NetBSD/external/lgpl2/mpc/dist/tests/tsqr.c
mrg d43cffdfe2 initial import of MPC 0.9 package.
MPC is a C library for the arithmetic of complex numbers with
arbitrarily high precision and correct rounding of the result.
It is built upon and follows the same principles as MPFR.

GCC >= 4.2 requires MPC.
2011-06-20 05:50:19 +00:00

191 lines
6.1 KiB
C

/* tsqr -- test file for mpc_sqr.
Copyright (C) INRIA, 2002, 2005, 2008, 2010, 2011
This file is part of the MPC Library.
The MPC Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPC Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPC Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include <stdio.h>
#include <stdlib.h>
#include "mpc-tests.h"
static void cmpsqr (mpc_srcptr x, mpc_rnd_t rnd)
/* computes the square of x with the specific function or by simple */
/* multiplication using the rounding mode rnd and compares the results */
/* and return values. */
/* In our current test suite, the real and imaginary parts of x have */
/* the same precision, and we use this precision also for the result. */
/* Furthermore, we check whether computing the square in the same */
/* place yields the same result. */
/* We also compute the result with four times the precision and check */
/* whether the rounding is correct. Error reports in this part of the */
/* algorithm might still be wrong, though, since there are two */
/* consecutive roundings. */
{
mpc_t z, t, u;
int inexact_z, inexact_t;
mpc_init2 (z, MPC_MAX_PREC (x));
mpc_init2 (t, MPC_MAX_PREC (x));
mpc_init2 (u, 4 * MPC_MAX_PREC (x));
inexact_z = mpc_sqr (z, x, rnd);
inexact_t = mpc_mul (t, x, x, rnd);
if (mpc_cmp (z, t))
{
fprintf (stderr, "sqr and mul differ for rnd=(%s,%s) \nx=",
mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
fprintf (stderr, "\nmpc_sqr gives ");
mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
fprintf (stderr, "\nmpc_mul gives ");
mpc_out_str (stderr, 2, 0, t, MPC_RNDNN);
fprintf (stderr, "\n");
exit (1);
}
if (inexact_z != inexact_t)
{
fprintf (stderr, "The return values of sqr and mul differ for rnd=(%s,%s) \nx= ",
mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
fprintf (stderr, "\nx^2=");
mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
fprintf (stderr, "\nmpc_sqr gives %i", inexact_z);
fprintf (stderr, "\nmpc_mul gives %i", inexact_t);
fprintf (stderr, "\n");
exit (1);
}
mpc_set (t, x, MPC_RNDNN);
inexact_t = mpc_sqr (t, t, rnd);
if (mpc_cmp (z, t))
{
fprintf (stderr, "sqr and sqr in place differ for rnd=(%s,%s) \nx=",
mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
fprintf (stderr, "\nmpc_sqr gives ");
mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
fprintf (stderr, "\nmpc_sqr in place gives ");
mpc_out_str (stderr, 2, 0, t, MPC_RNDNN);
fprintf (stderr, "\n");
exit (1);
}
if (inexact_z != inexact_t)
{
fprintf (stderr, "The return values of sqr and sqr in place differ for rnd=(%s,%s) \nx= ",
mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
fprintf (stderr, "\nx^2=");
mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
fprintf (stderr, "\nmpc_sqr gives %i", inexact_z);
fprintf (stderr, "\nmpc_sqr in place gives %i", inexact_t);
fprintf (stderr, "\n");
exit (1);
}
mpc_sqr (u, x, rnd);
mpc_set (t, u, rnd);
if (mpc_cmp (z, t))
{
fprintf (stderr, "rounding in sqr might be incorrect for rnd=(%s,%s) \nx=",
mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
fprintf (stderr, "\nmpc_sqr gives ");
mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
fprintf (stderr, "\nmpc_sqr quadruple precision gives ");
mpc_out_str (stderr, 2, 0, u, MPC_RNDNN);
fprintf (stderr, "\nand is rounded to ");
mpc_out_str (stderr, 2, 0, t, MPC_RNDNN);
fprintf (stderr, "\n");
exit (1);
}
mpc_clear (z);
mpc_clear (t);
mpc_clear (u);
}
static void
testsqr (long a, long b, mpfr_prec_t prec, mpc_rnd_t rnd)
{
mpc_t x;
mpc_init2 (x, prec);
mpc_set_si_si (x, a, b, rnd);
cmpsqr (x, rnd);
mpc_clear (x);
}
static void
reuse_bug (void)
{
mpc_t z1;
/* reuse bug found by Paul Zimmermann 20081021 */
mpc_init2 (z1, 2);
/* RE (z1^2) overflows, IM(z^2) = -0 */
mpfr_set_str (MPC_RE (z1), "0.11", 2, GMP_RNDN);
mpfr_mul_2si (MPC_RE (z1), MPC_RE (z1), mpfr_get_emax (), GMP_RNDN);
mpfr_set_ui (MPC_IM (z1), 0, GMP_RNDN);
mpc_conj (z1, z1, MPC_RNDNN);
mpc_sqr (z1, z1, MPC_RNDNN);
if (!mpfr_inf_p (MPC_RE (z1)) || mpfr_signbit (MPC_RE (z1))
||!mpfr_zero_p (MPC_IM (z1)) || !mpfr_signbit (MPC_IM (z1)))
{
printf ("Error: Regression, bug 20081021 reproduced\n");
MPC_OUT (z1);
exit (1);
}
mpc_clear (z1);
}
int
main (void)
{
DECL_FUNC (CC, f, mpc_sqr);
test_start ();
testsqr (247, -65, 8, 24);
testsqr (5, -896, 3, 2);
testsqr (-3, -512, 2, 16);
testsqr (266013312, 121990769, 27, 0);
testsqr (170, 9, 8, 0);
testsqr (768, 85, 8, 16);
testsqr (145, 1816, 8, 24);
testsqr (0, 1816, 8, 24);
testsqr (145, 0, 8, 24);
data_check (f, "sqr.dat");
tgeneric (f, 2, 1024, 1, 0);
reuse_bug ();
return 0;
}