NetBSD/external/lgpl2/mpc/dist/tests/tmul.c
mrg d43cffdfe2 initial import of MPC 0.9 package.
MPC is a C library for the arithmetic of complex numbers with
arbitrarily high precision and correct rounding of the result.
It is built upon and follows the same principles as MPFR.

GCC >= 4.2 requires MPC.
2011-06-20 05:50:19 +00:00

223 lines
6.3 KiB
C

/* tmul -- test file for mpc_mul.
Copyright (C) INRIA, 2002, 2005, 2008, 2009, 2010, 2011
This file is part of the MPC Library.
The MPC Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPC Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPC Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include <stdlib.h>
#ifdef TIMING
#include <sys/times.h>
#endif
#include "mpc-tests.h"
static void
cmpmul (mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd)
/* computes the product of x and y with the naive and Karatsuba methods */
/* using the rounding mode rnd and compares the results and return */
/* values. */
/* In our current test suite, the real and imaginary parts of x and y */
/* all have the same precision, and we use this precision also for the */
/* result. */
{
mpc_t z, t;
int inexact_z, inexact_t;
mpc_init2 (z, MPC_MAX_PREC (x));
mpc_init2 (t, MPC_MAX_PREC (x));
inexact_z = mpc_mul_naive (z, x, y, rnd);
inexact_t = mpc_mul_karatsuba (t, x, y, rnd);
if (mpc_cmp (z, t))
{
fprintf (stderr, "mul and mul2 differ for rnd=(%s,%s) \nx=",
mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
fprintf (stderr, "\nand y=");
mpc_out_str (stderr, 2, 0, y, MPC_RNDNN);
fprintf (stderr, "\nmpc_mul_naive gives ");
mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
fprintf (stderr, "\nmpc_mul_karatsuba gives ");
mpc_out_str (stderr, 2, 0, t, MPC_RNDNN);
fprintf (stderr, "\n");
exit (1);
}
if (inexact_z != inexact_t)
{
fprintf (stderr, "The return values of mul and mul2 differ for rnd=(%s,%s) \nx=",
mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
fprintf (stderr, "\nand y=");
mpc_out_str (stderr, 2, 0, y, MPC_RNDNN);
fprintf (stderr, "\nand x*y=");
mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
fprintf (stderr, "\nmpc_mul_naive gives %i", inexact_z);
fprintf (stderr, "\nmpc_mul_karatsuba gives %i", inexact_t);
fprintf (stderr, "\n");
exit (1);
}
mpc_clear (z);
mpc_clear (t);
}
static void
testmul (long a, long b, long c, long d, mpfr_prec_t prec, mpc_rnd_t rnd)
{
mpc_t x, y;
mpc_init2 (x, prec);
mpc_init2 (y, prec);
mpc_set_si_si (x, a, b, rnd);
mpc_set_si_si (y, c, d, rnd);
cmpmul (x, y, rnd);
mpc_clear (x);
mpc_clear (y);
}
static void
check_regular (void)
{
mpc_t x, y;
mpc_rnd_t rnd_re, rnd_im;
mpfr_prec_t prec;
testmul (247, -65, -223, 416, 8, 24);
testmul (5, -896, 5, -32, 3, 2);
testmul (-3, -512, -1, -1, 2, 16);
testmul (266013312, 121990769, 110585572, 116491059, 27, 0);
testmul (170, 9, 450, 251, 8, 0);
testmul (768, 85, 169, 440, 8, 16);
testmul (145, 1816, 848, 169, 8, 24);
testmul (0, 1816, 848, 169, 8, 24);
testmul (145, 0, 848, 169, 8, 24);
testmul (145, 1816, 0, 169, 8, 24);
testmul (145, 1816, 848, 0, 8, 24);
mpc_init2 (x, 1000);
mpc_init2 (y, 1000);
/* Bug 20081114: mpc_mul_karatsuba returned wrong inexact value for
imaginary part */
mpc_set_prec (x, 7);
mpc_set_prec (y, 7);
mpfr_set_str (MPC_RE (x), "0xB4p+733", 16, GMP_RNDN);
mpfr_set_str (MPC_IM (x), "0x90p+244", 16, GMP_RNDN);
mpfr_set_str (MPC_RE (y), "0xECp-146", 16, GMP_RNDN);
mpfr_set_str (MPC_IM (y), "0xACp-471", 16, GMP_RNDN);
cmpmul (x, y, MPC_RNDNN);
mpfr_set_str (MPC_RE (x), "0xB4p+733", 16, GMP_RNDN);
mpfr_set_str (MPC_IM (x), "0x90p+244", 16, GMP_RNDN);
mpfr_set_str (MPC_RE (y), "0xACp-471", 16, GMP_RNDN);
mpfr_set_str (MPC_IM (y), "-0xECp-146", 16, GMP_RNDN);
cmpmul (x, y, MPC_RNDNN);
for (prec = 2; prec < 1000; prec = (mpfr_prec_t) (prec * 1.1 + 1))
{
mpc_set_prec (x, prec);
mpc_set_prec (y, prec);
test_default_random (x, -1024, 1024, 128, 25);
test_default_random (y, -1024, 1024, 128, 25);
for (rnd_re = 0; rnd_re < 4; rnd_re ++)
for (rnd_im = 0; rnd_im < 4; rnd_im ++)
cmpmul (x, y, RNDC(rnd_re, rnd_im));
}
mpc_clear (x);
mpc_clear (y);
}
#ifdef TIMING
static void
timemul (void)
{
/* measures the time needed with different precisions for naive and */
/* Karatsuba multiplication */
mpc_t x, y, z;
unsigned long int i, j;
const unsigned long int tests = 10000;
struct tms time_old, time_new;
double passed1, passed2;
mpc_init (x);
mpc_init (y);
mpc_init_set_ui_ui (z, 1, 0, MPC_RNDNN);
for (i = 1; i < 50; i++)
{
mpc_set_prec (x, i * BITS_PER_MP_LIMB);
mpc_set_prec (y, i * BITS_PER_MP_LIMB);
mpc_set_prec (z, i * BITS_PER_MP_LIMB);
test_default_random (x, -1, 1, 128, 25);
test_default_random (y, -1, 1, 128, 25);
times (&time_old);
for (j = 0; j < tests; j++)
mpc_mul_naive (z, x, y, MPC_RNDNN);
times (&time_new);
passed1 = ((double) (time_new.tms_utime - time_old.tms_utime)) / 100;
times (&time_old);
for (j = 0; j < tests; j++)
mpc_mul_karatsuba (z, x, y, MPC_RNDNN);
times (&time_new);
passed2 = ((double) (time_new.tms_utime - time_old.tms_utime)) / 100;
printf ("Time for %3li limbs naive/Karatsuba: %5.2f %5.2f\n", i,
passed1, passed2);
}
mpc_clear (x);
mpc_clear (y);
mpc_clear (z);
}
#endif
int
main (void)
{
DECL_FUNC (C_CC, f, mpc_mul);
f.properties = FUNC_PROP_SYMETRIC;
test_start ();
#ifdef TIMING
timemul ();
#endif
check_regular ();
data_check (f, "mul.dat");
tgeneric (f, 2, 4096, 41, 100);
test_end ();
return 0;
}