NetBSD/sys/netinet/if_arp.c
ozaki-r d4c71b34a8 Make sure that ifaddr is published after its initialization finished
Basically we should insert an item to a collection (say a list) after
item's initialization has been completed to avoid accessing an item
that is initialized halfway. ifaddr (in{,6}_ifaddr) isn't processed
like so and needs to be fixed.

In order to do so, we need to tweak {arp,nd6}_rtrequest that depend
on that an ifaddr is inserted during its initialization; they explore
interface's address list to determine that rt_getkey(rt) of a given
rtentry is in the list to know whether the route's interface should
be a loopback, which doesn't work after the change. To make it work,
first check RTF_LOCAL flag that is set in rt_ifa_addlocal that calls
{arp,nd6}_rtrequest eventually. Note that we still need the original
code for the case to remove and re-add a local interface route.
2016-06-30 01:34:53 +00:00

2032 lines
50 KiB
C

/* $NetBSD: if_arp.c,v 1.214 2016/06/30 01:34:53 ozaki-r Exp $ */
/*-
* Copyright (c) 1998, 2000, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Public Access Networks Corporation ("Panix"). It was developed under
* contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1988, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if_ether.c 8.2 (Berkeley) 9/26/94
*/
/*
* Ethernet address resolution protocol.
* TODO:
* add "inuse/lock" bit (or ref. count) along with valid bit
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_arp.c,v 1.214 2016/06/30 01:34:53 ozaki-r Exp $");
#ifdef _KERNEL_OPT
#include "opt_ddb.h"
#include "opt_inet.h"
#endif
#ifdef INET
#include "bridge.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/timetc.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/sysctl.h>
#include <sys/socketvar.h>
#include <sys/percpu.h>
#include <sys/cprng.h>
#include <sys/kmem.h>
#include <net/ethertypes.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_token.h>
#include <net/if_types.h>
#include <net/if_ether.h>
#include <net/if_llatbl.h>
#include <net/net_osdep.h>
#include <net/route.h>
#include <net/net_stats.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#include "arcnet.h"
#if NARCNET > 0
#include <net/if_arc.h>
#endif
#include "fddi.h"
#if NFDDI > 0
#include <net/if_fddi.h>
#endif
#include "token.h"
#include "carp.h"
#if NCARP > 0
#include <netinet/ip_carp.h>
#endif
#define SIN(s) ((struct sockaddr_in *)s)
#define SRP(s) ((struct sockaddr_inarp *)s)
/*
* ARP trailer negotiation. Trailer protocol is not IP specific,
* but ARP request/response use IP addresses.
*/
#define ETHERTYPE_IPTRAILERS ETHERTYPE_TRAIL
/* timer values */
static int arpt_keep = (20*60); /* once resolved, good for 20 more minutes */
static int arpt_down = 20; /* once declared down, don't send for 20 secs */
static int arp_maxhold = 1; /* number of packets to hold per ARP entry */
#define rt_expire rt_rmx.rmx_expire
#define rt_pksent rt_rmx.rmx_pksent
int ip_dad_count = PROBE_NUM;
#ifdef ARP_DEBUG
static int arp_debug = 1;
#else
static int arp_debug = 0;
#endif
#define arplog(x) do { if (arp_debug) log x; } while (/*CONSTCOND*/ 0)
static void arp_init(void);
static struct sockaddr *arp_setgate(struct rtentry *, struct sockaddr *,
const struct sockaddr *);
static void arptimer(void *);
static void arp_settimer(struct llentry *, int);
static struct llentry *arplookup(struct ifnet *, struct mbuf *,
const struct in_addr *, const struct sockaddr *, int);
static struct llentry *arpcreate(struct ifnet *, struct mbuf *,
const struct in_addr *, const struct sockaddr *, int);
static void in_arpinput(struct mbuf *);
static void in_revarpinput(struct mbuf *);
static void revarprequest(struct ifnet *);
static void arp_drainstub(void);
static void arp_dad_timer(struct ifaddr *);
static void arp_dad_start(struct ifaddr *);
static void arp_dad_stop(struct ifaddr *);
static void arp_dad_duplicated(struct ifaddr *);
static void arp_init_llentry(struct ifnet *, struct llentry *);
#if NTOKEN > 0
static void arp_free_llentry_tokenring(struct llentry *);
#endif
struct ifqueue arpintrq = {
.ifq_head = NULL,
.ifq_tail = NULL,
.ifq_len = 0,
.ifq_maxlen = 50,
.ifq_drops = 0,
};
static int arp_maxtries = 5;
static int useloopback = 1; /* use loopback interface for local traffic */
static percpu_t *arpstat_percpu;
#define ARP_STAT_GETREF() _NET_STAT_GETREF(arpstat_percpu)
#define ARP_STAT_PUTREF() _NET_STAT_PUTREF(arpstat_percpu)
#define ARP_STATINC(x) _NET_STATINC(arpstat_percpu, x)
#define ARP_STATADD(x, v) _NET_STATADD(arpstat_percpu, x, v)
/* revarp state */
static struct in_addr myip, srv_ip;
static int myip_initialized = 0;
static int revarp_in_progress = 0;
static struct ifnet *myip_ifp = NULL;
static int arp_drainwanted;
static int log_movements = 1;
static int log_permanent_modify = 1;
static int log_wrong_iface = 1;
static int log_unknown_network = 1;
/*
* this should be elsewhere.
*/
static char *
lla_snprintf(u_int8_t *, int);
static char *
lla_snprintf(u_int8_t *adrp, int len)
{
#define NUMBUFS 3
static char buf[NUMBUFS][16*3];
static int bnum = 0;
int i;
char *p;
p = buf[bnum];
*p++ = hexdigits[(*adrp)>>4];
*p++ = hexdigits[(*adrp++)&0xf];
for (i=1; i<len && i<16; i++) {
*p++ = ':';
*p++ = hexdigits[(*adrp)>>4];
*p++ = hexdigits[(*adrp++)&0xf];
}
*p = 0;
p = buf[bnum];
bnum = (bnum + 1) % NUMBUFS;
return p;
}
DOMAIN_DEFINE(arpdomain); /* forward declare and add to link set */
static void
arp_fasttimo(void)
{
if (arp_drainwanted) {
arp_drain();
arp_drainwanted = 0;
}
}
const struct protosw arpsw[] = {
{ .pr_type = 0,
.pr_domain = &arpdomain,
.pr_protocol = 0,
.pr_flags = 0,
.pr_input = 0,
.pr_ctlinput = 0,
.pr_ctloutput = 0,
.pr_usrreqs = 0,
.pr_init = arp_init,
.pr_fasttimo = arp_fasttimo,
.pr_slowtimo = 0,
.pr_drain = arp_drainstub,
}
};
struct domain arpdomain = {
.dom_family = PF_ARP,
.dom_name = "arp",
.dom_protosw = arpsw,
.dom_protoswNPROTOSW = &arpsw[__arraycount(arpsw)],
};
static void sysctl_net_inet_arp_setup(struct sysctllog **);
void
arp_init(void)
{
sysctl_net_inet_arp_setup(NULL);
arpstat_percpu = percpu_alloc(sizeof(uint64_t) * ARP_NSTATS);
}
static void
arp_drainstub(void)
{
arp_drainwanted = 1;
}
/*
* ARP protocol drain routine. Called when memory is in short supply.
* Called at splvm(); don't acquire softnet_lock as can be called from
* hardware interrupt handlers.
*/
void
arp_drain(void)
{
lltable_drain(AF_INET);
}
static void
arptimer(void *arg)
{
struct llentry *lle = arg;
struct ifnet *ifp;
if (lle == NULL)
return;
if (lle->la_flags & LLE_STATIC)
return;
LLE_WLOCK(lle);
if (callout_pending(&lle->la_timer)) {
/*
* Here we are a bit odd here in the treatment of
* active/pending. If the pending bit is set, it got
* rescheduled before I ran. The active
* bit we ignore, since if it was stopped
* in ll_tablefree() and was currently running
* it would have return 0 so the code would
* not have deleted it since the callout could
* not be stopped so we want to go through
* with the delete here now. If the callout
* was restarted, the pending bit will be back on and
* we just want to bail since the callout_reset would
* return 1 and our reference would have been removed
* by arpresolve() below.
*/
LLE_WUNLOCK(lle);
return;
}
ifp = lle->lle_tbl->llt_ifp;
callout_stop(&lle->la_timer);
/* XXX: LOR avoidance. We still have ref on lle. */
LLE_WUNLOCK(lle);
IF_AFDATA_LOCK(ifp);
LLE_WLOCK(lle);
/* Guard against race with other llentry_free(). */
if (lle->la_flags & LLE_LINKED) {
size_t pkts_dropped;
LLE_REMREF(lle);
pkts_dropped = llentry_free(lle);
ARP_STATADD(ARP_STAT_DFRDROPPED, pkts_dropped);
} else {
LLE_FREE_LOCKED(lle);
}
IF_AFDATA_UNLOCK(ifp);
}
static void
arp_settimer(struct llentry *la, int sec)
{
LLE_WLOCK_ASSERT(la);
LLE_ADDREF(la);
callout_reset(&la->la_timer, hz * sec, arptimer, la);
}
/*
* We set the gateway for RTF_CLONING routes to a "prototype"
* link-layer sockaddr whose interface type (if_type) and interface
* index (if_index) fields are prepared.
*/
static struct sockaddr *
arp_setgate(struct rtentry *rt, struct sockaddr *gate,
const struct sockaddr *netmask)
{
const struct ifnet *ifp = rt->rt_ifp;
uint8_t namelen = strlen(ifp->if_xname);
uint8_t addrlen = ifp->if_addrlen;
/*
* XXX: If this is a manually added route to interface
* such as older version of routed or gated might provide,
* restore cloning bit.
*/
if ((rt->rt_flags & RTF_HOST) == 0 && netmask != NULL &&
satocsin(netmask)->sin_addr.s_addr != 0xffffffff)
rt->rt_flags |= RTF_CONNECTED;
if ((rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL))) {
union {
struct sockaddr sa;
struct sockaddr_storage ss;
struct sockaddr_dl sdl;
} u;
/*
* Case 1: This route should come from a route to iface.
*/
sockaddr_dl_init(&u.sdl, sizeof(u.ss),
ifp->if_index, ifp->if_type, NULL, namelen, NULL, addrlen);
rt_setgate(rt, &u.sa);
gate = rt->rt_gateway;
}
return gate;
}
static void
arp_init_llentry(struct ifnet *ifp, struct llentry *lle)
{
switch (ifp->if_type) {
#if NTOKEN > 0
case IFT_ISO88025:
lle->la_opaque = kmem_intr_alloc(sizeof(struct token_rif),
KM_NOSLEEP);
lle->lle_ll_free = arp_free_llentry_tokenring;
break;
#endif
}
}
#if NTOKEN > 0
static void
arp_free_llentry_tokenring(struct llentry *lle)
{
kmem_intr_free(lle->la_opaque, sizeof(struct token_rif));
}
#endif
/*
* Parallel to llc_rtrequest.
*/
void
arp_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
{
struct sockaddr *gate = rt->rt_gateway;
struct in_ifaddr *ia;
struct ifaddr *ifa;
struct ifnet *ifp = rt->rt_ifp;
if (req == RTM_LLINFO_UPD) {
struct in_addr *in;
if ((ifa = info->rti_ifa) == NULL)
return;
in = &ifatoia(ifa)->ia_addr.sin_addr;
if (ifatoia(ifa)->ia4_flags &
(IN_IFF_NOTREADY | IN_IFF_DETACHED))
{
arplog((LOG_DEBUG, "arp_request: %s not ready\n",
in_fmtaddr(*in)));
return;
}
arprequest(ifa->ifa_ifp, in, in,
CLLADDR(ifa->ifa_ifp->if_sadl));
return;
}
if ((rt->rt_flags & RTF_GATEWAY) != 0) {
if (req != RTM_ADD)
return;
/*
* linklayers with particular link MTU limitation.
*/
switch(ifp->if_type) {
#if NFDDI > 0
case IFT_FDDI:
if (ifp->if_mtu > FDDIIPMTU)
rt->rt_rmx.rmx_mtu = FDDIIPMTU;
break;
#endif
#if NARCNET > 0
case IFT_ARCNET:
{
int arcipifmtu;
if (ifp->if_flags & IFF_LINK0)
arcipifmtu = arc_ipmtu;
else
arcipifmtu = ARCMTU;
if (ifp->if_mtu > arcipifmtu)
rt->rt_rmx.rmx_mtu = arcipifmtu;
break;
}
#endif
}
return;
}
switch (req) {
case RTM_SETGATE:
gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]);
break;
case RTM_ADD:
gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]);
if (gate == NULL) {
log(LOG_ERR, "%s: arp_setgate failed\n", __func__);
break;
}
if ((rt->rt_flags & RTF_CONNECTED) ||
(rt->rt_flags & RTF_LOCAL)) {
/*
* Give this route an expiration time, even though
* it's a "permanent" route, so that routes cloned
* from it do not need their expiration time set.
*/
KASSERT(time_uptime != 0);
rt->rt_expire = time_uptime;
/*
* linklayers with particular link MTU limitation.
*/
switch (ifp->if_type) {
#if NFDDI > 0
case IFT_FDDI:
if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
(rt->rt_rmx.rmx_mtu > FDDIIPMTU ||
(rt->rt_rmx.rmx_mtu == 0 &&
ifp->if_mtu > FDDIIPMTU)))
rt->rt_rmx.rmx_mtu = FDDIIPMTU;
break;
#endif
#if NARCNET > 0
case IFT_ARCNET:
{
int arcipifmtu;
if (ifp->if_flags & IFF_LINK0)
arcipifmtu = arc_ipmtu;
else
arcipifmtu = ARCMTU;
if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
(rt->rt_rmx.rmx_mtu > arcipifmtu ||
(rt->rt_rmx.rmx_mtu == 0 &&
ifp->if_mtu > arcipifmtu)))
rt->rt_rmx.rmx_mtu = arcipifmtu;
break;
}
#endif
}
if (rt->rt_flags & RTF_CONNECTED)
break;
}
/* Announce a new entry if requested. */
if (rt->rt_flags & RTF_ANNOUNCE) {
INADDR_TO_IA(satocsin(rt_getkey(rt))->sin_addr, ia);
while (ia && ia->ia_ifp != ifp)
NEXT_IA_WITH_SAME_ADDR(ia);
if (ia == NULL ||
ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED))
;
else
arprequest(ifp,
&satocsin(rt_getkey(rt))->sin_addr,
&satocsin(rt_getkey(rt))->sin_addr,
CLLADDR(satocsdl(gate)));
}
if (gate->sa_family != AF_LINK ||
gate->sa_len < sockaddr_dl_measure(0, ifp->if_addrlen)) {
log(LOG_DEBUG, "%s: bad gateway value\n", __func__);
break;
}
satosdl(gate)->sdl_type = ifp->if_type;
satosdl(gate)->sdl_index = ifp->if_index;
/* If the route is for a broadcast address mark it as such.
* This way we can avoid an expensive call to in_broadcast()
* in ip_output() most of the time (because the route passed
* to ip_output() is almost always a host route). */
if (rt->rt_flags & RTF_HOST &&
!(rt->rt_flags & RTF_BROADCAST) &&
in_broadcast(satocsin(rt_getkey(rt))->sin_addr, rt->rt_ifp))
rt->rt_flags |= RTF_BROADCAST;
/* There is little point in resolving the broadcast address */
if (rt->rt_flags & RTF_BROADCAST)
break;
/*
* When called from rt_ifa_addlocal, we cannot depend on that
* the address (rt_getkey(rt)) exits in the address list of the
* interface. So check RTF_LOCAL instead.
*/
if (rt->rt_flags & RTF_LOCAL) {
rt->rt_expire = 0;
if (useloopback) {
rt->rt_ifp = lo0ifp;
rt->rt_rmx.rmx_mtu = 0;
}
break;
}
INADDR_TO_IA(satocsin(rt_getkey(rt))->sin_addr, ia);
while (ia && ia->ia_ifp != ifp)
NEXT_IA_WITH_SAME_ADDR(ia);
if (ia == NULL)
break;
rt->rt_expire = 0;
if (useloopback) {
rt->rt_ifp = lo0ifp;
rt->rt_rmx.rmx_mtu = 0;
}
rt->rt_flags |= RTF_LOCAL;
/*
* make sure to set rt->rt_ifa to the interface
* address we are using, otherwise we will have trouble
* with source address selection.
*/
ifa = &ia->ia_ifa;
if (ifa != rt->rt_ifa)
rt_replace_ifa(rt, ifa);
break;
}
}
/*
* Broadcast an ARP request. Caller specifies:
* - arp header source ip address
* - arp header target ip address
* - arp header source ethernet address
*/
void
arprequest(struct ifnet *ifp,
const struct in_addr *sip, const struct in_addr *tip,
const u_int8_t *enaddr)
{
struct mbuf *m;
struct arphdr *ah;
struct sockaddr sa;
uint64_t *arps;
KASSERT(sip != NULL);
KASSERT(tip != NULL);
KASSERT(enaddr != NULL);
if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
return;
MCLAIM(m, &arpdomain.dom_mowner);
switch (ifp->if_type) {
case IFT_IEEE1394:
m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) +
ifp->if_addrlen;
break;
default:
m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) +
2 * ifp->if_addrlen;
break;
}
m->m_pkthdr.len = m->m_len;
MH_ALIGN(m, m->m_len);
ah = mtod(m, struct arphdr *);
memset(ah, 0, m->m_len);
switch (ifp->if_type) {
case IFT_IEEE1394: /* RFC2734 */
/* fill it now for ar_tpa computation */
ah->ar_hrd = htons(ARPHRD_IEEE1394);
break;
default:
/* ifp->if_output will fill ar_hrd */
break;
}
ah->ar_pro = htons(ETHERTYPE_IP);
ah->ar_hln = ifp->if_addrlen; /* hardware address length */
ah->ar_pln = sizeof(struct in_addr); /* protocol address length */
ah->ar_op = htons(ARPOP_REQUEST);
memcpy(ar_sha(ah), enaddr, ah->ar_hln);
memcpy(ar_spa(ah), sip, ah->ar_pln);
memcpy(ar_tpa(ah), tip, ah->ar_pln);
sa.sa_family = AF_ARP;
sa.sa_len = 2;
m->m_flags |= M_BCAST;
arps = ARP_STAT_GETREF();
arps[ARP_STAT_SNDTOTAL]++;
arps[ARP_STAT_SENDREQUEST]++;
ARP_STAT_PUTREF();
if_output_lock(ifp, ifp, m, &sa, NULL);
}
/*
* Resolve an IP address into an ethernet address. If success,
* desten is filled in. If there is no entry in arptab,
* set one up and broadcast a request for the IP address.
* Hold onto this mbuf and resend it once the address
* is finally resolved. A return value of 0 indicates
* that desten has been filled in and the packet should be sent
* normally; a return value of EWOULDBLOCK indicates that the packet has been
* held pending resolution.
* Any other value indicates an error.
*/
int
arpresolve(struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m,
const struct sockaddr *dst, void *desten, size_t destlen)
{
struct llentry *la;
const char *create_lookup;
bool renew;
int error;
KASSERT(m != NULL);
la = arplookup(ifp, m, NULL, dst, 0);
if (la == NULL)
goto notfound;
if ((la->la_flags & LLE_VALID) &&
((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) {
KASSERT(destlen >= ifp->if_addrlen);
memcpy(desten, &la->ll_addr, ifp->if_addrlen);
LLE_RUNLOCK(la);
return 0;
}
notfound:
#ifdef IFF_STATICARP /* FreeBSD */
#define _IFF_NOARP (IFF_NOARP | IFF_STATICARP)
#else
#define _IFF_NOARP IFF_NOARP
#endif
if (ifp->if_flags & _IFF_NOARP) {
if (la != NULL)
LLE_RUNLOCK(la);
error = ENOTSUP;
goto bad;
}
#undef _IFF_NOARP
if (la == NULL) {
create_lookup = "create";
IF_AFDATA_WLOCK(ifp);
la = lla_create(LLTABLE(ifp), LLE_EXCLUSIVE, dst);
IF_AFDATA_WUNLOCK(ifp);
if (la == NULL)
ARP_STATINC(ARP_STAT_ALLOCFAIL);
else
arp_init_llentry(ifp, la);
} else if (LLE_TRY_UPGRADE(la) == 0) {
create_lookup = "lookup";
LLE_RUNLOCK(la);
IF_AFDATA_RLOCK(ifp);
la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst);
IF_AFDATA_RUNLOCK(ifp);
}
error = EINVAL;
if (la == NULL) {
log(LOG_DEBUG,
"%s: failed to %s llentry for %s on %s\n",
__func__, create_lookup, inet_ntoa(satocsin(dst)->sin_addr),
ifp->if_xname);
goto bad;
}
if ((la->la_flags & LLE_VALID) &&
((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime))
{
KASSERT(destlen >= ifp->if_addrlen);
memcpy(desten, &la->ll_addr, ifp->if_addrlen);
renew = false;
/*
* If entry has an expiry time and it is approaching,
* see if we need to send an ARP request within this
* arpt_down interval.
*/
if (!(la->la_flags & LLE_STATIC) &&
time_uptime + la->la_preempt > la->la_expire)
{
renew = true;
la->la_preempt--;
}
LLE_WUNLOCK(la);
if (renew) {
const u_int8_t *enaddr =
#if NCARP > 0
(ifp->if_type == IFT_CARP) ?
CLLADDR(ifp->if_sadl):
#endif
CLLADDR(ifp->if_sadl);
arprequest(ifp,
&satocsin(rt->rt_ifa->ifa_addr)->sin_addr,
&satocsin(dst)->sin_addr, enaddr);
}
return 0;
}
if (la->la_flags & LLE_STATIC) { /* should not happen! */
LLE_RUNLOCK(la);
log(LOG_DEBUG, "%s: ouch, empty static llinfo for %s\n",
__func__, inet_ntoa(satocsin(dst)->sin_addr));
error = EINVAL;
goto bad;
}
renew = (la->la_asked == 0 || la->la_expire != time_uptime);
/*
* There is an arptab entry, but no ethernet address
* response yet. Add the mbuf to the list, dropping
* the oldest packet if we have exceeded the system
* setting.
*/
LLE_WLOCK_ASSERT(la);
if (la->la_numheld >= arp_maxhold) {
if (la->la_hold != NULL) {
struct mbuf *next = la->la_hold->m_nextpkt;
m_freem(la->la_hold);
la->la_hold = next;
la->la_numheld--;
ARP_STATINC(ARP_STAT_DFRDROPPED);
}
}
if (la->la_hold != NULL) {
struct mbuf *curr = la->la_hold;
while (curr->m_nextpkt != NULL)
curr = curr->m_nextpkt;
curr->m_nextpkt = m;
} else
la->la_hold = m;
la->la_numheld++;
if (!renew)
LLE_DOWNGRADE(la);
/*
* Return EWOULDBLOCK if we have tried less than arp_maxtries. It
* will be masked by ether_output(). Return EHOSTDOWN/EHOSTUNREACH
* if we have already sent arp_maxtries ARP requests. Retransmit the
* ARP request, but not faster than one request per second.
*/
if (la->la_asked < arp_maxtries)
error = EWOULDBLOCK; /* First request. */
else
error = (rt != NULL && rt->rt_flags & RTF_GATEWAY) ?
EHOSTUNREACH : EHOSTDOWN;
if (renew) {
const u_int8_t *enaddr =
#if NCARP > 0
(rt != NULL && rt->rt_ifp->if_type == IFT_CARP) ?
CLLADDR(rt->rt_ifp->if_sadl):
#endif
CLLADDR(ifp->if_sadl);
la->la_expire = time_uptime;
arp_settimer(la, arpt_down);
la->la_asked++;
LLE_WUNLOCK(la);
if (rt != NULL) {
arprequest(ifp, &satocsin(rt->rt_ifa->ifa_addr)->sin_addr,
&satocsin(dst)->sin_addr, enaddr);
} else {
struct sockaddr_in sin;
struct rtentry *_rt;
sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0);
/* XXX */
_rt = rtalloc1((struct sockaddr *)&sin, 0);
if (_rt == NULL)
goto bad;
arprequest(ifp,
&satocsin(_rt->rt_ifa->ifa_addr)->sin_addr,
&satocsin(dst)->sin_addr, enaddr);
rtfree(_rt);
}
return error;
}
LLE_RUNLOCK(la);
return error;
bad:
m_freem(m);
return error;
}
/*
* Common length and type checks are done here,
* then the protocol-specific routine is called.
*/
void
arpintr(void)
{
struct mbuf *m;
struct arphdr *ar;
int s;
int arplen;
mutex_enter(softnet_lock);
KERNEL_LOCK(1, NULL);
while (arpintrq.ifq_head) {
struct ifnet *rcvif;
s = splnet();
IF_DEQUEUE(&arpintrq, m);
splx(s);
if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
panic("arpintr");
MCLAIM(m, &arpdomain.dom_mowner);
ARP_STATINC(ARP_STAT_RCVTOTAL);
/*
* First, make sure we have at least struct arphdr.
*/
if (m->m_len < sizeof(struct arphdr) ||
(ar = mtod(m, struct arphdr *)) == NULL)
goto badlen;
rcvif = m_get_rcvif(m, &s);
switch (rcvif->if_type) {
case IFT_IEEE1394:
arplen = sizeof(struct arphdr) +
ar->ar_hln + 2 * ar->ar_pln;
break;
default:
arplen = sizeof(struct arphdr) +
2 * ar->ar_hln + 2 * ar->ar_pln;
break;
}
m_put_rcvif(rcvif, &s);
if (/* XXX ntohs(ar->ar_hrd) == ARPHRD_ETHER && */
m->m_len >= arplen)
switch (ntohs(ar->ar_pro)) {
case ETHERTYPE_IP:
case ETHERTYPE_IPTRAILERS:
in_arpinput(m);
continue;
default:
ARP_STATINC(ARP_STAT_RCVBADPROTO);
}
else {
badlen:
ARP_STATINC(ARP_STAT_RCVBADLEN);
}
m_freem(m);
}
KERNEL_UNLOCK_ONE(NULL);
mutex_exit(softnet_lock);
}
/*
* ARP for Internet protocols on 10 Mb/s Ethernet.
* Algorithm is that given in RFC 826.
* In addition, a sanity check is performed on the sender
* protocol address, to catch impersonators.
* We no longer handle negotiations for use of trailer protocol:
* Formerly, ARP replied for protocol type ETHERTYPE_TRAIL sent
* along with IP replies if we wanted trailers sent to us,
* and also sent them in response to IP replies.
* This allowed either end to announce the desire to receive
* trailer packets.
* We no longer reply to requests for ETHERTYPE_TRAIL protocol either,
* but formerly didn't normally send requests.
*/
static void
in_arpinput(struct mbuf *m)
{
struct arphdr *ah;
struct ifnet *ifp, *rcvif = NULL;
struct llentry *la = NULL;
struct in_ifaddr *ia;
#if NBRIDGE > 0
struct in_ifaddr *bridge_ia = NULL;
#endif
#if NCARP > 0
u_int32_t count = 0, index = 0;
#endif
struct sockaddr sa;
struct in_addr isaddr, itaddr, myaddr;
int op;
void *tha;
uint64_t *arps;
struct psref psref;
if (__predict_false(m_makewritable(&m, 0, m->m_pkthdr.len, M_DONTWAIT)))
goto out;
ah = mtod(m, struct arphdr *);
op = ntohs(ah->ar_op);
rcvif = ifp = m_get_rcvif_psref(m, &psref);
if (__predict_false(rcvif == NULL))
goto drop;
/*
* Fix up ah->ar_hrd if necessary, before using ar_tha() or
* ar_tpa().
*/
switch (ifp->if_type) {
case IFT_IEEE1394:
if (ntohs(ah->ar_hrd) == ARPHRD_IEEE1394)
;
else {
/* XXX this is to make sure we compute ar_tha right */
/* XXX check ar_hrd more strictly? */
ah->ar_hrd = htons(ARPHRD_IEEE1394);
}
break;
default:
/* XXX check ar_hrd? */
break;
}
memcpy(&isaddr, ar_spa(ah), sizeof (isaddr));
memcpy(&itaddr, ar_tpa(ah), sizeof (itaddr));
if (m->m_flags & (M_BCAST|M_MCAST))
ARP_STATINC(ARP_STAT_RCVMCAST);
/*
* Search for a matching interface address
* or any address on the interface to use
* as a dummy address in the rest of this function
*/
INADDR_TO_IA(itaddr, ia);
while (ia != NULL) {
#if NCARP > 0
if (ia->ia_ifp->if_type == IFT_CARP &&
((ia->ia_ifp->if_flags & (IFF_UP|IFF_RUNNING)) ==
(IFF_UP|IFF_RUNNING))) {
index++;
if (ia->ia_ifp == rcvif &&
carp_iamatch(ia, ar_sha(ah),
&count, index)) {
break;
}
} else
#endif
if (ia->ia_ifp == rcvif)
break;
#if NBRIDGE > 0
/*
* If the interface we received the packet on
* is part of a bridge, check to see if we need
* to "bridge" the packet to ourselves at this
* layer. Note we still prefer a perfect match,
* but allow this weaker match if necessary.
*/
if (rcvif->if_bridge != NULL &&
rcvif->if_bridge == ia->ia_ifp->if_bridge)
bridge_ia = ia;
#endif /* NBRIDGE > 0 */
NEXT_IA_WITH_SAME_ADDR(ia);
}
#if NBRIDGE > 0
if (ia == NULL && bridge_ia != NULL) {
ia = bridge_ia;
m_put_rcvif_psref(rcvif, &psref);
rcvif = NULL;
/* FIXME */
ifp = bridge_ia->ia_ifp;
}
#endif
if (ia == NULL) {
INADDR_TO_IA(isaddr, ia);
while ((ia != NULL) && ia->ia_ifp != rcvif)
NEXT_IA_WITH_SAME_ADDR(ia);
if (ia == NULL) {
IFP_TO_IA(ifp, ia);
if (ia == NULL) {
ARP_STATINC(ARP_STAT_RCVNOINT);
goto out;
}
}
}
myaddr = ia->ia_addr.sin_addr;
/* XXX checks for bridge case? */
if (!memcmp(ar_sha(ah), CLLADDR(ifp->if_sadl), ifp->if_addrlen)) {
ARP_STATINC(ARP_STAT_RCVLOCALSHA);
goto out; /* it's from me, ignore it. */
}
/* XXX checks for bridge case? */
if (!memcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) {
ARP_STATINC(ARP_STAT_RCVBCASTSHA);
log(LOG_ERR,
"%s: arp: link address is broadcast for IP address %s!\n",
ifp->if_xname, in_fmtaddr(isaddr));
goto out;
}
/*
* If the source IP address is zero, this is an RFC 5227 ARP probe
*/
if (in_nullhost(isaddr))
ARP_STATINC(ARP_STAT_RCVZEROSPA);
else if (in_hosteq(isaddr, myaddr))
ARP_STATINC(ARP_STAT_RCVLOCALSPA);
if (in_nullhost(itaddr))
ARP_STATINC(ARP_STAT_RCVZEROTPA);
/* DAD check, RFC 5227 2.1.1, Probe Details */
if (in_hosteq(isaddr, myaddr) ||
(in_nullhost(isaddr) && in_hosteq(itaddr, myaddr)))
{
/* If our address is tentative, mark it as duplicated */
if (ia->ia4_flags & IN_IFF_TENTATIVE)
arp_dad_duplicated((struct ifaddr *)ia);
/* If our address is unuseable, don't reply */
if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED))
goto out;
}
/*
* If the target IP address is zero, ignore the packet.
* This prevents the code below from tring to answer
* when we are using IP address zero (booting).
*/
if (in_nullhost(itaddr))
goto out;
if (in_nullhost(isaddr))
goto reply;
if (in_hosteq(isaddr, myaddr)) {
log(LOG_ERR,
"duplicate IP address %s sent from link address %s\n",
in_fmtaddr(isaddr), lla_snprintf(ar_sha(ah), ah->ar_hln));
itaddr = myaddr;
goto reply;
}
if (in_hosteq(itaddr, myaddr))
la = arpcreate(ifp, m, &isaddr, NULL, 1);
else
la = arplookup(ifp, m, &isaddr, NULL, 1);
if (la == NULL)
goto reply;
if ((la->la_flags & LLE_VALID) &&
memcmp(ar_sha(ah), &la->ll_addr, ifp->if_addrlen)) {
if (la->la_flags & LLE_STATIC) {
ARP_STATINC(ARP_STAT_RCVOVERPERM);
if (!log_permanent_modify)
goto out;
log(LOG_INFO,
"%s tried to overwrite permanent arp info"
" for %s\n",
lla_snprintf(ar_sha(ah), ah->ar_hln),
in_fmtaddr(isaddr));
goto out;
} else if (la->lle_tbl->llt_ifp != ifp) {
/* XXX should not happen? */
ARP_STATINC(ARP_STAT_RCVOVERINT);
if (!log_wrong_iface)
goto out;
log(LOG_INFO,
"%s on %s tried to overwrite "
"arp info for %s on %s\n",
lla_snprintf(ar_sha(ah), ah->ar_hln),
ifp->if_xname, in_fmtaddr(isaddr),
la->lle_tbl->llt_ifp->if_xname);
goto out;
} else {
ARP_STATINC(ARP_STAT_RCVOVER);
if (log_movements)
log(LOG_INFO, "arp info overwritten "
"for %s by %s\n",
in_fmtaddr(isaddr),
lla_snprintf(ar_sha(ah),
ah->ar_hln));
}
}
/* XXX llentry should have addrlen? */
#if 0
/*
* sanity check for the address length.
* XXX this does not work for protocols with variable address
* length. -is
*/
if (sdl->sdl_alen && sdl->sdl_alen != ah->ar_hln) {
ARP_STATINC(ARP_STAT_RCVLENCHG);
log(LOG_WARNING,
"arp from %s: new addr len %d, was %d\n",
in_fmtaddr(isaddr), ah->ar_hln, sdl->sdl_alen);
}
#endif
if (ifp->if_addrlen != ah->ar_hln) {
ARP_STATINC(ARP_STAT_RCVBADLEN);
log(LOG_WARNING,
"arp from %s: addr len: new %d, i/f %d (ignored)\n",
in_fmtaddr(isaddr), ah->ar_hln,
ifp->if_addrlen);
goto reply;
}
#if NTOKEN > 0
/*
* XXX uses m_data and assumes the complete answer including
* XXX token-ring headers is in the same buf
*/
if (ifp->if_type == IFT_ISO88025) {
struct token_header *trh;
trh = (struct token_header *)M_TRHSTART(m);
if (trh->token_shost[0] & TOKEN_RI_PRESENT) {
struct token_rif *rif;
size_t riflen;
rif = TOKEN_RIF(trh);
riflen = (ntohs(rif->tr_rcf) &
TOKEN_RCF_LEN_MASK) >> 8;
if (riflen > 2 &&
riflen < sizeof(struct token_rif) &&
(riflen & 1) == 0) {
rif->tr_rcf ^= htons(TOKEN_RCF_DIRECTION);
rif->tr_rcf &= htons(~TOKEN_RCF_BROADCAST_MASK);
memcpy(TOKEN_RIF_LLE(la), rif, riflen);
}
}
}
#endif /* NTOKEN > 0 */
KASSERT(sizeof(la->ll_addr) >= ifp->if_addrlen);
(void)memcpy(&la->ll_addr, ar_sha(ah), ifp->if_addrlen);
la->la_flags |= LLE_VALID;
if ((la->la_flags & LLE_STATIC) == 0) {
la->la_expire = time_uptime + arpt_keep;
arp_settimer(la, arpt_keep);
}
la->la_asked = 0;
/* rt->rt_flags &= ~RTF_REJECT; */
if (la->la_hold != NULL) {
int n = la->la_numheld;
struct mbuf *m_hold, *m_hold_next;
struct sockaddr_in sin;
sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0);
m_hold = la->la_hold;
la->la_hold = NULL;
la->la_numheld = 0;
/*
* We have to unlock here because if_output would call
* arpresolve
*/
LLE_WUNLOCK(la);
ARP_STATADD(ARP_STAT_DFRSENT, n);
for (; m_hold != NULL; m_hold = m_hold_next) {
m_hold_next = m_hold->m_nextpkt;
m_hold->m_nextpkt = NULL;
if_output_lock(ifp, ifp, m_hold, sintosa(&sin), NULL);
}
} else
LLE_WUNLOCK(la);
la = NULL;
reply:
if (la != NULL) {
LLE_WUNLOCK(la);
la = NULL;
}
if (op != ARPOP_REQUEST) {
if (op == ARPOP_REPLY)
ARP_STATINC(ARP_STAT_RCVREPLY);
goto out;
}
ARP_STATINC(ARP_STAT_RCVREQUEST);
if (in_hosteq(itaddr, myaddr)) {
/* If our address is unuseable, don't reply */
if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED))
goto out;
/* I am the target */
tha = ar_tha(ah);
if (tha)
memcpy(tha, ar_sha(ah), ah->ar_hln);
memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln);
} else {
/* Proxy ARP */
struct llentry *lle = NULL;
struct sockaddr_in sin;
#if NCARP > 0
int s;
struct ifnet *_rcvif = m_get_rcvif(m, &s);
if (ifp->if_type == IFT_CARP && _rcvif->if_type != IFT_CARP)
goto out;
m_put_rcvif(_rcvif, &s);
#endif
tha = ar_tha(ah);
sockaddr_in_init(&sin, &itaddr, 0);
IF_AFDATA_RLOCK(ifp);
lle = lla_lookup(LLTABLE(ifp), 0, (struct sockaddr *)&sin);
IF_AFDATA_RUNLOCK(ifp);
if ((lle != NULL) && (lle->la_flags & LLE_PUB)) {
(void)memcpy(tha, ar_sha(ah), ah->ar_hln);
(void)memcpy(ar_sha(ah), &lle->ll_addr, ah->ar_hln);
LLE_RUNLOCK(lle);
} else {
if (lle != NULL)
LLE_RUNLOCK(lle);
goto drop;
}
}
memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln);
memcpy(ar_spa(ah), &itaddr, ah->ar_pln);
ah->ar_op = htons(ARPOP_REPLY);
ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */
switch (ifp->if_type) {
case IFT_IEEE1394:
/*
* ieee1394 arp reply is broadcast
*/
m->m_flags &= ~M_MCAST;
m->m_flags |= M_BCAST;
m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + ah->ar_hln;
break;
default:
m->m_flags &= ~(M_BCAST|M_MCAST); /* never reply by broadcast */
m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln);
break;
}
m->m_pkthdr.len = m->m_len;
sa.sa_family = AF_ARP;
sa.sa_len = 2;
arps = ARP_STAT_GETREF();
arps[ARP_STAT_SNDTOTAL]++;
arps[ARP_STAT_SNDREPLY]++;
ARP_STAT_PUTREF();
if_output_lock(ifp, ifp, m, &sa, NULL);
if (rcvif != NULL)
m_put_rcvif_psref(rcvif, &psref);
return;
out:
if (la != NULL)
LLE_WUNLOCK(la);
drop:
if (rcvif != NULL)
m_put_rcvif_psref(rcvif, &psref);
m_freem(m);
}
/*
* Lookup or a new address in arptab.
*/
static struct llentry *
arplookup(struct ifnet *ifp, struct mbuf *m, const struct in_addr *addr,
const struct sockaddr *sa, int wlock)
{
struct sockaddr_in sin;
struct llentry *la;
int flags = wlock ? LLE_EXCLUSIVE : 0;
if (sa == NULL) {
KASSERT(addr != NULL);
sockaddr_in_init(&sin, addr, 0);
sa = sintocsa(&sin);
}
IF_AFDATA_RLOCK(ifp);
la = lla_lookup(LLTABLE(ifp), flags, sa);
IF_AFDATA_RUNLOCK(ifp);
return la;
}
static struct llentry *
arpcreate(struct ifnet *ifp, struct mbuf *m, const struct in_addr *addr,
const struct sockaddr *sa, int wlock)
{
struct sockaddr_in sin;
struct llentry *la;
int flags = wlock ? LLE_EXCLUSIVE : 0;
if (sa == NULL) {
KASSERT(addr != NULL);
sockaddr_in_init(&sin, addr, 0);
sa = sintocsa(&sin);
}
la = arplookup(ifp, m, addr, sa, wlock);
if (la == NULL) {
IF_AFDATA_WLOCK(ifp);
la = lla_create(LLTABLE(ifp), flags, sa);
IF_AFDATA_WUNLOCK(ifp);
if (la != NULL)
arp_init_llentry(ifp, la);
}
return la;
}
int
arpioctl(u_long cmd, void *data)
{
return EOPNOTSUPP;
}
void
arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa)
{
struct in_addr *ip;
struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
/*
* Warn the user if another station has this IP address,
* but only if the interface IP address is not zero.
*/
ip = &IA_SIN(ifa)->sin_addr;
if (!in_nullhost(*ip) &&
(ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED)) == 0) {
struct llentry *lle;
arprequest(ifp, ip, ip, CLLADDR(ifp->if_sadl));
/*
* interface address is considered static entry
* because the output of the arp utility shows
* that L2 entry as permanent
*/
IF_AFDATA_WLOCK(ifp);
lle = lla_create(LLTABLE(ifp), (LLE_IFADDR | LLE_STATIC),
(struct sockaddr *)IA_SIN(ifa));
IF_AFDATA_WUNLOCK(ifp);
if (lle == NULL)
log(LOG_INFO, "%s: cannot create arp entry for"
" interface address\n", __func__);
else {
arp_init_llentry(ifp, lle);
LLE_RUNLOCK(lle);
}
}
ifa->ifa_rtrequest = arp_rtrequest;
ifa->ifa_flags |= RTF_CONNECTED;
/* ARP will handle DAD for this address. */
if (ia->ia4_flags & IN_IFF_TRYTENTATIVE) {
ia->ia4_flags |= IN_IFF_TENTATIVE;
ia->ia_dad_start = arp_dad_start;
ia->ia_dad_stop = arp_dad_stop;
}
}
TAILQ_HEAD(dadq_head, dadq);
struct dadq {
TAILQ_ENTRY(dadq) dad_list;
struct ifaddr *dad_ifa;
int dad_count; /* max ARP to send */
int dad_arp_tcount; /* # of trials to send ARP */
int dad_arp_ocount; /* ARP sent so far */
int dad_arp_announce; /* max ARP announcements */
int dad_arp_acount; /* # of announcements */
struct callout dad_timer_ch;
};
MALLOC_JUSTDEFINE(M_IPARP, "ARP DAD", "ARP DAD Structure");
static struct dadq_head dadq;
static int dad_init = 0;
static int dad_maxtry = 15; /* max # of *tries* to transmit DAD packet */
static struct dadq *
arp_dad_find(struct ifaddr *ifa)
{
struct dadq *dp;
TAILQ_FOREACH(dp, &dadq, dad_list) {
if (dp->dad_ifa == ifa)
return dp;
}
return NULL;
}
static void
arp_dad_starttimer(struct dadq *dp, int ticks)
{
callout_reset(&dp->dad_timer_ch, ticks,
(void (*)(void *))arp_dad_timer, (void *)dp->dad_ifa);
}
static void
arp_dad_stoptimer(struct dadq *dp)
{
callout_stop(&dp->dad_timer_ch);
}
static void
arp_dad_output(struct dadq *dp, struct ifaddr *ifa)
{
struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
struct ifnet *ifp = ifa->ifa_ifp;
struct in_addr sip;
dp->dad_arp_tcount++;
if ((ifp->if_flags & IFF_UP) == 0)
return;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
dp->dad_arp_tcount = 0;
dp->dad_arp_ocount++;
memset(&sip, 0, sizeof(sip));
arprequest(ifa->ifa_ifp, &sip, &ia->ia_addr.sin_addr,
CLLADDR(ifa->ifa_ifp->if_sadl));
}
/*
* Start Duplicate Address Detection (DAD) for specified interface address.
*/
static void
arp_dad_start(struct ifaddr *ifa)
{
struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
struct dadq *dp;
if (!dad_init) {
TAILQ_INIT(&dadq);
dad_init++;
}
/*
* If we don't need DAD, don't do it.
* - DAD is disabled (ip_dad_count == 0)
*/
if (!(ia->ia4_flags & IN_IFF_TENTATIVE)) {
log(LOG_DEBUG,
"%s: called with non-tentative address %s(%s)\n", __func__,
in_fmtaddr(ia->ia_addr.sin_addr),
ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
return;
}
if (!ip_dad_count) {
struct in_addr *ip = &IA_SIN(ifa)->sin_addr;
ia->ia4_flags &= ~IN_IFF_TENTATIVE;
rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
arprequest(ifa->ifa_ifp, ip, ip,
CLLADDR(ifa->ifa_ifp->if_sadl));
return;
}
if (ifa->ifa_ifp == NULL)
panic("arp_dad_start: ifa->ifa_ifp == NULL");
if (!(ifa->ifa_ifp->if_flags & IFF_UP))
return;
if (arp_dad_find(ifa) != NULL) {
/* DAD already in progress */
return;
}
dp = malloc(sizeof(*dp), M_IPARP, M_NOWAIT);
if (dp == NULL) {
log(LOG_ERR, "%s: memory allocation failed for %s(%s)\n",
__func__, in_fmtaddr(ia->ia_addr.sin_addr),
ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
return;
}
memset(dp, 0, sizeof(*dp));
callout_init(&dp->dad_timer_ch, CALLOUT_MPSAFE);
TAILQ_INSERT_TAIL(&dadq, (struct dadq *)dp, dad_list);
arplog((LOG_DEBUG, "%s: starting DAD for %s\n", if_name(ifa->ifa_ifp),
in_fmtaddr(ia->ia_addr.sin_addr)));
/*
* Send ARP packet for DAD, ip_dad_count times.
* Note that we must delay the first transmission.
*/
dp->dad_ifa = ifa;
ifaref(ifa); /* just for safety */
dp->dad_count = ip_dad_count;
dp->dad_arp_announce = 0; /* Will be set when starting to announce */
dp->dad_arp_acount = dp->dad_arp_ocount = dp->dad_arp_tcount = 0;
arp_dad_starttimer(dp, cprng_fast32() % (PROBE_WAIT * hz));
}
/*
* terminate DAD unconditionally. used for address removals.
*/
static void
arp_dad_stop(struct ifaddr *ifa)
{
struct dadq *dp;
if (!dad_init)
return;
dp = arp_dad_find(ifa);
if (dp == NULL) {
/* DAD wasn't started yet */
return;
}
arp_dad_stoptimer(dp);
TAILQ_REMOVE(&dadq, dp, dad_list);
free(dp, M_IPARP);
dp = NULL;
ifafree(ifa);
}
static void
arp_dad_timer(struct ifaddr *ifa)
{
struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
struct dadq *dp;
struct in_addr *ip;
mutex_enter(softnet_lock);
KERNEL_LOCK(1, NULL);
/* Sanity check */
if (ia == NULL) {
log(LOG_ERR, "%s: called with null parameter\n", __func__);
goto done;
}
dp = arp_dad_find(ifa);
if (dp == NULL) {
log(LOG_ERR, "%s: DAD structure not found\n", __func__);
goto done;
}
if (ia->ia4_flags & IN_IFF_DUPLICATED) {
log(LOG_ERR, "%s: called with duplicate address %s(%s)\n",
__func__, in_fmtaddr(ia->ia_addr.sin_addr),
ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
goto done;
}
if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0 && dp->dad_arp_acount == 0)
{
log(LOG_ERR, "%s: called with non-tentative address %s(%s)\n",
__func__, in_fmtaddr(ia->ia_addr.sin_addr),
ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
goto done;
}
/* timeouted with IFF_{RUNNING,UP} check */
if (dp->dad_arp_tcount > dad_maxtry) {
arplog((LOG_INFO, "%s: could not run DAD, driver problem?\n",
if_name(ifa->ifa_ifp)));
TAILQ_REMOVE(&dadq, dp, dad_list);
free(dp, M_IPARP);
dp = NULL;
ifafree(ifa);
goto done;
}
/* Need more checks? */
if (dp->dad_arp_ocount < dp->dad_count) {
int adelay;
/*
* We have more ARP to go. Send ARP packet for DAD.
*/
arp_dad_output(dp, ifa);
if (dp->dad_arp_ocount < dp->dad_count)
adelay = (PROBE_MIN * hz) +
(cprng_fast32() %
((PROBE_MAX * hz) - (PROBE_MIN * hz)));
else
adelay = ANNOUNCE_WAIT * hz;
arp_dad_starttimer(dp, adelay);
goto done;
} else if (dp->dad_arp_acount == 0) {
/*
* We are done with DAD.
* No duplicate address found.
*/
ia->ia4_flags &= ~IN_IFF_TENTATIVE;
rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
arplog((LOG_DEBUG,
"%s: DAD complete for %s - no duplicates found\n",
if_name(ifa->ifa_ifp),
in_fmtaddr(ia->ia_addr.sin_addr)));
dp->dad_arp_announce = ANNOUNCE_NUM;
goto announce;
} else if (dp->dad_arp_acount < dp->dad_arp_announce) {
announce:
/*
* Announce the address.
*/
ip = &IA_SIN(ifa)->sin_addr;
arprequest(ifa->ifa_ifp, ip, ip,
CLLADDR(ifa->ifa_ifp->if_sadl));
dp->dad_arp_acount++;
if (dp->dad_arp_acount < dp->dad_arp_announce) {
arp_dad_starttimer(dp, ANNOUNCE_INTERVAL * hz);
goto done;
}
arplog((LOG_DEBUG,
"%s: ARP announcement complete for %s\n",
if_name(ifa->ifa_ifp),
in_fmtaddr(ia->ia_addr.sin_addr)));
}
TAILQ_REMOVE(&dadq, dp, dad_list);
free(dp, M_IPARP);
dp = NULL;
ifafree(ifa);
done:
KERNEL_UNLOCK_ONE(NULL);
mutex_exit(softnet_lock);
}
static void
arp_dad_duplicated(struct ifaddr *ifa)
{
struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
struct ifnet *ifp;
struct dadq *dp;
dp = arp_dad_find(ifa);
if (dp == NULL) {
log(LOG_ERR, "%s: DAD structure not found\n", __func__);
return;
}
ifp = ifa->ifa_ifp;
log(LOG_ERR,
"%s: DAD detected duplicate IPv4 address %s: ARP out=%d\n",
if_name(ifp), in_fmtaddr(ia->ia_addr.sin_addr),
dp->dad_arp_ocount);
ia->ia4_flags &= ~IN_IFF_TENTATIVE;
ia->ia4_flags |= IN_IFF_DUPLICATED;
/* We are done with DAD, with duplicated address found. (failure) */
arp_dad_stoptimer(dp);
/* Inform the routing socket that DAD has completed */
rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
TAILQ_REMOVE(&dadq, dp, dad_list);
free(dp, M_IPARP);
dp = NULL;
ifafree(ifa);
}
/*
* Called from 10 Mb/s Ethernet interrupt handlers
* when ether packet type ETHERTYPE_REVARP
* is received. Common length and type checks are done here,
* then the protocol-specific routine is called.
*/
void
revarpinput(struct mbuf *m)
{
struct arphdr *ar;
if (m->m_len < sizeof(struct arphdr))
goto out;
ar = mtod(m, struct arphdr *);
#if 0 /* XXX I don't think we need this... and it will prevent other LL */
if (ntohs(ar->ar_hrd) != ARPHRD_ETHER)
goto out;
#endif
if (m->m_len < sizeof(struct arphdr) + 2 * (ar->ar_hln + ar->ar_pln))
goto out;
switch (ntohs(ar->ar_pro)) {
case ETHERTYPE_IP:
case ETHERTYPE_IPTRAILERS:
in_revarpinput(m);
return;
default:
break;
}
out:
m_freem(m);
}
/*
* RARP for Internet protocols on 10 Mb/s Ethernet.
* Algorithm is that given in RFC 903.
* We are only using for bootstrap purposes to get an ip address for one of
* our interfaces. Thus we support no user-interface.
*
* Since the contents of the RARP reply are specific to the interface that
* sent the request, this code must ensure that they are properly associated.
*
* Note: also supports ARP via RARP packets, per the RFC.
*/
void
in_revarpinput(struct mbuf *m)
{
struct arphdr *ah;
void *tha;
int op;
struct ifnet *rcvif;
int s;
ah = mtod(m, struct arphdr *);
op = ntohs(ah->ar_op);
rcvif = m_get_rcvif(m, &s);
switch (rcvif->if_type) {
case IFT_IEEE1394:
/* ARP without target hardware address is not supported */
goto out;
default:
break;
}
switch (op) {
case ARPOP_REQUEST:
case ARPOP_REPLY: /* per RFC */
m_put_rcvif(rcvif, &s);
in_arpinput(m);
return;
case ARPOP_REVREPLY:
break;
case ARPOP_REVREQUEST: /* handled by rarpd(8) */
default:
goto out;
}
if (!revarp_in_progress)
goto out;
if (rcvif != myip_ifp) /* !same interface */
goto out;
if (myip_initialized)
goto wake;
tha = ar_tha(ah);
if (tha == NULL)
goto out;
if (memcmp(tha, CLLADDR(rcvif->if_sadl), rcvif->if_sadl->sdl_alen))
goto out;
memcpy(&srv_ip, ar_spa(ah), sizeof(srv_ip));
memcpy(&myip, ar_tpa(ah), sizeof(myip));
myip_initialized = 1;
wake: /* Do wakeup every time in case it was missed. */
wakeup((void *)&myip);
out:
m_put_rcvif(rcvif, &s);
m_freem(m);
}
/*
* Send a RARP request for the ip address of the specified interface.
* The request should be RFC 903-compliant.
*/
static void
revarprequest(struct ifnet *ifp)
{
struct sockaddr sa;
struct mbuf *m;
struct arphdr *ah;
void *tha;
if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
return;
MCLAIM(m, &arpdomain.dom_mowner);
m->m_len = sizeof(*ah) + 2*sizeof(struct in_addr) +
2*ifp->if_addrlen;
m->m_pkthdr.len = m->m_len;
MH_ALIGN(m, m->m_len);
ah = mtod(m, struct arphdr *);
memset(ah, 0, m->m_len);
ah->ar_pro = htons(ETHERTYPE_IP);
ah->ar_hln = ifp->if_addrlen; /* hardware address length */
ah->ar_pln = sizeof(struct in_addr); /* protocol address length */
ah->ar_op = htons(ARPOP_REVREQUEST);
memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln);
tha = ar_tha(ah);
if (tha == NULL) {
m_free(m);
return;
}
memcpy(tha, CLLADDR(ifp->if_sadl), ah->ar_hln);
sa.sa_family = AF_ARP;
sa.sa_len = 2;
m->m_flags |= M_BCAST;
if_output_lock(ifp, ifp, m, &sa, NULL);
}
/*
* RARP for the ip address of the specified interface, but also
* save the ip address of the server that sent the answer.
* Timeout if no response is received.
*/
int
revarpwhoarewe(struct ifnet *ifp, struct in_addr *serv_in,
struct in_addr *clnt_in)
{
int result, count = 20;
myip_initialized = 0;
myip_ifp = ifp;
revarp_in_progress = 1;
while (count--) {
revarprequest(ifp);
result = tsleep((void *)&myip, PSOCK, "revarp", hz/2);
if (result != EWOULDBLOCK)
break;
}
revarp_in_progress = 0;
if (!myip_initialized)
return ENETUNREACH;
memcpy(serv_in, &srv_ip, sizeof(*serv_in));
memcpy(clnt_in, &myip, sizeof(*clnt_in));
return 0;
}
void
arp_stat_add(int type, uint64_t count)
{
ARP_STATADD(type, count);
}
static int
sysctl_net_inet_arp_stats(SYSCTLFN_ARGS)
{
return NETSTAT_SYSCTL(arpstat_percpu, ARP_NSTATS);
}
static void
sysctl_net_inet_arp_setup(struct sysctllog **clog)
{
const struct sysctlnode *node;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "inet", NULL,
NULL, 0, NULL, 0,
CTL_NET, PF_INET, CTL_EOL);
sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "arp",
SYSCTL_DESCR("Address Resolution Protocol"),
NULL, 0, NULL, 0,
CTL_NET, PF_INET, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "keep",
SYSCTL_DESCR("Valid ARP entry lifetime in seconds"),
NULL, 0, &arpt_keep, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "down",
SYSCTL_DESCR("Failed ARP entry lifetime in seconds"),
NULL, 0, &arpt_down, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "stats",
SYSCTL_DESCR("ARP statistics"),
sysctl_net_inet_arp_stats, 0, NULL, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "log_movements",
SYSCTL_DESCR("log ARP replies from MACs different than"
" the one in the cache"),
NULL, 0, &log_movements, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "log_permanent_modify",
SYSCTL_DESCR("log ARP replies from MACs different than"
" the one in the permanent arp entry"),
NULL, 0, &log_permanent_modify, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "log_wrong_iface",
SYSCTL_DESCR("log ARP packets arriving on the wrong"
" interface"),
NULL, 0, &log_wrong_iface, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "log_unknown_network",
SYSCTL_DESCR("log ARP packets from non-local network"),
NULL, 0, &log_unknown_network, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "debug",
SYSCTL_DESCR("Enable ARP DAD debug output"),
NULL, 0, &arp_debug, 0,
CTL_NET, PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
}
#endif /* INET */