400 lines
11 KiB
C
400 lines
11 KiB
C
/* $NetBSD: vm_machdep.c,v 1.13 1995/06/21 03:45:10 briggs Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1988 University of Utah.
|
|
* Copyright (c) 1982, 1986, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
/*
|
|
* from: Utah $Hdr: vm_machdep.c 1.21 91/04/06$
|
|
*
|
|
* @(#)vm_machdep.c 8.6 (Berkeley) 1/12/94
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/user.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/core.h>
|
|
#include <sys/exec.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_map.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/pmap.h>
|
|
#include <machine/pte.h>
|
|
#include <machine/reg.h>
|
|
|
|
extern int fpu_type;
|
|
|
|
/*
|
|
* Finish a fork operation, with process p2 nearly set up.
|
|
* Copy and update the kernel stack and pcb, making the child
|
|
* ready to run, and marking it so that it can return differently
|
|
* than the parent. Returns 1 in the child process, 0 in the parent.
|
|
* We currently double-map the user area so that the stack is at the same
|
|
* address in each process; in the future we will probably relocate
|
|
* the frame pointers on the stack after copying.
|
|
*/
|
|
int
|
|
cpu_fork(p1, p2)
|
|
register struct proc *p1, *p2;
|
|
{
|
|
register struct pcb *pcb = &p2->p_addr->u_pcb;
|
|
register struct trapframe *tf;
|
|
register struct switchframe *sf;
|
|
extern struct pcb *curpcb;
|
|
extern void proc_trampoline(), child_return();
|
|
|
|
p2->p_md.md_flags = p1->p_md.md_flags;
|
|
|
|
/* Sync curpcb (which is presumably p1's PCB) and copy it to p2. */
|
|
savectx(curpcb);
|
|
*pcb = p1->p_addr->u_pcb;
|
|
|
|
PMAP_ACTIVATE(&p2->p_vmspace->vm_pmap, pcb, 0);
|
|
|
|
/*
|
|
* Copy the trap frame and arrange for the child to return directly
|
|
* through return_to_user().
|
|
*/
|
|
tf = (struct trapframe *)((u_int)p2->p_addr + USPACE) -1;
|
|
p2->p_md.md_regs = (int *)tf;
|
|
|
|
*tf = *(struct trapframe *)p1->p_md.md_regs;
|
|
sf = (struct switchframe *)tf - 1;
|
|
sf->sf_pc = (u_int)proc_trampoline;
|
|
|
|
pcb->pcb_regs[6] = (int)child_return; /* A2 */
|
|
pcb->pcb_regs[7] = (int)p2; /* A3 */
|
|
pcb->pcb_regs[11] = (int)sf; /* SSP */
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* cpu_set_kpc
|
|
* Arrange for in-kernel execution of a process to continue at the
|
|
* named PC as if the code at that address had been called as a function
|
|
* with one argument--the named process's process pointer.
|
|
*
|
|
* Note that it's assumed that whne the named process returns, rei()
|
|
* should be invoked to return to user mode.
|
|
*/
|
|
void
|
|
cpu_set_kpc(p, pc)
|
|
struct proc *p;
|
|
u_int32_t pc;
|
|
{
|
|
struct pcb *pcbp;
|
|
struct switchframe *sf;
|
|
extern void proc_trampoline();
|
|
|
|
pcbp = &p->p_addr->u_pcb;
|
|
sf = (struct switchframe *) pcbp->pcb_regs[11];
|
|
sf->sf_pc = (u_int) proc_trampoline;
|
|
pcbp->pcb_regs[6] = pc; /* A2 */
|
|
pcbp->pcb_regs[7] = (int)p; /* A3 */
|
|
}
|
|
|
|
/*
|
|
* cpu_exit is called as the last action during exit.
|
|
* We release the address space and machine-dependent resources,
|
|
* block context switches and then call switch_exit() which will
|
|
* free our stack and user area and switch to another process.
|
|
* Thus, we never return.
|
|
*/
|
|
volatile void
|
|
cpu_exit(p)
|
|
struct proc *p;
|
|
{
|
|
vmspace_free(p->p_vmspace);
|
|
|
|
(void) splhigh();
|
|
cnt.v_swtch++;
|
|
switch_exit(p);
|
|
for(;;); /* Get rid of a compile warning */
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Dump the machine specific segment at the start of a core dump.
|
|
* This means the CPU and FPU registers. The format used here is
|
|
* the same one ptrace uses, so gdb can be machine independent.
|
|
*
|
|
* XXX - Generate Sun format core dumps for Sun executables?
|
|
*/
|
|
struct md_core {
|
|
struct reg intreg;
|
|
struct fpreg freg;
|
|
};
|
|
int
|
|
cpu_coredump(p, vp, cred, chdr)
|
|
struct proc *p;
|
|
struct vnode *vp;
|
|
struct ucred *cred;
|
|
struct core *chdr;
|
|
{
|
|
int error;
|
|
struct md_core md_core;
|
|
struct coreseg cseg;
|
|
register struct user *up = p->p_addr;
|
|
register i;
|
|
|
|
CORE_SETMAGIC(*chdr, COREMAGIC, MID_M68K, 0);
|
|
chdr->c_hdrsize = ALIGN(sizeof(*chdr));
|
|
chdr->c_seghdrsize = ALIGN(sizeof(cseg));
|
|
chdr->c_cpusize = sizeof(md_core);
|
|
|
|
/* Save integer registers. */
|
|
{
|
|
register struct frame *f;
|
|
|
|
f = (struct frame*) p->p_md.md_regs;
|
|
for (i = 0; i < 16; i++) {
|
|
md_core.intreg.r_regs[i] = f->f_regs[i];
|
|
}
|
|
md_core.intreg.r_sr = f->f_sr;
|
|
md_core.intreg.r_pc = f->f_pc;
|
|
}
|
|
if (fpu_type) {
|
|
register struct fpframe *f;
|
|
|
|
f = &up->u_pcb.pcb_fpregs;
|
|
m68881_save(f);
|
|
for (i = 0; i < (8*3); i++) {
|
|
md_core.freg.r_regs[i] = f->fpf_regs[i];
|
|
}
|
|
md_core.freg.r_fpcr = f->fpf_fpcr;
|
|
md_core.freg.r_fpsr = f->fpf_fpsr;
|
|
md_core.freg.r_fpiar = f->fpf_fpiar;
|
|
} else {
|
|
bzero((caddr_t)&md_core.freg, sizeof(md_core.freg));
|
|
}
|
|
|
|
CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_M68K, CORE_CPU);
|
|
cseg.c_addr = 0;
|
|
cseg.c_size = chdr->c_cpusize;
|
|
|
|
error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&cseg, chdr->c_seghdrsize,
|
|
(off_t)chdr->c_hdrsize, UIO_SYSSPACE,
|
|
IO_NODELOCKED|IO_UNIT, cred, (int *)NULL, p);
|
|
if (error)
|
|
return error;
|
|
|
|
error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&md_core, sizeof(md_core),
|
|
(off_t)(chdr->c_hdrsize + chdr->c_seghdrsize), UIO_SYSSPACE,
|
|
IO_NODELOCKED|IO_UNIT, cred, (int *)NULL, p);
|
|
|
|
if (!error)
|
|
chdr->c_nseg++;
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Move pages from one kernel virtual address to another.
|
|
* Both addresses are assumed to reside in the Sysmap,
|
|
* and size must be a multiple of CLSIZE.
|
|
*/
|
|
pagemove(from, to, size)
|
|
register caddr_t from, to;
|
|
int size;
|
|
{
|
|
register vm_offset_t pa;
|
|
|
|
#ifdef DEBUG
|
|
if (size & CLOFFSET)
|
|
panic("pagemove");
|
|
#endif
|
|
while (size > 0) {
|
|
pa = pmap_extract(pmap_kernel(), (vm_offset_t) from);
|
|
#ifdef DEBUG
|
|
if (pa == 0)
|
|
panic("pagemove 2");
|
|
if (pmap_extract(pmap_kernel(), (vm_offset_t) to) != 0)
|
|
panic("pagemove 3");
|
|
#endif
|
|
pmap_remove(pmap_kernel(),
|
|
(vm_offset_t)from, (vm_offset_t) from + PAGE_SIZE);
|
|
pmap_enter(pmap_kernel(),
|
|
(vm_offset_t)to, pa, VM_PROT_READ|VM_PROT_WRITE, 1);
|
|
from += PAGE_SIZE;
|
|
to += PAGE_SIZE;
|
|
size -= PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map `size' bytes of physical memory starting at `paddr' into
|
|
* kernel VA space at `vaddr'. Read/write and cache-inhibit status
|
|
* are specified by `prot'.
|
|
*/
|
|
physaccess(vaddr, paddr, size, prot)
|
|
caddr_t vaddr, paddr;
|
|
register int size, prot;
|
|
{
|
|
register pt_entry_t *pte;
|
|
register u_int page;
|
|
|
|
pte = kvtopte(vaddr);
|
|
page = (u_int)paddr & PG_FRAME;
|
|
for (size = btoc(size); size; size--) {
|
|
*pte++ = PG_V | prot | page;
|
|
page += NBPG;
|
|
}
|
|
TBIAS();
|
|
}
|
|
|
|
physunaccess(vaddr, size)
|
|
caddr_t vaddr;
|
|
register int size;
|
|
{
|
|
register pt_entry_t *pte;
|
|
|
|
pte = kvtopte(vaddr);
|
|
for (size = btoc(size); size; size--)
|
|
*pte++ = PG_NV;
|
|
TBIAS();
|
|
}
|
|
|
|
/*
|
|
* Set a red zone in the kernel stack after the u. area.
|
|
* We don't support a redzone right now. It really isn't clear
|
|
* that it is a good idea since, if the kernel stack were to roll
|
|
* into a write protected page, the processor would lock up (since
|
|
* it cannot create an exception frame) and we would get no useful
|
|
* post-mortem info. Currently, under the DEBUG option, we just
|
|
* check at every clock interrupt to see if the current k-stack has
|
|
* gone too far (i.e. into the "redzone" page) and if so, panic.
|
|
* Look at _lev6intr in locore.s for more details.
|
|
*/
|
|
/*ARGSUSED*/
|
|
setredzone(pte, vaddr)
|
|
struct pte *pte;
|
|
caddr_t vaddr;
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Convert kernel VA to physical address
|
|
*/
|
|
kvtop(addr)
|
|
register caddr_t addr;
|
|
{
|
|
vm_offset_t va;
|
|
|
|
va = pmap_extract(pmap_kernel(), (vm_offset_t)addr);
|
|
if (va == 0)
|
|
panic("kvtop: zero page frame");
|
|
return((int)va);
|
|
}
|
|
|
|
extern vm_map_t phys_map;
|
|
|
|
/*
|
|
* Map an IO request into kernel virtual address space. Requests fall into
|
|
* one of five catagories:
|
|
*
|
|
* B_PHYS|B_UAREA: User u-area swap.
|
|
* Address is relative to start of u-area (p_addr).
|
|
* B_PHYS|B_PAGET: User page table swap.
|
|
* Address is a kernel VA in usrpt (Usrptmap).
|
|
* B_PHYS|B_DIRTY: Dirty page push.
|
|
* Address is a VA in proc2's address space.
|
|
* B_PHYS|B_PGIN: Kernel pagein of user pages.
|
|
* Address is VA in user's address space.
|
|
* B_PHYS: User "raw" IO request.
|
|
* Address is VA in user's address space.
|
|
*
|
|
* All requests are (re)mapped into kernel VA space via the useriomap
|
|
* (a name with only slightly more meaning than "kernelmap")
|
|
*/
|
|
vmapbuf(bp)
|
|
register struct buf *bp;
|
|
{
|
|
register int npf;
|
|
register caddr_t addr;
|
|
register long flags = bp->b_flags;
|
|
struct proc *p;
|
|
int off;
|
|
vm_offset_t kva;
|
|
register vm_offset_t pa;
|
|
|
|
if ((flags & B_PHYS) == 0)
|
|
panic("vmapbuf");
|
|
addr = bp->b_saveaddr = bp->b_un.b_addr;
|
|
off = (int)addr & PGOFSET;
|
|
p = bp->b_proc;
|
|
npf = btoc(round_page(bp->b_bcount + off));
|
|
kva = kmem_alloc_wait(phys_map, ctob(npf));
|
|
bp->b_un.b_addr = (caddr_t) (kva + off);
|
|
while (npf--) {
|
|
pa = pmap_extract(vm_map_pmap(&p->p_vmspace->vm_map),
|
|
(vm_offset_t)addr);
|
|
if (pa == 0)
|
|
panic("vmapbuf: null page frame");
|
|
pmap_enter(vm_map_pmap(phys_map), kva, trunc_page(pa),
|
|
VM_PROT_READ|VM_PROT_WRITE, TRUE);
|
|
addr += PAGE_SIZE;
|
|
kva += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free the io map PTEs associated with this IO operation.
|
|
* We also invalidate the TLB entries and restore the original b_addr.
|
|
*/
|
|
vunmapbuf(bp)
|
|
register struct buf *bp;
|
|
{
|
|
register int npf;
|
|
register caddr_t addr = bp->b_un.b_addr;
|
|
vm_offset_t kva;
|
|
|
|
if ((bp->b_flags & B_PHYS) == 0)
|
|
panic("vunmapbuf");
|
|
npf = btoc(round_page(bp->b_bcount + ((int)addr & PGOFSET)));
|
|
kva = (vm_offset_t)((int)addr & ~PGOFSET);
|
|
kmem_free_wakeup(phys_map, kva, ctob(npf));
|
|
bp->b_un.b_addr = bp->b_saveaddr;
|
|
bp->b_saveaddr = NULL;
|
|
}
|