
|
for (i = 0; i < seminfo.semmnu; i++) {
|
|
suptr = SEMU(semu, i);
|
|
if (suptr->un_proc == NULL)
|
|
continue;
|
|
nmnus++;
|
|
}
|
|
|
|
/* We cannot reallocate less memory than we use */
|
|
if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
|
|
mutex_exit(&semlock);
|
|
uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
|
|
return EBUSY;
|
|
}
|
|
|
|
new_sema = (void *)v;
|
|
new_sem = (void *)(ALIGN(new_sema) +
|
|
newsemmni * sizeof(struct semid_ds));
|
|
new_semcv = (void *)(ALIGN(new_sem) +
|
|
newsemmns * sizeof(struct __sem));
|
|
new_semu = (void *)(ALIGN(new_semcv) +
|
|
newsemmni * sizeof(kcondvar_t));
|
|
|
|
/* Initialize all semaphore identifiers and condvars */
|
|
for (i = 0; i < newsemmni; i++) {
|
|
new_sema[i]._sem_base = 0;
|
|
new_sema[i].sem_perm.mode = 0;
|
|
cv_init(&new_semcv[i], "semwait");
|
|
}
|
|
for (i = 0; i < newsemmnu; i++) {
|
|
nsuptr = SEMU(new_semu, i);
|
|
nsuptr->un_proc = NULL;
|
|
}
|
|
|
|
/*
|
|
* Copy all identifiers, semaphores and list of the
|
|
* undo structures to the new memory allocation.
|
|
*/
|
|
j = 0;
|
|
for (i = 0; i <= lsemid; i++) {
|
|
if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
|
|
continue;
|
|
memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
|
|
new_sema[i]._sem_base = &new_sem[j];
|
|
memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
|
|
(sizeof(struct __sem) * sema[i].sem_nsems));
|
|
j += sema[i].sem_nsems;
|
|
}
|
|
KASSERT(j == semtot);
|
|
|
|
j = 0;
|
|
new_semu_list = NULL;
|
|
for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
|
|
KASSERT(j < newsemmnu);
|
|
nsuptr = SEMU(new_semu, j);
|
|
memcpy(nsuptr, suptr, SEMUSZ);
|
|
nsuptr->un_next = new_semu_list;
|
|
new_semu_list = nsuptr;
|
|
j++;
|
|
}
|
|
|
|
for (i = 0; i < seminfo.semmni; i++) {
|
|
KASSERT(cv_has_waiters(&semcv[i]) == false);
|
|
cv_destroy(&semcv[i]);
|
|
}
|
|
|
|
sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
|
|
ALIGN(seminfo.semmns * sizeof(struct __sem)) +
|
|
ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
|
|
ALIGN(seminfo.semmnu * seminfo.semusz);
|
|
|
|
/* Set the pointers and update the new values */
|
|
sema = new_sema;
|
|
sem = new_sem;
|
|
semcv = new_semcv;
|
|
semu = new_semu;
|
|
semu_list = new_semu_list;
|
|
|
|
seminfo.semmni = newsemmni;
|
|
seminfo.semmns = newsemmns;
|
|
seminfo.semmnu = newsemmnu;
|
|
|
|
/* Reallocation completed - notify all waiters, if any */
|
|
sem_realloc_state = false;
|
|
cv_broadcast(&sem_realloc_cv);
|
|
mutex_exit(&semlock);
|
|
|
|
uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Placebo.
|
|
*/
|
|
|
|
int
|
|
sys_semconfig(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
|
|
*retval = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate a new sem_undo structure for a process
|
|
* (returns ptr to structure or NULL if no more room)
|
|
*/
|
|
|
|
struct sem_undo *
|
|
semu_alloc(struct proc *p)
|
|
{
|
|
int i;
|
|
struct sem_undo *suptr;
|
|
struct sem_undo **supptr;
|
|
int attempt;
|
|
|
|
KASSERT(mutex_owned(&semlock));
|
|
|
|
/*
|
|
* Try twice to allocate something.
|
|
* (we'll purge any empty structures after the first pass so
|
|
* two passes are always enough)
|
|
*/
|
|
|
|
for (attempt = 0; attempt < 2; attempt++) {
|
|
/*
|
|
* Look for a free structure.
|
|
* Fill it in and return it if we find one.
|
|
*/
|
|
|
|
for (i = 0; i < seminfo.semmnu; i++) {
|
|
suptr = SEMU(semu, i);
|
|
if (suptr->un_proc == NULL) {
|
|
suptr->un_next = semu_list;
|
|
semu_list = suptr;
|
|
suptr->un_cnt = 0;
|
|
suptr->un_proc = p;
|
|
return (suptr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We didn't find a free one, if this is the first attempt
|
|
* then try to free some structures.
|
|
*/
|
|
|
|
if (attempt == 0) {
|
|
/* All the structures are in use - try to free some */
|
|
int did_something = 0;
|
|
|
|
supptr = &semu_list;
|
|
while ((suptr = *supptr) != NULL) {
|
|
if (suptr->un_cnt == 0) {
|
|
suptr->un_proc = NULL;
|
|
*supptr = suptr->un_next;
|
|
did_something = 1;
|
|
} else
|
|
supptr = &suptr->un_next;
|
|
}
|
|
|
|
/* If we didn't free anything then just give-up */
|
|
if (!did_something)
|
|
return (NULL);
|
|
} else {
|
|
/*
|
|
* The second pass failed even though we freed
|
|
* something after the first pass!
|
|
* This is IMPOSSIBLE!
|
|
*/
|
|
panic("semu_alloc - second attempt failed");
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Adjust a particular entry for a particular proc
|
|
*/
|
|
|
|
int
|
|
semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
|
|
int adjval)
|
|
{
|
|
struct sem_undo *suptr;
|
|
struct undo *sunptr;
|
|
int i;
|
|
|
|
KASSERT(mutex_owned(&semlock));
|
|
|
|
/*
|
|
* Look for and remember the sem_undo if the caller doesn't
|
|
* provide it
|
|
*/
|
|
|
|
suptr = *supptr;
|
|
if (suptr == NULL) {
|
|
for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
|
|
if (suptr->un_proc == p)
|
|
break;
|
|
|
|
if (suptr == NULL) {
|
|
suptr = semu_alloc(p);
|
|
if (suptr == NULL)
|
|
return (ENOSPC);
|
|
}
|
|
*supptr = suptr;
|
|
}
|
|
|
|
/*
|
|
* Look for the requested entry and adjust it (delete if
|
|
* adjval becomes 0).
|
|
*/
|
|
sunptr = &suptr->un_ent[0];
|
|
for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
|
|
if (sunptr->un_id != semid || sunptr->un_num != semnum)
|
|
continue;
|
|
sunptr->un_adjval += adjval;
|
|
if (sunptr->un_adjval == 0) {
|
|
suptr->un_cnt--;
|
|
if (i < suptr->un_cnt)
|
|
suptr->un_ent[i] =
|
|
suptr->un_ent[suptr->un_cnt];
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* Didn't find the right entry - create it */
|
|
if (suptr->un_cnt == SEMUME)
|
|
return (EINVAL);
|
|
|
|
sunptr = &suptr->un_ent[suptr->un_cnt];
|
|
suptr->un_cnt++;
|
|
sunptr->un_adjval = adjval;
|
|
sunptr->un_id = semid;
|
|
sunptr->un_num = semnum;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
semundo_clear(int semid, int semnum)
|
|
{
|
|
struct sem_undo *suptr;
|
|
struct undo *sunptr, *sunend;
|
|
|
|
KASSERT(mutex_owned(&semlock));
|
|
|
|
for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
|
|
for (sunptr = &suptr->un_ent[0],
|
|
sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
|
|
if (sunptr->un_id == semid) {
|
|
if (semnum == -1 || sunptr->un_num == semnum) {
|
|
suptr->un_cnt--;
|
|
sunend--;
|
|
if (sunptr != sunend)
|
|
*sunptr = *sunend;
|
|
if (semnum != -1)
|
|
break;
|
|
else
|
|
continue;
|
|
}
|
|
}
|
|
sunptr++;
|
|
}
|
|
}
|
|
|
|
int
|
|
sys_____semctl13(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys_____semctl13_args /* {
|
|
syscallarg(int) semid;
|
|
syscallarg(int) semnum;
|
|
syscallarg(int) cmd;
|
|
syscallarg(union __semun *) arg;
|
|
} */ *uap = v;
|
|
struct semid_ds sembuf;
|
|
int cmd, error;
|
|
void *pass_arg;
|
|
union __semun karg;
|
|
|
|
cmd = SCARG(uap, cmd);
|
|
|
|
pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
|
|
|
|
if (pass_arg) {
|
|
error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
|
|
if (error)
|
|
return error;
|
|
if (cmd == IPC_SET) {
|
|
error = copyin(karg.buf, &sembuf, sizeof(sembuf));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
|
|
pass_arg, retval);
|
|
|
|
if (error == 0 && cmd == IPC_STAT)
|
|
error = copyout(&sembuf, karg.buf, sizeof(sembuf));
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
|
|
register_t *retval)
|
|
{
|
|
kauth_cred_t cred = l->l_cred;
|
|
union __semun *arg = v;
|
|
struct semid_ds *sembuf = v, *semaptr;
|
|
int i, error, ix;
|
|
|
|
SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
|
|
semid, semnum, cmd, v));
|
|
|
|
mutex_enter(&semlock);
|
|
|
|
ix = IPCID_TO_IX(semid);
|
|
if (ix < 0 || ix >= seminfo.semmni) {
|
|
mutex_exit(&semlock);
|
|
return (EINVAL);
|
|
}
|
|
|
|
semaptr = &sema[ix];
|
|
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
|
|
semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
|
|
mutex_exit(&semlock);
|
|
return (EINVAL);
|
|
}
|
|
|
|
switch (cmd) {
|
|
case IPC_RMID:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
|
|
break;
|
|
semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
|
|
semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
|
|
semtot -= semaptr->sem_nsems;
|
|
for (i = semaptr->_sem_base - sem; i < semtot; i++)
|
|
sem[i] = sem[i + semaptr->sem_nsems];
|
|
for (i = 0; i < seminfo.semmni; i++) {
|
|
if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
|
|
sema[i]._sem_base > semaptr->_sem_base)
|
|
sema[i]._sem_base -= semaptr->sem_nsems;
|
|
}
|
|
semaptr->sem_perm.mode = 0;
|
|
semundo_clear(ix, -1);
|
|
cv_broadcast(&semcv[ix]);
|
|
break;
|
|
|
|
case IPC_SET:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
|
|
break;
|
|
KASSERT(sembuf != NULL);
|
|
semaptr->sem_perm.uid = sembuf->sem_perm.uid;
|
|
semaptr->sem_perm.gid = sembuf->sem_perm.gid;
|
|
semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
|
|
(sembuf->sem_perm.mode & 0777);
|
|
semaptr->sem_ctime = time_second;
|
|
break;
|
|
|
|
case IPC_STAT:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
|
|
break;
|
|
KASSERT(sembuf != NULL);
|
|
memcpy(sembuf, semaptr, sizeof(struct semid_ds));
|
|
break;
|
|
|
|
case GETNCNT:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
|
|
break;
|
|
if (semnum < 0 || semnum >= semaptr->sem_nsems) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
*retval = semaptr->_sem_base[semnum].semncnt;
|
|
break;
|
|
|
|
case GETPID:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
|
|
break;
|
|
if (semnum < 0 || semnum >= semaptr->sem_nsems) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
*retval = semaptr->_sem_base[semnum].sempid;
|
|
break;
|
|
|
|
case GETVAL:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
|
|
break;
|
|
if (semnum < 0 || semnum >= semaptr->sem_nsems) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
*retval = semaptr->_sem_base[semnum].semval;
|
|
break;
|
|
|
|
case GETALL:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
|
|
break;
|
|
KASSERT(arg != NULL);
|
|
for (i = 0; i < semaptr->sem_nsems; i++) {
|
|
error = copyout(&semaptr->_sem_base[i].semval,
|
|
&arg->array[i], sizeof(arg->array[i]));
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case GETZCNT:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
|
|
break;
|
|
if (semnum < 0 || semnum >= semaptr->sem_nsems) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
*retval = semaptr->_sem_base[semnum].semzcnt;
|
|
break;
|
|
|
|
case SETVAL:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
|
|
break;
|
|
if (semnum < 0 || semnum >= semaptr->sem_nsems) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
KASSERT(arg != NULL);
|
|
semaptr->_sem_base[semnum].semval = arg->val;
|
|
semundo_clear(ix, semnum);
|
|
cv_broadcast(&semcv[ix]);
|
|
break;
|
|
|
|
case SETALL:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
|
|
break;
|
|
KASSERT(arg != NULL);
|
|
for (i = 0; i < semaptr->sem_nsems; i++) {
|
|
error = copyin(&arg->array[i],
|
|
&semaptr->_sem_base[i].semval,
|
|
sizeof(arg->array[i]));
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
semundo_clear(ix, -1);
|
|
cv_broadcast(&semcv[ix]);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
mutex_exit(&semlock);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sys_semget(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys_semget_args /* {
|
|
syscallarg(key_t) key;
|
|
syscallarg(int) nsems;
|
|
syscallarg(int) semflg;
|
|
} */ *uap = v;
|
|
int semid, error = 0;
|
|
int key = SCARG(uap, key);
|
|
int nsems = SCARG(uap, nsems);
|
|
int semflg = SCARG(uap, semflg);
|
|
kauth_cred_t cred = l->l_cred;
|
|
|
|
SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
|
|
|
|
mutex_enter(&semlock);
|
|
|
|
if (key != IPC_PRIVATE) {
|
|
for (semid = 0; semid < seminfo.semmni; semid++) {
|
|
if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
|
|
sema[semid].sem_perm._key == key)
|
|
break;
|
|
}
|
|
if (semid < seminfo.semmni) {
|
|
SEM_PRINTF(("found public key\n"));
|
|
if ((error = ipcperm(cred, &sema[semid].sem_perm,
|
|
semflg & 0700)))
|
|
goto out;
|
|
if (nsems > 0 && sema[semid].sem_nsems < nsems) {
|
|
SEM_PRINTF(("too small\n"));
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
|
|
SEM_PRINTF(("not exclusive\n"));
|
|
error = EEXIST;
|
|
goto out;
|
|
}
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
SEM_PRINTF(("need to allocate the semid_ds\n"));
|
|
if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
|
|
if (nsems <= 0 || nsems > seminfo.semmsl) {
|
|
SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
|
|
seminfo.semmsl));
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
if (nsems > seminfo.semmns - semtot) {
|
|
SEM_PRINTF(("not enough semaphores left "
|
|
"(need %d, got %d)\n",
|
|
nsems, seminfo.semmns - semtot));
|
|
error = ENOSPC;
|
|
goto out;
|
|
}
|
|
for (semid = 0; semid < seminfo.semmni; semid++) {
|
|
if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
|
|
break;
|
|
}
|
|
if (semid == seminfo.semmni) {
|
|
SEM_PRINTF(("no more semid_ds's available\n"));
|
|
error = ENOSPC;
|
|
goto out;
|
|
}
|
|
SEM_PRINTF(("semid %d is available\n", semid));
|
|
sema[semid].sem_perm._key = key;
|
|
sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
|
|
sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
|
|
sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
|
|
sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
|
|
sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
|
|
sema[semid].sem_perm._seq =
|
|
(sema[semid].sem_perm._seq + 1) & 0x7fff;
|
|
sema[semid].sem_nsems = nsems;
|
|
sema[semid].sem_otime = 0;
|
|
sema[semid].sem_ctime = time_second;
|
|
sema[semid]._sem_base = &sem[semtot];
|
|
semtot += nsems;
|
|
memset(sema[semid]._sem_base, 0,
|
|
sizeof(sema[semid]._sem_base[0]) * nsems);
|
|
SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
|
|
&sem[semtot]));
|
|
} else {
|
|
SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
|
|
error = ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
found:
|
|
*retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
|
|
out:
|
|
mutex_exit(&semlock);
|
|
return (error);
|
|
}
|
|
|
|
#define SMALL_SOPS 8
|
|
|
|
int
|
|
sys_semop(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys_semop_args /* {
|
|
syscallarg(int) semid;
|
|
syscallarg(struct sembuf *) sops;
|
|
syscallarg(size_t) nsops;
|
|
} */ *uap = v;
|
|
struct proc *p = l->l_proc;
|
|
int semid = SCARG(uap, semid), seq;
|
|
size_t nsops = SCARG(uap, nsops);
|
|
struct sembuf small_sops[SMALL_SOPS];
|
|
struct sembuf *sops;
|
|
struct semid_ds *semaptr;
|
|
struct sembuf *sopptr = NULL;
|
|
struct __sem *semptr = NULL;
|
|
struct sem_undo *suptr = NULL;
|
|
kauth_cred_t cred = l->l_cred;
|
|
int i, error;
|
|
int do_wakeup, do_undos;
|
|
|
|
SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
|
|
restart:
|
|
if (nsops <= SMALL_SOPS) {
|
|
sops = small_sops;
|
|
} else if (nsops <= seminfo.semopm) {
|
|
KERNEL_LOCK(1, l); /* XXXSMP */
|
|
sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
|
|
KERNEL_UNLOCK_ONE(l); /* XXXSMP */
|
|
} else {
|
|
SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
|
|
seminfo.semopm, nsops));
|
|
return (E2BIG);
|
|
}
|
|
|
|
mutex_enter(&semlock);
|
|
/* In case of reallocation, we will wait for completion */
|
|
while (__predict_false(sem_realloc_state))
|
|
cv_wait(&sem_realloc_cv, &semlock);
|
|
|
|
semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
|
|
if (semid < 0 || semid >= seminfo.semmni) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
semaptr = &sema[semid];
|
|
seq = IPCID_TO_SEQ(SCARG(uap, semid));
|
|
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
|
|
semaptr->sem_perm._seq != seq) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
|
|
SEM_PRINTF(("error = %d from ipaccess\n", error));
|
|
goto out;
|
|
}
|
|
|
|
if ((error = copyin(SCARG(uap, sops),
|
|
sops, nsops * sizeof(sops[0]))) != 0) {
|
|
SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
|
|
SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < nsops; i++)
|
|
if (sops[i].sem_num >= semaptr->sem_nsems) {
|
|
error = EFBIG;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Loop trying to satisfy the vector of requests.
|
|
* If we reach a point where we must wait, any requests already
|
|
* performed are rolled back and we go to sleep until some other
|
|
* process wakes us up. At this point, we start all over again.
|
|
*
|
|
* This ensures that from the perspective of other tasks, a set
|
|
* of requests is atomic (never partially satisfied).
|
|
*/
|
|
do_undos = 0;
|
|
|
|
for (;;) {
|
|
do_wakeup = 0;
|
|
|
|
for (i = 0; i < nsops; i++) {
|
|
sopptr = &sops[i];
|
|
semptr = &semaptr->_sem_base[sopptr->sem_num];
|
|
|
|
SEM_PRINTF(("semop: semaptr=%p, sem_base=%p, "
|
|
"semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
|
|
semaptr, semaptr->_sem_base, semptr,
|
|
sopptr->sem_num, semptr->semval, sopptr->sem_op,
|
|
(sopptr->sem_flg & IPC_NOWAIT) ?
|
|
"nowait" : "wait"));
|
|
|
|
if (sopptr->sem_op < 0) {
|
|
if ((int)(semptr->semval +
|
|
sopptr->sem_op) < 0) {
|
|
SEM_PRINTF(("semop: "
|
|
"can't do it now\n"));
|
|
break;
|
|
} else {
|
|
semptr->semval += sopptr->sem_op;
|
|
if (semptr->semval == 0 &&
|
|
semptr->semzcnt > 0)
|
|
do_wakeup = 1;
|
|
}
|
|
if (sopptr->sem_flg & SEM_UNDO)
|
|
do_undos = 1;
|
|
} else if (sopptr->sem_op == 0) {
|
|
if (semptr->semval > 0) {
|
|
SEM_PRINTF(("semop: not zero now\n"));
|
|
break;
|
|
}
|
|
} else {
|
|
if (semptr->semncnt > 0)
|
|
do_wakeup = 1;
|
|
semptr->semval += sopptr->sem_op;
|
|
if (sopptr->sem_flg & SEM_UNDO)
|
|
do_undos = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Did we get through the entire vector?
|
|
*/
|
|
if (i >= nsops)
|
|
goto done;
|
|
|
|
/*
|
|
* No ... rollback anything that we've already done
|
|
*/
|
|
SEM_PRINTF(("semop: rollback 0 through %d\n", i - 1));
|
|
while (i-- > 0)
|
|
semaptr->_sem_base[sops[i].sem_num].semval -=
|
|
sops[i].sem_op;
|
|
|
|
/*
|
|
* If the request that we couldn't satisfy has the
|
|
* NOWAIT flag set then return with EAGAIN.
|
|
*/
|
|
if (sopptr->sem_flg & IPC_NOWAIT) {
|
|
error = EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
if (sopptr->sem_op == 0)
|
|
semptr->semzcnt++;
|
|
else
|
|
semptr->semncnt++;
|
|
|
|
sem_waiters++;
|
|
SEM_PRINTF(("semop: good night!\n"));
|
|
error = cv_wait_sig(&semcv[semid], &semlock);
|
|
SEM_PRINTF(("semop: good morning (error=%d)!\n", error));
|
|
sem_waiters--;
|
|
|
|
/* Notify reallocator, if it is waiting */
|
|
cv_broadcast(&sem_realloc_cv);
|
|
|
|
/*
|
|
* Make sure that the semaphore still exists
|
|
*/
|
|
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
|
|
semaptr->sem_perm._seq != seq) {
|
|
error = EIDRM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The semaphore is still alive. Readjust the count of
|
|
* waiting processes.
|
|
*/
|
|
semptr = &semaptr->_sem_base[sopptr->sem_num];
|
|
if (sopptr->sem_op == 0)
|
|
semptr->semzcnt--;
|
|
else
|
|
semptr->semncnt--;
|
|
|
|
/* In case of such state, restart the call */
|
|
if (sem_realloc_state) {
|
|
mutex_exit(&semlock);
|
|
goto restart;
|
|
}
|
|
|
|
/* Is it really morning, or was our sleep interrupted? */
|
|
if (error != 0) {
|
|
error = EINTR;
|
|
goto out;
|
|
}
|
|
SEM_PRINTF(("semop: good morning!\n"));
|
|
}
|
|
|
|
done:
|
|
/*
|
|
* Process any SEM_UNDO requests.
|
|
*/
|
|
if (do_undos) {
|
|
for (i = 0; i < nsops; i++) {
|
|
/*
|
|
* We only need to deal with SEM_UNDO's for non-zero
|
|
* op's.
|
|
*/
|
|
int adjval;
|
|
|
|
if ((sops[i].sem_flg & SEM_UNDO) == 0)
|
|
continue;
|
|
adjval = sops[i].sem_op;
|
|
if (adjval == 0)
|
|
continue;
|
|
error = semundo_adjust(p, &suptr, semid,
|
|
sops[i].sem_num, -adjval);
|
|
if (error == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Oh-Oh! We ran out of either sem_undo's or undo's.
|
|
* Rollback the adjustments to this point and then
|
|
* rollback the semaphore ups and down so we can return
|
|
* with an error with all structures restored. We
|
|
* rollback the undo's in the exact reverse order that
|
|
* we applied them. This guarantees that we won't run
|
|
* out of space as we roll things back out.
|
|
*/
|
|
while (i-- > 0) {
|
|
if ((sops[i].sem_flg & SEM_UNDO) == 0)
|
|
continue;
|
|
adjval = sops[i].sem_op;
|
|
if (adjval == 0)
|
|
continue;
|
|
if (semundo_adjust(p, &suptr, semid,
|
|
sops[i].sem_num, adjval) != 0)
|
|
panic("semop - can't undo undos");
|
|
}
|
|
|
|
for (i = 0; i < nsops; i++)
|
|
semaptr->_sem_base[sops[i].sem_num].semval -=
|
|
sops[i].sem_op;
|
|
|
|
SEM_PRINTF(("error = %d from semundo_adjust\n", error));
|
|
goto out;
|
|
} /* loop through the sops */
|
|
} /* if (do_undos) */
|
|
|
|
/* We're definitely done - set the sempid's */
|
|
for (i = 0; i < nsops; i++) {
|
|
sopptr = &sops[i];
|
|
semptr = &semaptr->_sem_base[sopptr->sem_num];
|
|
semptr->sempid = p->p_pid;
|
|
}
|
|
|
|
/* Update sem_otime */
|
|
semaptr->sem_otime = time_second;
|
|
|
|
/* Do a wakeup if any semaphore was up'd. */
|
|
if (do_wakeup) {
|
|
SEM_PRINTF(("semop: doing wakeup\n"));
|
|
cv_broadcast(&semcv[semid]);
|
|
SEM_PRINTF(("semop: back from wakeup\n"));
|
|
}
|
|
SEM_PRINTF(("semop: done\n"));
|
|
*retval = 0;
|
|
|
|
out:
|
|
mutex_exit(&semlock);
|
|
if (sops != small_sops) {
|
|
KERNEL_LOCK(1, l); /* XXXSMP */
|
|
kmem_free(sops, nsops * sizeof(*sops));
|
|
KERNEL_UNLOCK_ONE(l); /* XXXSMP */
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Go through the undo structures for this process and apply the
|
|
* adjustments to semaphores.
|
|
*/
|
|
/*ARGSUSED*/
|
|
void
|
|
semexit(struct proc *p, void *v)
|
|
{
|
|
struct sem_undo *suptr;
|
|
struct sem_undo **supptr;
|
|
|
|
mutex_enter(&semlock);
|
|
|
|
/*
|
|
* Go through the chain of undo vectors looking for one
|
|
* associated with this process.
|
|
*/
|
|
|
|
for (supptr = &semu_list; (suptr = *supptr) != NULL;
|
|
supptr = &suptr->un_next) {
|
|
if (suptr->un_proc == p)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If there is no undo vector, skip to the end.
|
|
*/
|
|
|
|
if (suptr == NULL) {
|
|
mutex_exit(&semlock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We now have an undo vector for this process.
|
|
*/
|
|
|
|
SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
|
|
suptr->un_cnt));
|
|
|
|
/*
|
|
* If there are any active undo elements then process them.
|
|
*/
|
|
if (suptr->un_cnt > 0) {
|
|
int ix;
|
|
|
|
for (ix = 0; ix < suptr->un_cnt; ix++) {
|
|
int semid = suptr->un_ent[ix].un_id;
|
|
int semnum = suptr->un_ent[ix].un_num;
|
|
int adjval = suptr->un_ent[ix].un_adjval;
|
|
struct semid_ds *semaptr;
|
|
|
|
semaptr = &sema[semid];
|
|
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
|
|
panic("semexit - semid not allocated");
|
|
if (semnum >= semaptr->sem_nsems)
|
|
panic("semexit - semnum out of range");
|
|
|
|
SEM_PRINTF(("semexit: %p id=%d num=%d(adj=%d) ; "
|
|
"sem=%d\n",
|
|
suptr->un_proc, suptr->un_ent[ix].un_id,
|
|
suptr->un_ent[ix].un_num,
|
|
suptr->un_ent[ix].un_adjval,
|
|
semaptr->_sem_base[semnum].semval));
|
|
|
|
if (adjval < 0 &&
|
|
semaptr->_sem_base[semnum].semval < -adjval)
|
|
semaptr->_sem_base[semnum].semval = 0;
|
|
else
|
|
semaptr->_sem_base[semnum].semval += adjval;
|
|
|
|
cv_broadcast(&semcv[semid]);
|
|
SEM_PRINTF(("semexit: back from wakeup\n"));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deallocate the undo vector.
|
|
*/
|
|
SEM_PRINTF(("removing vector\n"));
|
|
suptr->un_proc = NULL;
|
|
*supptr = suptr->un_next;
|
|
mutex_exit(&semlock);
|
|
}
|
|
|
|
/*
|
|
* Sysctl initialization and nodes.
|
|
*/
|
|
|
|
static int
|
|
sysctl_ipc_semmni(SYSCTLFN_ARGS)
|
|
{
|
|
int newsize, error;
|
|
struct sysctlnode node;
|
|
node = *rnode;
|
|
node.sysctl_data = &newsize;
|
|
|
|
newsize = seminfo.semmni;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
|
|
}
|
|
|
|
static int
|
|
sysctl_ipc_semmns(SYSCTLFN_ARGS)
|
|
{
|
|
int newsize, error;
|
|
struct sysctlnode node;
|
|
node = *rnode;
|
|
node.sysctl_data = &newsize;
|
|
|
|
newsize = seminfo.semmns;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
|
|
}
|
|
|
|
static int
|
|
sysctl_ipc_semmnu(SYSCTLFN_ARGS)
|
|
{
|
|
int newsize, error;
|
|
struct sysctlnode node;
|
|
node = *rnode;
|
|
node.sysctl_data = &newsize;
|
|
|
|
newsize = seminfo.semmnu;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
|
|
}
|
|
|
|
SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
|
|
{
|
|
const struct sysctlnode *node = NULL;
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "kern", NULL,
|
|
NULL, 0, NULL, 0,
|
|
CTL_KERN, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, &node,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "ipc",
|
|
SYSCTL_DESCR("SysV IPC options"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_KERN, KERN_SYSVIPC, CTL_EOL);
|
|
|
|
if (node == NULL)
|
|
return;
|
|
|
|
sysctl_createv(clog, 0, &node, NULL,
|
|
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "semmni",
|
|
SYSCTL_DESCR("Max number of number of semaphore identifiers"),
|
|
sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, &node, NULL,
|
|
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "semmns",
|
|
SYSCTL_DESCR("Max number of number of semaphores in system"),
|
|
sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, &node, NULL,
|
|
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "semmnu",
|
|
SYSCTL_DESCR("Max number of undo structures in system"),
|
|
sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
}
|