NetBSD/sys/dev/tc/zs_ioasic.c
2005-08-26 12:42:11 +00:00

901 lines
20 KiB
C

/* $NetBSD: zs_ioasic.c,v 1.28 2005/08/26 12:42:11 drochner Exp $ */
/*-
* Copyright (c) 1996, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Gordon W. Ross, Ken Hornstein, and by Jason R. Thorpe of the
* Numerical Aerospace Simulation Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Zilog Z8530 Dual UART driver (machine-dependent part). This driver
* handles Z8530 chips attached to the DECstation/Alpha IOASIC. Modified
* for NetBSD/alpha by Ken Hornstein and Jason R. Thorpe. NetBSD/pmax
* adaption by Mattias Drochner. Merge work by Tohru Nishimura.
*
* Runs two serial lines per chip using slave drivers.
* Plain tty/async lines use the zstty slave.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: zs_ioasic.c,v 1.28 2005/08/26 12:42:11 drochner Exp $");
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "zskbd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/syslog.h>
#include <machine/autoconf.h>
#include <machine/intr.h>
#include <machine/z8530var.h>
#include <dev/cons.h>
#include <dev/ic/z8530reg.h>
#include <dev/tc/tcvar.h>
#include <dev/tc/ioasicreg.h>
#include <dev/tc/ioasicvar.h>
#include <dev/tc/zs_ioasicvar.h>
#if defined(__alpha__) || defined(alpha)
#include <machine/rpb.h>
#endif
#if defined(pmax)
#include <pmax/pmax/pmaxtype.h>
#endif
/*
* Helpers for console support.
*/
void zs_ioasic_cninit(tc_addr_t, tc_offset_t, int);
int zs_ioasic_cngetc(dev_t);
void zs_ioasic_cnputc(dev_t, int);
void zs_ioasic_cnpollc(dev_t, int);
struct consdev zs_ioasic_cons = {
NULL, NULL, zs_ioasic_cngetc, zs_ioasic_cnputc,
zs_ioasic_cnpollc, NULL, NULL, NULL, NODEV, CN_NORMAL,
};
tc_offset_t zs_ioasic_console_offset;
int zs_ioasic_console_channel;
int zs_ioasic_console;
struct zs_chanstate zs_ioasic_conschanstate_store;
int zs_ioasic_isconsole(tc_offset_t, int);
int zs_getc(struct zs_chanstate *);
void zs_putc(struct zs_chanstate *, int);
/*
* Some warts needed by z8530tty.c
*/
int zs_def_cflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8;
/*
* ZS chips are feeded a 7.372 MHz clock.
*/
#define PCLK (9600 * 768) /* PCLK pin input clock rate */
/* The layout of this is hardware-dependent (padding, order). */
struct zshan {
#if defined(__alpha__) || defined(alpha)
volatile u_int zc_csr; /* ctrl,status, and indirect access */
u_int zc_pad0;
volatile u_int zc_data; /* data */
u_int sc_pad1;
#endif
#if defined(pmax)
volatile u_int16_t zc_csr; /* ctrl,status, and indirect access */
unsigned : 16;
volatile u_int16_t zc_data; /* data */
unsigned : 16;
#endif
};
struct zsdevice {
/* Yes, they are backwards. */
struct zshan zs_chan_b;
struct zshan zs_chan_a;
};
static u_char zs_ioasic_init_reg[16] = {
0, /* 0: CMD (reset, etc.) */
0, /* 1: No interrupts yet. */
0xf0, /* 2: IVECT */
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
ZSWR4_CLK_X16 | ZSWR4_ONESB,
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
0, /* 6: TXSYNC/SYNCLO */
0, /* 7: RXSYNC/SYNCHI */
0, /* 8: alias for data port */
ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
0, /*10: Misc. TX/RX control bits */
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
22, /*12: BAUDLO (default=9600) */
0, /*13: BAUDHI (default=9600) */
ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
ZSWR15_BREAK_IE,
};
struct zshan *zs_ioasic_get_chan_addr(tc_addr_t, int);
struct zshan *
zs_ioasic_get_chan_addr(zsaddr, channel)
tc_addr_t zsaddr;
int channel;
{
struct zsdevice *addr;
struct zshan *zc;
#if defined(__alpha__) || defined(alpha)
addr = (struct zsdevice *)TC_DENSE_TO_SPARSE(zsaddr);
#endif
#if defined(pmax)
addr = (struct zsdevice *)MIPS_PHYS_TO_KSEG1(zsaddr);
#endif
if (channel == 0)
zc = &addr->zs_chan_a;
else
zc = &addr->zs_chan_b;
return (zc);
}
/****************************************************************
* Autoconfig
****************************************************************/
/* Definition of the driver for autoconfig. */
int zs_ioasic_match(struct device *, struct cfdata *, void *);
void zs_ioasic_attach(struct device *, struct device *, void *);
int zs_ioasic_print(void *, const char *name);
int zs_ioasic_submatch(struct device *, struct cfdata *,
const int *, void *);
CFATTACH_DECL(zsc_ioasic, sizeof(struct zsc_softc),
zs_ioasic_match, zs_ioasic_attach, NULL, NULL);
/* Interrupt handlers. */
int zs_ioasic_hardintr(void *);
void zs_ioasic_softintr(void *);
/*
* Is the zs chip present?
*/
int
zs_ioasic_match(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct ioasicdev_attach_args *d = aux;
tc_addr_t zs_addr;
/*
* Make sure that we're looking for the right kind of device.
*/
if (strncmp(d->iada_modname, "z8530 ", TC_ROM_LLEN) != 0 &&
strncmp(d->iada_modname, "scc", TC_ROM_LLEN) != 0)
return (0);
/*
* Find out the device address, and check it for validity.
*/
zs_addr = TC_DENSE_TO_SPARSE((tc_addr_t)d->iada_addr);
if (tc_badaddr(zs_addr))
return (0);
return (1);
}
/*
* Attach a found zs.
*/
void
zs_ioasic_attach(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
struct zsc_softc *zs = (void *) self;
struct zsc_attach_args zs_args;
struct zs_chanstate *cs;
struct ioasicdev_attach_args *d = aux;
struct zshan *zc;
int s, channel;
u_long zflg;
int locs[ZSCCF_NLOCS];
printf("\n");
/*
* Initialize software state for each channel.
*/
for (channel = 0; channel < 2; channel++) {
zs_args.channel = channel;
zs_args.hwflags = 0;
if (zs_ioasic_isconsole(d->iada_offset, channel)) {
cs = &zs_ioasic_conschanstate_store;
zs_args.hwflags |= ZS_HWFLAG_CONSOLE;
} else {
cs = malloc(sizeof(struct zs_chanstate),
M_DEVBUF, M_NOWAIT|M_ZERO);
zc = zs_ioasic_get_chan_addr(d->iada_addr, channel);
cs->cs_reg_csr = (volatile void *)&zc->zc_csr;
bcopy(zs_ioasic_init_reg, cs->cs_creg, 16);
bcopy(zs_ioasic_init_reg, cs->cs_preg, 16);
cs->cs_defcflag = zs_def_cflag;
cs->cs_defspeed = 9600; /* XXX */
(void) zs_set_modes(cs, cs->cs_defcflag);
}
zs->zsc_cs[channel] = cs;
zs->zsc_addroffset = d->iada_offset; /* cookie only */
cs->cs_channel = channel;
cs->cs_ops = &zsops_null;
cs->cs_brg_clk = PCLK / 16;
/*
* DCD and CTS interrupts are only meaningful on
* SCC 0/B, and RTS and DTR only on B of SCC 0 & 1.
*
* XXX This is sorta gross.
*/
if (d->iada_offset == 0x00100000 && channel == 1) {
cs->cs_creg[15] |= ZSWR15_DCD_IE;
cs->cs_preg[15] |= ZSWR15_DCD_IE;
zflg = ZIP_FLAGS_DCDCTS;
} else
zflg = 0;
if (channel == 1)
zflg |= ZIP_FLAGS_DTRRTS;
(u_long)cs->cs_private = zflg;
/*
* Clear the master interrupt enable.
* The INTENA is common to both channels,
* so just do it on the A channel.
*/
if (channel == 0) {
zs_write_reg(cs, 9, 0);
}
/*
* Set up the flow/modem control channel pointer to
* deal with the weird wiring on the TC Alpha and
* DECstation.
*/
if (channel == 1)
cs->cs_ctl_chan = zs->zsc_cs[0];
else
cs->cs_ctl_chan = NULL;
locs[ZSCCF_CHANNEL] = channel;
/*
* Look for a child driver for this channel.
* The child attach will setup the hardware.
*/
if (config_found_sm_loc(self, "zsc", locs, (void *)&zs_args,
zs_ioasic_print, zs_ioasic_submatch) == NULL) {
/* No sub-driver. Just reset it. */
u_char reset = (channel == 0) ?
ZSWR9_A_RESET : ZSWR9_B_RESET;
s = splhigh();
zs_write_reg(cs, 9, reset);
splx(s);
}
}
/*
* Set up the ioasic interrupt handler.
*/
ioasic_intr_establish(parent, d->iada_cookie, TC_IPL_TTY,
zs_ioasic_hardintr, zs);
zs->zsc_sih = softintr_establish(IPL_SOFTSERIAL,
zs_ioasic_softintr, zs);
if (zs->zsc_sih == NULL)
panic("zs_ioasic_attach: unable to register softintr");
/*
* Set the master interrupt enable and interrupt vector. The
* Sun does this only on one channel. The old Alpha SCC driver
* did it on both. We'll do it on both.
*/
s = splhigh();
/* interrupt vector */
zs_write_reg(zs->zsc_cs[0], 2, zs_ioasic_init_reg[2]);
zs_write_reg(zs->zsc_cs[1], 2, zs_ioasic_init_reg[2]);
/* master interrupt control (enable) */
zs_write_reg(zs->zsc_cs[0], 9, zs_ioasic_init_reg[9]);
zs_write_reg(zs->zsc_cs[1], 9, zs_ioasic_init_reg[9]);
#if defined(__alpha__) || defined(alpha)
/* ioasic interrupt enable */
*(volatile u_int *)(ioasic_base + IOASIC_IMSK) |=
IOASIC_INTR_SCC_1 | IOASIC_INTR_SCC_0;
tc_mb();
#endif
splx(s);
}
int
zs_ioasic_print(aux, name)
void *aux;
const char *name;
{
struct zsc_attach_args *args = aux;
if (name != NULL)
aprint_normal("%s:", name);
if (args->channel != -1)
aprint_normal(" channel %d", args->channel);
return (UNCONF);
}
int
zs_ioasic_submatch(parent, cf, locs, aux)
struct device *parent;
struct cfdata *cf;
const int *locs;
void *aux;
{
struct zsc_softc *zs = (void *)parent;
struct zsc_attach_args *pa = aux;
const char *defname = "";
if (cf->cf_loc[ZSCCF_CHANNEL] != ZSCCF_CHANNEL_DEFAULT &&
cf->cf_loc[ZSCCF_CHANNEL] != locs[ZSCCF_CHANNEL])
return (0);
if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT) {
if (pa->channel == 0) {
#if defined(pmax)
if (systype == DS_MAXINE)
return (0);
#endif
if (zs->zsc_addroffset == 0x100000)
defname = "vsms";
else
defname = "lkkbd";
}
else if (zs->zsc_addroffset == 0x100000)
defname = "zstty";
#if defined(pmax)
else if (systype == DS_MAXINE)
return (0);
#endif
#if defined(__alpha__) || defined(alpha)
else if (cputype == ST_DEC_3000_300)
return (0);
#endif
else
defname = "zstty"; /* 3min/3max+, DEC3000/500 */
if (strcmp(cf->cf_name, defname))
return (0);
}
return (config_match(parent, cf, aux));
}
/*
* Hardware interrupt handler.
*/
int
zs_ioasic_hardintr(arg)
void *arg;
{
struct zsc_softc *zsc = arg;
/*
* Call the upper-level MI hardware interrupt handler.
*/
zsc_intr_hard(zsc);
/*
* Check to see if we need to schedule any software-level
* processing interrupts.
*/
if (zsc->zsc_cs[0]->cs_softreq | zsc->zsc_cs[1]->cs_softreq)
softintr_schedule(zsc->zsc_sih);
return (1);
}
/*
* Software-level interrupt (character processing, lower priority).
*/
void
zs_ioasic_softintr(arg)
void *arg;
{
struct zsc_softc *zsc = arg;
int s;
s = spltty();
(void) zsc_intr_soft(zsc);
splx(s);
}
/*
* MD functions for setting the baud rate and control modes.
*/
int
zs_set_speed(cs, bps)
struct zs_chanstate *cs;
int bps; /* bits per second */
{
int tconst, real_bps;
if (bps == 0)
return (0);
#ifdef DIAGNOSTIC
if (cs->cs_brg_clk == 0)
panic("zs_set_speed");
#endif
tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
if (tconst < 0)
return (EINVAL);
/* Convert back to make sure we can do it. */
real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
/* XXX - Allow some tolerance here? */
if (real_bps != bps)
return (EINVAL);
cs->cs_preg[12] = tconst;
cs->cs_preg[13] = tconst >> 8;
/* Caller will stuff the pending registers. */
return (0);
}
int
zs_set_modes(cs, cflag)
struct zs_chanstate *cs;
int cflag; /* bits per second */
{
u_long privflags = (u_long)cs->cs_private;
int s;
/*
* Output hardware flow control on the chip is horrendous:
* if carrier detect drops, the receiver is disabled, and if
* CTS drops, the transmitter is stoped IN MID CHARACTER!
* Therefore, NEVER set the HFC bit, and instead use the
* status interrupt to detect CTS changes.
*/
s = splzs();
if ((cflag & (CLOCAL | MDMBUF)) != 0)
cs->cs_rr0_dcd = 0;
else
cs->cs_rr0_dcd = ZSRR0_DCD;
if ((cflag & CRTSCTS) != 0) {
cs->cs_wr5_dtr = ZSWR5_DTR;
cs->cs_wr5_rts = ZSWR5_RTS;
cs->cs_rr0_cts = ZSRR0_CTS;
} else if ((cflag & CDTRCTS) != 0) {
cs->cs_wr5_dtr = 0;
cs->cs_wr5_rts = ZSWR5_DTR;
cs->cs_rr0_cts = ZSRR0_CTS;
} else if ((cflag & MDMBUF) != 0) {
cs->cs_wr5_dtr = 0;
cs->cs_wr5_rts = ZSWR5_DTR;
cs->cs_rr0_cts = ZSRR0_DCD;
} else {
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
cs->cs_rr0_cts = 0;
}
if ((privflags & ZIP_FLAGS_DCDCTS) == 0) {
cs->cs_rr0_dcd &= ~(ZSRR0_CTS|ZSRR0_DCD);
cs->cs_rr0_cts &= ~(ZSRR0_CTS|ZSRR0_DCD);
}
if ((privflags & ZIP_FLAGS_DTRRTS) == 0) {
cs->cs_wr5_dtr &= ~(ZSWR5_RTS|ZSWR5_DTR);
cs->cs_wr5_rts &= ~(ZSWR5_RTS|ZSWR5_DTR);
}
splx(s);
/* Caller will stuff the pending registers. */
return (0);
}
/*
* Functions to read and write individual registers in a channel.
* The ZS chip requires a 1.6 uSec. recovery time between accesses,
* and the Alpha TC hardware does NOT take care of this for you.
* The delay is now handled inside the chip access functions.
* These could be inlines, but with the delay, speed is moot.
*/
#if defined(pmax)
#undef DELAY
#define DELAY(x)
#endif
u_int
zs_read_reg(cs, reg)
struct zs_chanstate *cs;
u_int reg;
{
volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
unsigned val;
zc->zc_csr = reg << 8;
tc_wmb();
DELAY(5);
val = (zc->zc_csr >> 8) & 0xff;
/* tc_mb(); */
DELAY(5);
return (val);
}
void
zs_write_reg(cs, reg, val)
struct zs_chanstate *cs;
u_int reg, val;
{
volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
zc->zc_csr = reg << 8;
tc_wmb();
DELAY(5);
zc->zc_csr = val << 8;
tc_wmb();
DELAY(5);
}
u_int
zs_read_csr(cs)
struct zs_chanstate *cs;
{
volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
unsigned val;
val = (zc->zc_csr >> 8) & 0xff;
/* tc_mb(); */
DELAY(5);
return (val);
}
void
zs_write_csr(cs, val)
struct zs_chanstate *cs;
u_int val;
{
volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
zc->zc_csr = val << 8;
tc_wmb();
DELAY(5);
}
u_int
zs_read_data(cs)
struct zs_chanstate *cs;
{
volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
unsigned val;
val = (zc->zc_data) >> 8 & 0xff;
/* tc_mb(); */
DELAY(5);
return (val);
}
void
zs_write_data(cs, val)
struct zs_chanstate *cs;
u_int val;
{
volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
zc->zc_data = val << 8;
tc_wmb();
DELAY(5);
}
/****************************************************************
* Console support functions
****************************************************************/
/*
* Handle user request to enter kernel debugger.
*/
void
zs_abort(cs)
struct zs_chanstate *cs;
{
int rr0;
/* Wait for end of break. */
/* XXX - Limit the wait? */
do {
rr0 = zs_read_csr(cs);
} while (rr0 & ZSRR0_BREAK);
#if defined(KGDB)
zskgdb(cs);
#elif defined(DDB)
Debugger();
#else
printf("zs_abort: ignoring break on console\n");
#endif
}
/*
* Polled input char.
*/
int
zs_getc(cs)
struct zs_chanstate *cs;
{
int s, c, rr0;
s = splhigh();
/* Wait for a character to arrive. */
do {
rr0 = zs_read_csr(cs);
} while ((rr0 & ZSRR0_RX_READY) == 0);
c = zs_read_data(cs);
splx(s);
/*
* This is used by the kd driver to read scan codes,
* so don't translate '\r' ==> '\n' here...
*/
return (c);
}
/*
* Polled output char.
*/
void
zs_putc(cs, c)
struct zs_chanstate *cs;
int c;
{
register int s, rr0;
s = splhigh();
/* Wait for transmitter to become ready. */
do {
rr0 = zs_read_csr(cs);
} while ((rr0 & ZSRR0_TX_READY) == 0);
zs_write_data(cs, c);
/* Wait for the character to be transmitted. */
do {
rr0 = zs_read_csr(cs);
} while ((rr0 & ZSRR0_TX_READY) == 0);
splx(s);
}
/*****************************************************************/
/*
* zs_ioasic_cninit --
* Initialize the serial channel for either a keyboard or
* a serial console.
*/
void
zs_ioasic_cninit(ioasic_addr, zs_offset, channel)
tc_addr_t ioasic_addr;
tc_offset_t zs_offset;
int channel;
{
struct zs_chanstate *cs;
tc_addr_t zs_addr;
struct zshan *zc;
u_long zflg;
/*
* Initialize the console finder helpers.
*/
zs_ioasic_console_offset = zs_offset;
zs_ioasic_console_channel = channel;
zs_ioasic_console = 1;
/*
* Pointer to channel state.
*/
cs = &zs_ioasic_conschanstate_store;
/*
* Compute the physical address of the chip, "map" it via
* K0SEG, and then get the address of the actual channel.
*/
#if defined(__alpha__) || defined(alpha)
zs_addr = ALPHA_PHYS_TO_K0SEG(ioasic_addr + zs_offset);
#endif
#if defined(pmax)
zs_addr = MIPS_PHYS_TO_KSEG1(ioasic_addr + zs_offset);
#endif
zc = zs_ioasic_get_chan_addr(zs_addr, channel);
/* Setup temporary chanstate. */
cs->cs_reg_csr = (volatile void *)&zc->zc_csr;
cs->cs_channel = channel;
cs->cs_ops = &zsops_null;
cs->cs_brg_clk = PCLK / 16;
/* Initialize the pending registers. */
bcopy(zs_ioasic_init_reg, cs->cs_preg, 16);
/* cs->cs_preg[5] |= (ZSWR5_DTR | ZSWR5_RTS); */
/*
* DCD and CTS interrupts are only meaningful on
* SCC 0/B, and RTS and DTR only on B of SCC 0 & 1.
*
* XXX This is sorta gross.
*/
if (zs_offset == 0x00100000 && channel == 1)
zflg = ZIP_FLAGS_DCDCTS;
else
zflg = 0;
if (channel == 1)
zflg |= ZIP_FLAGS_DTRRTS;
(u_long)cs->cs_private = zflg;
/* Clear the master interrupt enable. */
zs_write_reg(cs, 9, 0);
/* Reset the whole SCC chip. */
zs_write_reg(cs, 9, ZSWR9_HARD_RESET);
/* Copy "pending" to "current" and H/W. */
zs_loadchannelregs(cs);
}
/*
* zs_ioasic_cnattach --
* Initialize and attach a serial console.
*/
void
zs_ioasic_cnattach(ioasic_addr, zs_offset, channel)
tc_addr_t ioasic_addr;
tc_offset_t zs_offset;
int channel;
{
struct zs_chanstate *cs = &zs_ioasic_conschanstate_store;
extern const struct cdevsw zstty_cdevsw;
zs_ioasic_cninit(ioasic_addr, zs_offset, channel);
cs->cs_defspeed = 9600;
cs->cs_defcflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8;
/* Point the console at the SCC. */
cn_tab = &zs_ioasic_cons;
cn_tab->cn_pri = CN_REMOTE;
cn_tab->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw),
(zs_offset == 0x100000) ? 0 : 1);
}
/*
* zs_ioasic_lk201_cnattach --
* Initialize and attach a keyboard.
*/
int
zs_ioasic_lk201_cnattach(ioasic_addr, zs_offset, channel)
tc_addr_t ioasic_addr;
tc_offset_t zs_offset;
int channel;
{
#if (NZSKBD > 0)
struct zs_chanstate *cs = &zs_ioasic_conschanstate_store;
zs_ioasic_cninit(ioasic_addr, zs_offset, channel);
cs->cs_defspeed = 4800;
cs->cs_defcflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8;
return (zskbd_cnattach(cs));
#else
return (ENXIO);
#endif
}
int
zs_ioasic_isconsole(offset, channel)
tc_offset_t offset;
int channel;
{
if (zs_ioasic_console &&
offset == zs_ioasic_console_offset &&
channel == zs_ioasic_console_channel)
return (1);
return (0);
}
/*
* Polled console input putchar.
*/
int
zs_ioasic_cngetc(dev)
dev_t dev;
{
return (zs_getc(&zs_ioasic_conschanstate_store));
}
/*
* Polled console output putchar.
*/
void
zs_ioasic_cnputc(dev, c)
dev_t dev;
int c;
{
zs_putc(&zs_ioasic_conschanstate_store, c);
}
/*
* Set polling/no polling on console.
*/
void
zs_ioasic_cnpollc(dev, onoff)
dev_t dev;
int onoff;
{
/* XXX ??? */
}