d43cffdfe2
MPC is a C library for the arithmetic of complex numbers with arbitrarily high precision and correct rounding of the result. It is built upon and follows the same principles as MPFR. GCC >= 4.2 requires MPC.
114 lines
5.8 KiB
Plaintext
114 lines
5.8 KiB
Plaintext
# Data file for mpc_atanh.
|
|
#
|
|
# Copyright (C) INRIA, 2009
|
|
#
|
|
# This file is part of the MPC Library.
|
|
#
|
|
# The MPC Library is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU Lesser General Public License as published by
|
|
# the Free Software Foundation; either version 2.1 of the License, or (at your
|
|
# option) any later version.
|
|
#
|
|
# The MPC Library is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
# License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public License
|
|
# along with the MPC Library; see the file COPYING.LIB. If not, write to
|
|
# the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
|
# MA 02111-1307, USA.
|
|
#
|
|
# The line format respects the parameter order in function prototype as
|
|
# follow:
|
|
#
|
|
# INEX_RE INEX_IM PREC_ROP_RE ROP_RE PREC_ROP_IM ROP_IM PREC_OP_RE OP_RE PREC_OP_IM OP_IM RND_RE RND_IM
|
|
#
|
|
# where op = op_re + i * op_im, rop = rop_re + i * rop_im,
|
|
# rop_re is ROP_RE rounded to nearest to the precision of PREC_ROP_RE
|
|
# rop_im is ROP_IM rounded to nearest to the precision of PREC_ROP_IM
|
|
# op_re is OP_RE rounded to nearest to the precision of PREC_OP_RE
|
|
# op_im is OP_IM rounded to nearest to the precision of PREC_OP_IM
|
|
# ROP_RE is checked against Re(atan op) rounded to the precision PREC_ROP_RE
|
|
# in the direction RND_RE
|
|
# ROP_IM is checked against Im(atan op) rounded to the precision PREC_ROP_IM
|
|
# in the direction RND_IM
|
|
# INEX_RE is the ternary value for the real part with the following notation:
|
|
# "?" ternary value not checked
|
|
# "+" if ROP_RE is greater than the exact mathematical result
|
|
# "0" if ROP_RE is exactly the mathematical result
|
|
# "-" if ROP_RE is less than the exact mathematical result
|
|
# (m.m. INEX_IM)
|
|
# rounding modes notation:
|
|
# "N" is rounding to nearest
|
|
# "Z" is rounding towards zero
|
|
# "U" is rounding towards plus infinity
|
|
# "D" is rounding towards minus infinity
|
|
# Use prefixes "0b" for values in base two, "0x" for values in base sixteen,
|
|
# no prefix for value in base ten.
|
|
# In all bases, "nan" is NaN, "inf" is infinity;
|
|
# The sign of the result is checked with "+inf", "-inf", "-0", or "+0".
|
|
|
|
# special values (following ISO C99 standard)
|
|
0 + 53 -0 53 -0x1921FB54442D18p-52 53 -inf 53 -inf N N
|
|
0 + 53 -0 53 -0x1921FB54442D18p-52 53 -inf 53 -1 N N
|
|
0 + 53 -0 53 -0x1921FB54442D18p-52 53 -inf 53 -0 N N
|
|
0 - 53 -0 53 +0x1921FB54442D18p-52 53 -inf 53 +0 N N
|
|
0 - 53 -0 53 +0x1921FB54442D18p-52 53 -inf 53 +1 N N
|
|
0 - 53 -0 53 +0x1921FB54442D18p-52 53 -inf 53 +inf N N
|
|
0 0 53 -0 53 nan 53 -inf 53 nan N N
|
|
0 + 53 -0 53 -0x1921FB54442D18p-52 53 -6 53 -inf N N
|
|
0 - 53 -0 53 +0x1921FB54442D18p-52 53 -6 53 +inf N N
|
|
0 0 53 nan 53 nan 53 -6 53 nan N N
|
|
0 + 53 -0 53 -0x1921FB54442D18p-52 53 -0 53 -inf N N
|
|
0 0 53 -0 53 -0 53 -0 53 -0 N N
|
|
0 0 53 -0 53 +0 53 -0 53 +0 N N
|
|
0 - 53 -0 53 +0x1921FB54442D18p-52 53 -0 53 +inf N N
|
|
0 0 53 -0 53 nan 53 -0 53 nan N N
|
|
0 + 53 +0 53 -0x1921FB54442D18p-52 53 +0 53 -inf N N
|
|
0 0 53 +0 53 -0 53 +0 53 -0 N N
|
|
0 0 53 +0 53 +0 53 +0 53 +0 N N
|
|
0 - 53 +0 53 +0x1921FB54442D18p-52 53 +0 53 +inf N N
|
|
0 0 53 +0 53 nan 53 +0 53 nan N N
|
|
0 + 53 +0 53 -0x1921FB54442D18p-52 53 +6 53 -inf N N
|
|
0 - 53 +0 53 +0x1921FB54442D18p-52 53 +6 53 +inf N N
|
|
0 0 53 nan 53 nan 53 +6 53 nan N N
|
|
0 + 53 +0 53 -0x1921FB54442D18p-52 53 +inf 53 -inf N N
|
|
0 + 53 +0 53 -0x1921FB54442D18p-52 53 +inf 53 -1 N N
|
|
0 + 53 +0 53 -0x1921FB54442D18p-52 53 +inf 53 -0 N N
|
|
0 - 53 +0 53 +0x1921FB54442D18p-52 53 +inf 53 +0 N N
|
|
0 - 53 +0 53 +0x1921FB54442D18p-52 53 +inf 53 +1 N N
|
|
0 - 53 +0 53 +0x1921FB54442D18p-52 53 +inf 53 +inf N N
|
|
0 0 53 +0 53 nan 53 +inf 53 nan N N
|
|
0 + 53 0 53 -0x1921FB54442D18p-52 53 nan 53 -inf N N
|
|
0 0 53 nan 53 nan 53 nan 53 -1 N N
|
|
0 0 53 nan 53 nan 53 nan 53 -0 N N
|
|
0 0 53 nan 53 nan 53 nan 53 +0 N N
|
|
0 0 53 nan 53 nan 53 nan 53 +1 N N
|
|
0 - 53 0 53 +0x1921FB54442D18p-52 53 nan 53 +inf N N
|
|
0 0 53 nan 53 nan 53 nan 53 nan N N
|
|
|
|
# pure real argument
|
|
- + 53 -0x1E27076E2AF2E6p-57 53 -0x1921FB54442D18p-52 53 -17 53 -0 N N
|
|
- - 53 -0x1E27076E2AF2E6p-57 53 +0x1921FB54442D18p-52 53 -17 53 +0 N N
|
|
+ + 53 +0x1E27076E2AF2E6p-57 53 -0x1921FB54442D18p-52 53 +17 53 -0 N N
|
|
+ - 53 +0x1E27076E2AF2E6p-57 53 +0x1921FB54442D18p-52 53 +17 53 +0 N N
|
|
+ 0 53 -0x1F2272AE325A57p-53 53 -0 53 -.75 53 -0 N N
|
|
+ 0 53 -0x1F2272AE325A57p-53 53 +0 53 -.75 53 +0 N N
|
|
- 0 53 +0x1F2272AE325A57p-53 53 -0 53 +.75 53 -0 N N
|
|
- 0 53 +0x1F2272AE325A57p-53 53 +0 53 +.75 53 +0 N N
|
|
- + 12 0x6F1p-50 12 0xC91p-11 12 0x9380000000 12 +0 N N
|
|
|
|
# pure imaginary argument
|
|
0 - 53 -0 53 -0x167D8863BC99BDp-52 53 -0 53 -6 N N
|
|
0 - 53 +0 53 -0x167D8863BC99BDp-52 53 +0 53 -6 N N
|
|
0 + 53 -0 53 +0x167D8863BC99BDp-52 53 -0 53 +6 N N
|
|
0 + 53 +0 53 +0x167D8863BC99BDp-52 53 +0 53 +6 N N
|
|
0 + 53 -0 53 -0x1F5B75F92C80DDp-55 53 -0 53 -.25 N N
|
|
0 + 53 +0 53 -0x1F5B75F92C80DDp-55 53 +0 53 -.25 N N
|
|
0 - 53 -0 53 +0x1F5B75F92C80DDp-55 53 -0 53 +.25 N N
|
|
0 - 53 +0 53 +0x1F5B75F92C80DDp-55 53 +0 53 +.25 N N
|
|
|
|
# IEEE-754 double precision
|
|
- + 53 0x13F3F785301CE9p-54 53 0xBFA43C2A868B3p-51 53 0x3243F6A8885A3p-48 53 0x162E42FEFA39EFp-53 N N
|