NetBSD/sys/arch/sparc64/include/cpu.h

388 lines
12 KiB
C

/* $NetBSD: cpu.h,v 1.52 2006/02/11 17:57:31 cdi Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)cpu.h 8.4 (Berkeley) 1/5/94
*/
#ifndef _CPU_H_
#define _CPU_H_
/*
* CTL_MACHDEP definitions.
*/
#define CPU_BOOTED_KERNEL 1 /* string: booted kernel name */
#define CPU_BOOTED_DEVICE 2 /* string: device booted from */
#define CPU_BOOT_ARGS 3 /* string: args booted with */
#define CPU_ARCH 4 /* integer: cpu architecture version */
#define CPU_MAXID 5 /* number of valid machdep ids */
#define CTL_MACHDEP_NAMES { \
{ 0, 0 }, \
{ "booted_kernel", CTLTYPE_STRING }, \
{ "booted_device", CTLTYPE_STRING }, \
{ "boot_args", CTLTYPE_STRING }, \
{ "cpu_arch", CTLTYPE_INT }, \
}
#ifdef _KERNEL
/*
* Exported definitions unique to SPARC cpu support.
*/
#if defined(_KERNEL_OPT)
#include "opt_multiprocessor.h"
#include "opt_lockdebug.h"
#endif
#include <machine/psl.h>
#include <machine/reg.h>
#include <machine/intr.h>
#include <machine/cpuset.h>
#include <sparc64/sparc64/intreg.h>
#include <sys/cpu_data.h>
#include <sys/cc_microtime.h>
/*
* The cpu_info structure is part of a 64KB structure mapped both the kernel
* pmap and a single locked TTE a CPUINFO_VA for that particular processor.
* Each processor's cpu_info is accessible at CPUINFO_VA only for that
* processor. Other processors can access that through an additional mapping
* in the kernel pmap.
*
* The 64KB page contains:
*
* cpu_info
* interrupt stack (all remaining space)
* idle PCB
* idle stack (STACKSPACE - sizeof(PCB))
* 32KB TSB
*/
struct cpu_info {
/*
* SPARC cpu_info structures live at two VAs: one global
* VA (so each CPU can access any other CPU's cpu_info)
* and an alias VA CPUINFO_VA which is the same on each
* CPU and maps to that CPU's cpu_info. Since the alias
* CPUINFO_VA is how we locate our cpu_info, we have to
* self-reference the global VA so that we can return it
* in the curcpu() macro.
*/
struct cpu_info * volatile ci_self;
/* Most important fields first */
struct lwp *ci_curlwp;
struct pcb *ci_cpcb;
struct cpu_info *ci_next;
struct lwp *ci_fplwp;
void *ci_eintstack;
struct pcb *ci_idle_u;
/* Spinning up the CPU */
void (*ci_spinup) __P((void));
void *ci_initstack;
paddr_t ci_paddr;
int ci_number;
int ci_upaid;
int ci_cpuid;
/*
* Variables used by cc_microtime().
*/
struct cc_microtime_state ci_cc;
/* CPU PROM information. */
u_int ci_node;
int ci_flags;
int ci_want_ast;
int ci_want_resched;
struct cpu_data ci_data; /* MI per-cpu data */
};
#define CPUF_PRIMARY 1
/*
* CPU boot arguments. Used by secondary CPUs at the bootstrap time.
*/
struct cpu_bootargs {
u_int cb_node; /* PROM CPU node */
volatile int cb_flags;
vaddr_t cb_ktext;
paddr_t cb_ktextp;
vaddr_t cb_ektext;
vaddr_t cb_kdata;
paddr_t cb_kdatap;
vaddr_t cb_ekdata;
paddr_t cb_cpuinfo;
void *cb_initstack;
};
extern struct cpu_bootargs *cpu_args;
extern int sparc_ncpus;
extern struct cpu_info *cpus;
#define curcpu() (((struct cpu_info *)CPUINFO_VA)->ci_self)
#define cpu_number() (curcpu()->ci_number)
#define CPU_IS_PRIMARY(ci) ((ci)->ci_flags & CPUF_PRIMARY)
#define CPU_INFO_ITERATOR int
#define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = cpus; ci != NULL; \
ci = ci->ci_next
#define curlwp curcpu()->ci_curlwp
#define fplwp curcpu()->ci_fplwp
#define curpcb curcpu()->ci_cpcb
#define want_ast curcpu()->ci_want_ast
#define want_resched curcpu()->ci_want_resched
/*
* definitions of cpu-dependent requirements
* referenced in generic code
*/
#define cpu_swapin(p) /* nothing */
#define cpu_swapout(p) /* nothing */
#define cpu_wait(p) /* nothing */
void cpu_proc_fork(struct proc *, struct proc *);
#if defined(MULTIPROCESSOR)
extern vaddr_t cpu_spinup_trampoline;
extern char *mp_tramp_code;
extern u_long mp_tramp_code_len;
extern u_long mp_tramp_tlb_slots;
extern u_long mp_tramp_func;
extern u_long mp_tramp_ci;
void cpu_hatch __P((void));
void cpu_boot_secondary_processors __P((void));
#endif
/*
* definitions for MI microtime().
*/
#define microtime(tv) cc_microtime(tv)
extern uint64_t cpu_clockrate[];
/*
* Arguments to hardclock, softclock and gatherstats encapsulate the
* previous machine state in an opaque clockframe. The ipl is here
* as well for strayintr (see locore.s:interrupt and intr.c:strayintr).
* Note that CLKF_INTR is valid only if CLKF_USERMODE is false.
*/
extern int intstack[];
extern int eintstack[];
struct clockframe {
struct trapframe64 t;
};
#define CLKF_USERMODE(framep) (((framep)->t.tf_tstate & TSTATE_PRIV) == 0)
/*
* XXX Disable CLKF_BASEPRI() for now. If we use a counter-timer for
* the clock, the interrupt remains blocked until the interrupt handler
* returns and we write to the clear interrupt register. If we use
* %tick for the clock, we could get multiple interrupts, but the
* currently enabled INTR_INTERLOCK will prevent the interrupt from being
* posted twice anyway.
*
* Switching to %tick for all machines and disabling INTR_INTERLOCK
* in locore.s would allow us to take advantage of CLKF_BASEPRI().
*/
#if 0
#define CLKF_BASEPRI(framep) (((framep)->t.tf_oldpil) == 0)
#else
#define CLKF_BASEPRI(framep) (0)
#endif
#define CLKF_PC(framep) ((framep)->t.tf_pc)
/* Since some files in sys/kern do not know BIAS, I'm using 0x7ff here */
#define CLKF_INTR(framep) \
((!CLKF_USERMODE(framep))&& \
(((framep)->t.tf_out[6] & 1 ) ? \
(((vaddr_t)(framep)->t.tf_out[6] < \
(vaddr_t)EINTSTACK-0x7ff) && \
((vaddr_t)(framep)->t.tf_out[6] > \
(vaddr_t)INTSTACK-0x7ff)) : \
(((vaddr_t)(framep)->t.tf_out[6] < \
(vaddr_t)EINTSTACK) && \
((vaddr_t)(framep)->t.tf_out[6] > \
(vaddr_t)INTSTACK))))
extern struct intrhand soft01intr, soft01net, soft01clock;
void setsoftint __P((void));
void setsoftnet __P((void));
/*
* Preempt the current process if in interrupt from user mode,
* or after the current trap/syscall if in system mode.
*/
#define need_resched(ci) (want_resched = 1, want_ast = 1)
/*
* Give a profiling tick to the current process when the user profiling
* buffer pages are invalid. On the sparc, request an ast to send us
* through trap(), marking the proc as needing a profiling tick.
*/
#define need_proftick(p) ((p)->p_flag |= P_OWEUPC, want_ast = 1)
/*
* Notify the current process (p) that it has a signal pending,
* process as soon as possible.
*/
#define signotify(p) (want_ast = 1)
/*
* Interrupt handler chains. Interrupt handlers should return 0 for
* ``not me'' or 1 (``I took care of it''). intr_establish() inserts a
* handler into the list. The handler is called with its (single)
* argument, or with a pointer to a clockframe if ih_arg is NULL.
*/
struct intrhand {
int (*ih_fun) __P((void *));
void *ih_arg;
short ih_number; /* interrupt number */
/* the H/W provides */
char ih_pil; /* interrupt priority */
struct intrhand *ih_next; /* global list */
struct intrhand *ih_pending; /* interrupt queued */
volatile uint64_t *ih_map; /* Interrupt map reg */
volatile uint64_t *ih_clr; /* clear interrupt reg */
};
extern struct intrhand *intrhand[];
extern struct intrhand *intrlev[MAXINTNUM];
void intr_establish __P((int level, struct intrhand *));
/* cpu.c */
paddr_t cpu_alloc __P((void));
void cpu_start __P((int));
#define mp_pause_cpus() sparc64_ipi_pause_cpus()
#define mp_resume_cpus() sparc64_ipi_resume_cpus()
/* disksubr.c */
struct dkbad;
int isbad __P((struct dkbad *bt, int, int, int));
/* machdep.c */
int ldcontrolb __P((caddr_t));
void dumpconf __P((void));
caddr_t reserve_dumppages __P((caddr_t));
/* clock.c */
struct timeval;
int tickintr __P((void *)); /* level 10 (tick) interrupt code */
int clockintr __P((void *));/* level 10 (clock) interrupt code */
int statintr __P((void *)); /* level 14 (statclock) interrupt code */
/* locore.s */
struct fpstate64;
void savefpstate __P((struct fpstate64 *));
void loadfpstate __P((struct fpstate64 *));
uint64_t probeget __P((paddr_t, int, int));
int probeset __P((paddr_t, int, int, uint64_t));
#define write_all_windows() __asm volatile("flushw" : : )
#define write_user_windows() __asm volatile("flushw" : : )
void proc_trampoline __P((void));
struct pcb;
void snapshot __P((struct pcb *));
struct frame *getfp __P((void));
int xldcontrolb __P((caddr_t, struct pcb *));
void copywords __P((const void *, void *, size_t));
void qcopy __P((const void *, void *, size_t));
void qzero __P((void *, size_t));
void switchtoctx __P((int));
/* locore2.c */
void remrq __P((struct proc *));
/* trap.c */
void kill_user_windows __P((struct lwp *));
int rwindow_save __P((struct lwp *));
/* cons.c */
int cnrom __P((void));
/* zs.c */
void zsconsole __P((struct tty *, int, int, void (**)(struct tty *, int)));
#ifdef KGDB
void zs_kgdb_init __P((void));
#endif
/* fb.c */
void fb_unblank __P((void));
/* kgdb_stub.c */
#ifdef KGDB
void kgdb_attach __P((int (*)(void *), void (*)(void *, int), void *));
void kgdb_connect __P((int));
void kgdb_panic __P((void));
#endif
/* emul.c */
int fixalign __P((struct lwp *, struct trapframe64 *));
int emulinstr __P((vaddr_t, struct trapframe64 *));
/*
*
* The SPARC has a Trap Base Register (TBR) which holds the upper 20 bits
* of the trap vector table. The next eight bits are supplied by the
* hardware when the trap occurs, and the bottom four bits are always
* zero (so that we can shove up to 16 bytes of executable code---exactly
* four instructions---into each trap vector).
*
* The hardware allocates half the trap vectors to hardware and half to
* software.
*
* Traps have priorities assigned (lower number => higher priority).
*/
struct trapvec {
int tv_instr[8]; /* the eight instructions */
};
extern struct trapvec *trapbase; /* the 256 vectors */
#endif /* _KERNEL */
#endif /* _CPU_H_ */