NetBSD/sys/opencrypto/crypto.c
2018-06-06 01:49:07 +00:00

2130 lines
51 KiB
C

/* $NetBSD: crypto.c,v 1.106 2018/06/06 01:49:09 maya Exp $ */
/* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
/* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
/*-
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Coyote Point Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
* February 2000. Network Security Technologies Inc. (NSTI) kindly
* supported the development of this code.
*
* Copyright (c) 2000, 2001 Angelos D. Keromytis
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all source code copies of any software which is or includes a copy or
* modification of this software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.106 2018/06/06 01:49:09 maya Exp $");
#include <sys/param.h>
#include <sys/reboot.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/pool.h>
#include <sys/kthread.h>
#include <sys/once.h>
#include <sys/sysctl.h>
#include <sys/intr.h>
#include <sys/errno.h>
#include <sys/module.h>
#include <sys/xcall.h>
#include <sys/device.h>
#include <sys/cpu.h>
#include <sys/percpu.h>
#include <sys/kmem.h>
#if defined(_KERNEL_OPT)
#include "opt_ocf.h"
#endif
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h> /* XXX for M_XDATA */
/*
* Crypto drivers register themselves by allocating a slot in the
* crypto_drivers table with crypto_get_driverid() and then registering
* each algorithm they support with crypto_register() and crypto_kregister().
*/
/* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
static struct {
kmutex_t mtx;
int num;
struct cryptocap *list;
} crypto_drv __cacheline_aligned;
#define crypto_drv_mtx (crypto_drv.mtx)
#define crypto_drivers_num (crypto_drv.num)
#define crypto_drivers (crypto_drv.list)
static void *crypto_q_si;
static void *crypto_ret_si;
/*
* There are two queues for crypto requests; one for symmetric (e.g.
* cipher) operations and one for asymmetric (e.g. MOD) operations.
* See below for how synchronization is handled.
*/
TAILQ_HEAD(crypto_crp_q, cryptop);
TAILQ_HEAD(crypto_crp_kq, cryptkop);
struct crypto_crp_qs {
struct crypto_crp_q *crp_q;
struct crypto_crp_kq *crp_kq;
};
static percpu_t *crypto_crp_qs_percpu;
static inline struct crypto_crp_qs *
crypto_get_crp_qs(int *s)
{
KASSERT(s != NULL);
*s = splsoftnet();
return percpu_getref(crypto_crp_qs_percpu);
}
static inline void
crypto_put_crp_qs(int *s)
{
KASSERT(s != NULL);
percpu_putref(crypto_crp_qs_percpu);
splx(*s);
}
static void
crypto_crp_q_is_busy_pc(void *p, void *arg, struct cpu_info *ci __unused)
{
struct crypto_crp_qs *qs_pc = p;
bool *isempty = arg;
if (!TAILQ_EMPTY(qs_pc->crp_q) || !TAILQ_EMPTY(qs_pc->crp_kq))
*isempty = true;
}
static void
crypto_crp_qs_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
{
struct crypto_crp_qs *qs = p;
qs->crp_q = kmem_alloc(sizeof(struct crypto_crp_q), KM_SLEEP);
qs->crp_kq = kmem_alloc(sizeof(struct crypto_crp_kq), KM_SLEEP);
TAILQ_INIT(qs->crp_q);
TAILQ_INIT(qs->crp_kq);
}
/*
* There are two queues for processing completed crypto requests; one
* for the symmetric and one for the asymmetric ops. We only need one
* but have two to avoid type futzing (cryptop vs. cryptkop). See below
* for how synchronization is handled.
*/
TAILQ_HEAD(crypto_crp_ret_q, cryptop);
TAILQ_HEAD(crypto_crp_ret_kq, cryptkop);
struct crypto_crp_ret_qs {
kmutex_t crp_ret_q_mtx;
bool crp_ret_q_exit_flag;
struct crypto_crp_ret_q crp_ret_q;
int crp_ret_q_len;
int crp_ret_q_maxlen; /* queue length limit. <=0 means unlimited. */
int crp_ret_q_drops;
struct crypto_crp_ret_kq crp_ret_kq;
int crp_ret_kq_len;
int crp_ret_kq_maxlen; /* queue length limit. <=0 means unlimited. */
int crp_ret_kq_drops;
};
struct crypto_crp_ret_qs **crypto_crp_ret_qs_list;
static inline struct crypto_crp_ret_qs *
crypto_get_crp_ret_qs(struct cpu_info *ci)
{
u_int cpuid;
struct crypto_crp_ret_qs *qs;
KASSERT(ci != NULL);
cpuid = cpu_index(ci);
qs = crypto_crp_ret_qs_list[cpuid];
mutex_enter(&qs->crp_ret_q_mtx);
return qs;
}
static inline void
crypto_put_crp_ret_qs(struct cpu_info *ci)
{
u_int cpuid;
struct crypto_crp_ret_qs *qs;
KASSERT(ci != NULL);
cpuid = cpu_index(ci);
qs = crypto_crp_ret_qs_list[cpuid];
mutex_exit(&qs->crp_ret_q_mtx);
}
#ifndef CRYPTO_RET_Q_MAXLEN
#define CRYPTO_RET_Q_MAXLEN 0
#endif
#ifndef CRYPTO_RET_KQ_MAXLEN
#define CRYPTO_RET_KQ_MAXLEN 0
#endif
static int
sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
{
int error, len = 0;
struct sysctlnode node = *rnode;
for (int i = 0; i < ncpu; i++) {
struct crypto_crp_ret_qs *qs;
struct cpu_info *ci = cpu_lookup(i);
qs = crypto_get_crp_ret_qs(ci);
len += qs->crp_ret_q_len;
crypto_put_crp_ret_qs(ci);
}
node.sysctl_data = &len;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
return 0;
}
static int
sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
{
int error, drops = 0;
struct sysctlnode node = *rnode;
for (int i = 0; i < ncpu; i++) {
struct crypto_crp_ret_qs *qs;
struct cpu_info *ci = cpu_lookup(i);
qs = crypto_get_crp_ret_qs(ci);
drops += qs->crp_ret_q_drops;
crypto_put_crp_ret_qs(ci);
}
node.sysctl_data = &drops;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
return 0;
}
static int
sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
{
int error, maxlen;
struct crypto_crp_ret_qs *qs;
struct sysctlnode node = *rnode;
/* each crp_ret_kq_maxlen is the same. */
qs = crypto_get_crp_ret_qs(curcpu());
maxlen = qs->crp_ret_q_maxlen;
crypto_put_crp_ret_qs(curcpu());
node.sysctl_data = &maxlen;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
for (int i = 0; i < ncpu; i++) {
struct cpu_info *ci = cpu_lookup(i);
qs = crypto_get_crp_ret_qs(ci);
qs->crp_ret_q_maxlen = maxlen;
crypto_put_crp_ret_qs(ci);
}
return 0;
}
static int
sysctl_opencrypto_kq_len(SYSCTLFN_ARGS)
{
int error, len = 0;
struct sysctlnode node = *rnode;
for (int i = 0; i < ncpu; i++) {
struct crypto_crp_ret_qs *qs;
struct cpu_info *ci = cpu_lookup(i);
qs = crypto_get_crp_ret_qs(ci);
len += qs->crp_ret_kq_len;
crypto_put_crp_ret_qs(ci);
}
node.sysctl_data = &len;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
return 0;
}
static int
sysctl_opencrypto_kq_drops(SYSCTLFN_ARGS)
{
int error, drops = 0;
struct sysctlnode node = *rnode;
for (int i = 0; i < ncpu; i++) {
struct crypto_crp_ret_qs *qs;
struct cpu_info *ci = cpu_lookup(i);
qs = crypto_get_crp_ret_qs(ci);
drops += qs->crp_ret_kq_drops;
crypto_put_crp_ret_qs(ci);
}
node.sysctl_data = &drops;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
return 0;
}
static int
sysctl_opencrypto_kq_maxlen(SYSCTLFN_ARGS)
{
int error, maxlen;
struct crypto_crp_ret_qs *qs;
struct sysctlnode node = *rnode;
/* each crp_ret_kq_maxlen is the same. */
qs = crypto_get_crp_ret_qs(curcpu());
maxlen = qs->crp_ret_kq_maxlen;
crypto_put_crp_ret_qs(curcpu());
node.sysctl_data = &maxlen;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
for (int i = 0; i < ncpu; i++) {
struct cpu_info *ci = cpu_lookup(i);
qs = crypto_get_crp_ret_qs(ci);
qs->crp_ret_kq_maxlen = maxlen;
crypto_put_crp_ret_qs(ci);
}
return 0;
}
/*
* Crypto op and descriptor data structures are allocated
* from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
*/
static pool_cache_t cryptop_cache;
static pool_cache_t cryptodesc_cache;
static pool_cache_t cryptkop_cache;
int crypto_usercrypto = 1; /* userland may open /dev/crypto */
int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
/*
* cryptodevallowsoft is (intended to be) sysctl'able, controlling
* access to hardware versus software transforms as below:
*
* crypto_devallowsoft < 0: Force userlevel requests to use software
* transforms, always
* crypto_devallowsoft = 0: Use hardware if present, grant userlevel
* requests for non-accelerated transforms
* (handling the latter in software)
* crypto_devallowsoft > 0: Allow user requests only for transforms which
* are hardware-accelerated.
*/
int crypto_devallowsoft = 1; /* only use hardware crypto */
static void
sysctl_opencrypto_setup(struct sysctllog **clog)
{
const struct sysctlnode *ocnode;
const struct sysctlnode *retqnode, *retkqnode;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "usercrypto",
SYSCTL_DESCR("Enable/disable user-mode access to "
"crypto support"),
NULL, 0, &crypto_usercrypto, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "userasymcrypto",
SYSCTL_DESCR("Enable/disable user-mode access to "
"asymmetric crypto support"),
NULL, 0, &crypto_userasymcrypto, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "cryptodevallowsoft",
SYSCTL_DESCR("Enable/disable use of software "
"asymmetric crypto support"),
NULL, 0, &crypto_devallowsoft, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, &ocnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "opencrypto",
SYSCTL_DESCR("opencrypto related entries"),
NULL, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &ocnode, &retqnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "crypto_ret_q",
SYSCTL_DESCR("crypto_ret_q related entries"),
NULL, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &retqnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "len",
SYSCTL_DESCR("Current queue length"),
sysctl_opencrypto_q_len, 0,
NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &retqnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "drops",
SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
sysctl_opencrypto_q_drops, 0,
NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &retqnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxlen",
SYSCTL_DESCR("Maximum allowed queue length"),
sysctl_opencrypto_q_maxlen, 0,
NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &ocnode, &retkqnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "crypto_ret_kq",
SYSCTL_DESCR("crypto_ret_kq related entries"),
NULL, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &retkqnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "len",
SYSCTL_DESCR("Current queue length"),
sysctl_opencrypto_kq_len, 0,
NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &retkqnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "drops",
SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
sysctl_opencrypto_kq_drops, 0,
NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &retkqnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxlen",
SYSCTL_DESCR("Maximum allowed queue length"),
sysctl_opencrypto_kq_maxlen, 0,
NULL, 0,
CTL_CREATE, CTL_EOL);
}
/*
* Synchronization: read carefully, this is non-trivial.
*
* Crypto requests are submitted via crypto_dispatch. Typically
* these come in from network protocols at spl0 (output path) or
* spl[,soft]net (input path).
*
* Requests are typically passed on the driver directly, but they
* may also be queued for processing by a software interrupt thread,
* cryptointr, that runs at splsoftcrypto. This thread dispatches
* the requests to crypto drivers (h/w or s/w) who call crypto_done
* when a request is complete. Hardware crypto drivers are assumed
* to register their IRQ's as network devices so their interrupt handlers
* and subsequent "done callbacks" happen at spl[imp,net].
*
* Completed crypto ops are queued for a separate kernel thread that
* handles the callbacks at spl0. This decoupling insures the crypto
* driver interrupt service routine is not delayed while the callback
* takes place and that callbacks are delivered after a context switch
* (as opposed to a software interrupt that clients must block).
*
* This scheme is not intended for SMP machines.
*/
static void cryptointr(void *); /* swi thread to dispatch ops */
static void cryptoret_softint(void *); /* kernel thread for callbacks*/
static int crypto_destroy(bool);
static int crypto_invoke(struct cryptop *crp, int hint);
static int crypto_kinvoke(struct cryptkop *krp, int hint);
static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
static struct cryptocap *crypto_checkdriver(u_int32_t);
static void crypto_driver_lock(struct cryptocap *);
static void crypto_driver_unlock(struct cryptocap *);
static void crypto_driver_clear(struct cryptocap *);
static int crypto_init_finalize(device_t);
static struct cryptostats cryptostats;
#ifdef CRYPTO_TIMING
static int crypto_timing = 0;
#endif
static struct sysctllog *sysctl_opencrypto_clog;
static int
crypto_crp_ret_qs_init(void)
{
int i, j;
crypto_crp_ret_qs_list = kmem_alloc(sizeof(struct crypto_crp_ret_qs *) * ncpu,
KM_NOSLEEP);
if (crypto_crp_ret_qs_list == NULL) {
printf("crypto_init: crypto_crp_qs_list\n");
return ENOMEM;
}
for (i = 0; i < ncpu; i++) {
struct crypto_crp_ret_qs *qs;
qs = kmem_alloc(sizeof(struct crypto_crp_ret_qs), KM_NOSLEEP);
if (qs == NULL)
break;
mutex_init(&qs->crp_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
qs->crp_ret_q_exit_flag = false;
TAILQ_INIT(&qs->crp_ret_q);
qs->crp_ret_q_len = 0;
qs->crp_ret_q_maxlen = CRYPTO_RET_Q_MAXLEN;
qs->crp_ret_q_drops = 0;
TAILQ_INIT(&qs->crp_ret_kq);
qs->crp_ret_kq_len = 0;
qs->crp_ret_kq_maxlen = CRYPTO_RET_KQ_MAXLEN;
qs->crp_ret_kq_drops = 0;
crypto_crp_ret_qs_list[i] = qs;
}
if (i == ncpu)
return 0;
for (j = 0; j < i; j++) {
struct crypto_crp_ret_qs *qs = crypto_crp_ret_qs_list[j];
mutex_destroy(&qs->crp_ret_q_mtx);
kmem_free(qs, sizeof(struct crypto_crp_ret_qs));
}
kmem_free(crypto_crp_ret_qs_list, sizeof(struct crypto_crp_ret_qs *) * ncpu);
return ENOMEM;
}
static int
crypto_init0(void)
{
int error;
mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
cryptop_cache = pool_cache_init(sizeof(struct cryptop),
coherency_unit, 0, 0, "cryptop", NULL, IPL_NET, NULL, NULL, NULL);
cryptodesc_cache = pool_cache_init(sizeof(struct cryptodesc),
coherency_unit, 0, 0, "cryptdesc", NULL, IPL_NET, NULL, NULL, NULL);
cryptkop_cache = pool_cache_init(sizeof(struct cryptkop),
coherency_unit, 0, 0, "cryptkop", NULL, IPL_NET, NULL, NULL, NULL);
crypto_crp_qs_percpu = percpu_alloc(sizeof(struct crypto_crp_qs));
percpu_foreach(crypto_crp_qs_percpu, crypto_crp_qs_init_pc, NULL);
error = crypto_crp_ret_qs_init();
if (error) {
printf("crypto_init: cannot malloc ret_q list\n");
return ENOMEM;
}
crypto_drivers = kmem_zalloc(CRYPTO_DRIVERS_INITIAL *
sizeof(struct cryptocap), KM_NOSLEEP);
if (crypto_drivers == NULL) {
printf("crypto_init: cannot malloc driver table\n");
return ENOMEM;
}
crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
crypto_q_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, cryptointr, NULL);
if (crypto_q_si == NULL) {
printf("crypto_init: cannot establish request queue handler\n");
return crypto_destroy(false);
}
/*
* Some encryption devices (such as mvcesa) are attached before
* ipi_sysinit(). That causes an assertion in ipi_register() as
* crypto_ret_si softint uses SOFTINT_RCPU.
*/
if (config_finalize_register(NULL, crypto_init_finalize) != 0) {
printf("crypto_init: cannot register crypto_init_finalize\n");
return crypto_destroy(false);
}
sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
return 0;
}
static int
crypto_init_finalize(device_t self __unused)
{
crypto_ret_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE|SOFTINT_RCPU,
&cryptoret_softint, NULL);
KASSERT(crypto_ret_si != NULL);
return 0;
}
int
crypto_init(void)
{
static ONCE_DECL(crypto_init_once);
return RUN_ONCE(&crypto_init_once, crypto_init0);
}
static int
crypto_destroy(bool exit_kthread)
{
int i;
if (exit_kthread) {
struct cryptocap *cap = NULL;
uint64_t where;
bool is_busy = false;
/* if we have any in-progress requests, don't unload */
percpu_foreach(crypto_crp_qs_percpu, crypto_crp_q_is_busy_pc,
&is_busy);
if (is_busy)
return EBUSY;
/* FIXME:
* prohibit enqueue to crp_q and crp_kq after here.
*/
mutex_enter(&crypto_drv_mtx);
for (i = 0; i < crypto_drivers_num; i++) {
cap = crypto_checkdriver(i);
if (cap == NULL)
continue;
if (cap->cc_sessions != 0) {
mutex_exit(&crypto_drv_mtx);
return EBUSY;
}
}
mutex_exit(&crypto_drv_mtx);
/* FIXME:
* prohibit touch crypto_drivers[] and each element after here.
*/
/*
* Ensure cryptoret_softint() is never scheduled and then wait
* for last softint_execute().
*/
for (i = 0; i < ncpu; i++) {
struct crypto_crp_ret_qs *qs;
struct cpu_info *ci = cpu_lookup(i);
qs = crypto_get_crp_ret_qs(ci);
qs->crp_ret_q_exit_flag = true;
crypto_put_crp_ret_qs(ci);
}
where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
xc_wait(where);
}
if (sysctl_opencrypto_clog != NULL)
sysctl_teardown(&sysctl_opencrypto_clog);
if (crypto_ret_si != NULL)
softint_disestablish(crypto_ret_si);
if (crypto_q_si != NULL)
softint_disestablish(crypto_q_si);
mutex_enter(&crypto_drv_mtx);
if (crypto_drivers != NULL)
kmem_free(crypto_drivers,
crypto_drivers_num * sizeof(struct cryptocap));
mutex_exit(&crypto_drv_mtx);
percpu_free(crypto_crp_qs_percpu, sizeof(struct crypto_crp_qs));
pool_cache_destroy(cryptop_cache);
pool_cache_destroy(cryptodesc_cache);
pool_cache_destroy(cryptkop_cache);
mutex_destroy(&crypto_drv_mtx);
return 0;
}
static bool
crypto_driver_suitable(struct cryptocap *cap, struct cryptoini *cri)
{
struct cryptoini *cr;
for (cr = cri; cr; cr = cr->cri_next)
if (cap->cc_alg[cr->cri_alg] == 0) {
DPRINTF("alg %d not supported\n", cr->cri_alg);
return false;
}
return true;
}
#define CRYPTO_ACCEPT_HARDWARE 0x1
#define CRYPTO_ACCEPT_SOFTWARE 0x2
/*
* The algorithm we use here is pretty stupid; just use the
* first driver that supports all the algorithms we need.
* If there are multiple drivers we choose the driver with
* the fewest active sessions. We prefer hardware-backed
* drivers to software ones.
*
* XXX We need more smarts here (in real life too, but that's
* XXX another story altogether).
*/
static struct cryptocap *
crypto_select_driver_lock(struct cryptoini *cri, int hard)
{
u_int32_t hid;
int accept;
struct cryptocap *cap, *best;
best = NULL;
/*
* hard == 0 can use both hardware and software drivers.
* We use hardware drivers prior to software drivers, so search
* hardware drivers at first time.
*/
if (hard >= 0)
accept = CRYPTO_ACCEPT_HARDWARE;
else
accept = CRYPTO_ACCEPT_SOFTWARE;
again:
for (hid = 0; hid < crypto_drivers_num; hid++) {
cap = crypto_checkdriver(hid);
if (cap == NULL)
continue;
crypto_driver_lock(cap);
/*
* If it's not initialized or has remaining sessions
* referencing it, skip.
*/
if (cap->cc_newsession == NULL ||
(cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
crypto_driver_unlock(cap);
continue;
}
/* Hardware required -- ignore software drivers. */
if ((accept & CRYPTO_ACCEPT_SOFTWARE) == 0
&& (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
crypto_driver_unlock(cap);
continue;
}
/* Software required -- ignore hardware drivers. */
if ((accept & CRYPTO_ACCEPT_HARDWARE) == 0
&& (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
crypto_driver_unlock(cap);
continue;
}
/* See if all the algorithms are supported. */
if (crypto_driver_suitable(cap, cri)) {
if (best == NULL) {
/* keep holding crypto_driver_lock(cap) */
best = cap;
continue;
} else if (cap->cc_sessions < best->cc_sessions) {
crypto_driver_unlock(best);
/* keep holding crypto_driver_lock(cap) */
best = cap;
continue;
}
}
crypto_driver_unlock(cap);
}
if (best == NULL && hard == 0
&& (accept & CRYPTO_ACCEPT_SOFTWARE) == 0) {
accept = CRYPTO_ACCEPT_SOFTWARE;
goto again;
}
return best;
}
/*
* Create a new session.
*/
int
crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
{
struct cryptocap *cap;
int err = EINVAL;
mutex_enter(&crypto_drv_mtx);
cap = crypto_select_driver_lock(cri, hard);
if (cap != NULL) {
u_int32_t hid, lid;
hid = cap - crypto_drivers;
/*
* Can't do everything in one session.
*
* XXX Fix this. We need to inject a "virtual" session layer right
* XXX about here.
*/
/* Call the driver initialization routine. */
lid = hid; /* Pass the driver ID. */
crypto_driver_unlock(cap);
err = cap->cc_newsession(cap->cc_arg, &lid, cri);
crypto_driver_lock(cap);
if (err == 0) {
(*sid) = hid;
(*sid) <<= 32;
(*sid) |= (lid & 0xffffffff);
(cap->cc_sessions)++;
} else {
DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
hid, err);
}
crypto_driver_unlock(cap);
}
mutex_exit(&crypto_drv_mtx);
return err;
}
/*
* Delete an existing session (or a reserved session on an unregistered
* driver).
*/
int
crypto_freesession(u_int64_t sid)
{
struct cryptocap *cap;
int err = 0;
/* Determine two IDs. */
cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
if (cap == NULL)
return ENOENT;
if (cap->cc_sessions)
(cap->cc_sessions)--;
/* Call the driver cleanup routine, if available. */
if (cap->cc_freesession)
err = cap->cc_freesession(cap->cc_arg, sid);
else
err = 0;
/*
* If this was the last session of a driver marked as invalid,
* make the entry available for reuse.
*/
if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
crypto_driver_clear(cap);
crypto_driver_unlock(cap);
return err;
}
static bool
crypto_checkdriver_initialized(const struct cryptocap *cap)
{
return cap->cc_process != NULL ||
(cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
cap->cc_sessions != 0;
}
/*
* Return an unused driver id. Used by drivers prior to registering
* support for the algorithms they handle.
*/
int32_t
crypto_get_driverid(u_int32_t flags)
{
struct cryptocap *newdrv;
struct cryptocap *cap = NULL;
int i;
(void)crypto_init(); /* XXX oh, this is foul! */
mutex_enter(&crypto_drv_mtx);
for (i = 0; i < crypto_drivers_num; i++) {
cap = crypto_checkdriver_uninit(i);
if (cap == NULL || crypto_checkdriver_initialized(cap))
continue;
break;
}
/* Out of entries, allocate some more. */
if (cap == NULL) {
/* Be careful about wrap-around. */
if (2 * crypto_drivers_num <= crypto_drivers_num) {
mutex_exit(&crypto_drv_mtx);
printf("crypto: driver count wraparound!\n");
return -1;
}
newdrv = kmem_zalloc(2 * crypto_drivers_num *
sizeof(struct cryptocap), KM_NOSLEEP);
if (newdrv == NULL) {
mutex_exit(&crypto_drv_mtx);
printf("crypto: no space to expand driver table!\n");
return -1;
}
memcpy(newdrv, crypto_drivers,
crypto_drivers_num * sizeof(struct cryptocap));
kmem_free(crypto_drivers,
crypto_drivers_num * sizeof(struct cryptocap));
crypto_drivers_num *= 2;
crypto_drivers = newdrv;
cap = crypto_checkdriver_uninit(i);
KASSERT(cap != NULL);
}
/* NB: state is zero'd on free */
cap->cc_sessions = 1; /* Mark */
cap->cc_flags = flags;
mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
if (bootverbose)
printf("crypto: assign driver %u, flags %u\n", i, flags);
mutex_exit(&crypto_drv_mtx);
return i;
}
static struct cryptocap *
crypto_checkdriver_lock(u_int32_t hid)
{
struct cryptocap *cap;
KASSERT(crypto_drivers != NULL);
if (hid >= crypto_drivers_num)
return NULL;
cap = &crypto_drivers[hid];
mutex_enter(&cap->cc_lock);
return cap;
}
/*
* Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
* situations
* - crypto_drivers[] may not be allocated
* - crypto_drivers[hid] may not be initialized
*/
static struct cryptocap *
crypto_checkdriver_uninit(u_int32_t hid)
{
KASSERT(mutex_owned(&crypto_drv_mtx));
if (crypto_drivers == NULL)
return NULL;
return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
}
/*
* Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
* situations
* - crypto_drivers[] may not be allocated
* - crypto_drivers[hid] may not be initialized
*/
static struct cryptocap *
crypto_checkdriver(u_int32_t hid)
{
KASSERT(mutex_owned(&crypto_drv_mtx));
if (crypto_drivers == NULL || hid >= crypto_drivers_num)
return NULL;
struct cryptocap *cap = &crypto_drivers[hid];
return crypto_checkdriver_initialized(cap) ? cap : NULL;
}
static inline void
crypto_driver_lock(struct cryptocap *cap)
{
KASSERT(cap != NULL);
mutex_enter(&cap->cc_lock);
}
static inline void
crypto_driver_unlock(struct cryptocap *cap)
{
KASSERT(cap != NULL);
mutex_exit(&cap->cc_lock);
}
static void
crypto_driver_clear(struct cryptocap *cap)
{
if (cap == NULL)
return;
KASSERT(mutex_owned(&cap->cc_lock));
cap->cc_sessions = 0;
memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
cap->cc_flags = 0;
cap->cc_qblocked = 0;
cap->cc_kqblocked = 0;
cap->cc_arg = NULL;
cap->cc_newsession = NULL;
cap->cc_process = NULL;
cap->cc_freesession = NULL;
cap->cc_kprocess = NULL;
}
/*
* Register support for a key-related algorithm. This routine
* is called once for each algorithm supported a driver.
*/
int
crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
int (*kprocess)(void *, struct cryptkop *, int),
void *karg)
{
struct cryptocap *cap;
int err;
mutex_enter(&crypto_drv_mtx);
cap = crypto_checkdriver_lock(driverid);
if (cap != NULL &&
(CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
/*
* XXX Do some performance testing to determine placing.
* XXX We probably need an auxiliary data structure that
* XXX describes relative performances.
*/
cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
if (bootverbose) {
printf("crypto: driver %u registers key alg %u "
" flags %u\n",
driverid,
kalg,
flags
);
}
if (cap->cc_kprocess == NULL) {
cap->cc_karg = karg;
cap->cc_kprocess = kprocess;
}
err = 0;
} else
err = EINVAL;
mutex_exit(&crypto_drv_mtx);
return err;
}
/*
* Register support for a non-key-related algorithm. This routine
* is called once for each such algorithm supported by a driver.
*/
int
crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
u_int32_t flags,
int (*newses)(void *, u_int32_t*, struct cryptoini*),
int (*freeses)(void *, u_int64_t),
int (*process)(void *, struct cryptop *, int),
void *arg)
{
struct cryptocap *cap;
int err;
cap = crypto_checkdriver_lock(driverid);
if (cap == NULL)
return EINVAL;
/* NB: algorithms are in the range [1..max] */
if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
/*
* XXX Do some performance testing to determine placing.
* XXX We probably need an auxiliary data structure that
* XXX describes relative performances.
*/
cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
cap->cc_max_op_len[alg] = maxoplen;
if (bootverbose) {
printf("crypto: driver %u registers alg %u "
"flags %u maxoplen %u\n",
driverid,
alg,
flags,
maxoplen
);
}
if (cap->cc_process == NULL) {
cap->cc_arg = arg;
cap->cc_newsession = newses;
cap->cc_process = process;
cap->cc_freesession = freeses;
cap->cc_sessions = 0; /* Unmark */
}
err = 0;
} else
err = EINVAL;
crypto_driver_unlock(cap);
return err;
}
static int
crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
{
int i;
u_int32_t ses;
bool lastalg = true;
KASSERT(cap != NULL);
KASSERT(mutex_owned(&cap->cc_lock));
if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
return EINVAL;
if (!all && cap->cc_alg[alg] == 0)
return EINVAL;
cap->cc_alg[alg] = 0;
cap->cc_max_op_len[alg] = 0;
if (all) {
if (alg != CRYPTO_ALGORITHM_MAX)
lastalg = false;
} else {
/* Was this the last algorithm ? */
for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
if (cap->cc_alg[i] != 0) {
lastalg = false;
break;
}
}
if (lastalg) {
ses = cap->cc_sessions;
crypto_driver_clear(cap);
if (ses != 0) {
/*
* If there are pending sessions, just mark as invalid.
*/
cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
cap->cc_sessions = ses;
}
}
return 0;
}
/*
* Unregister a crypto driver. If there are pending sessions using it,
* leave enough information around so that subsequent calls using those
* sessions will correctly detect the driver has been unregistered and
* reroute requests.
*/
int
crypto_unregister(u_int32_t driverid, int alg)
{
int err;
struct cryptocap *cap;
cap = crypto_checkdriver_lock(driverid);
err = crypto_unregister_locked(cap, alg, false);
crypto_driver_unlock(cap);
return err;
}
/*
* Unregister all algorithms associated with a crypto driver.
* If there are pending sessions using it, leave enough information
* around so that subsequent calls using those sessions will
* correctly detect the driver has been unregistered and reroute
* requests.
*/
int
crypto_unregister_all(u_int32_t driverid)
{
int err, i;
struct cryptocap *cap;
cap = crypto_checkdriver_lock(driverid);
for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
err = crypto_unregister_locked(cap, i, true);
if (err)
break;
}
crypto_driver_unlock(cap);
return err;
}
/*
* Clear blockage on a driver. The what parameter indicates whether
* the driver is now ready for cryptop's and/or cryptokop's.
*/
int
crypto_unblock(u_int32_t driverid, int what)
{
struct cryptocap *cap;
int needwakeup = 0;
cap = crypto_checkdriver_lock(driverid);
if (cap == NULL)
return EINVAL;
if (what & CRYPTO_SYMQ) {
needwakeup |= cap->cc_qblocked;
cap->cc_qblocked = 0;
}
if (what & CRYPTO_ASYMQ) {
needwakeup |= cap->cc_kqblocked;
cap->cc_kqblocked = 0;
}
crypto_driver_unlock(cap);
if (needwakeup) {
kpreempt_disable();
softint_schedule(crypto_q_si);
kpreempt_enable();
}
return 0;
}
/*
* Dispatch a crypto request to a driver or queue
* it, to be processed by the kernel thread.
*/
int
crypto_dispatch(struct cryptop *crp)
{
int result, s;
struct cryptocap *cap;
struct crypto_crp_qs *crp_qs;
struct crypto_crp_q *crp_q;
KASSERT(crp != NULL);
DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
cryptostats.cs_ops++;
#ifdef CRYPTO_TIMING
if (crypto_timing)
nanouptime(&crp->crp_tstamp);
#endif
if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
int wasempty;
/*
* Caller marked the request as ``ok to delay'';
* queue it for the swi thread. This is desirable
* when the operation is low priority and/or suitable
* for batching.
*
* don't care list order in batch job.
*/
crp_qs = crypto_get_crp_qs(&s);
crp_q = crp_qs->crp_q;
wasempty = TAILQ_EMPTY(crp_q);
TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
crypto_put_crp_qs(&s);
crp_q = NULL;
if (wasempty) {
kpreempt_disable();
softint_schedule(crypto_q_si);
kpreempt_enable();
}
return 0;
}
crp_qs = crypto_get_crp_qs(&s);
crp_q = crp_qs->crp_q;
cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
/*
* TODO:
* If we can ensure the driver has been valid until the driver is
* done crypto_unregister(), this migrate operation is not required.
*/
if (cap == NULL) {
/*
* The driver must be detached, so this request will migrate
* to other drivers in cryptointr() later.
*/
TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
result = 0;
goto out;
}
if (cap->cc_qblocked != 0) {
crypto_driver_unlock(cap);
/*
* The driver is blocked, just queue the op until
* it unblocks and the swi thread gets kicked.
*/
TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
result = 0;
goto out;
}
/*
* Caller marked the request to be processed
* immediately; dispatch it directly to the
* driver unless the driver is currently blocked.
*/
crypto_driver_unlock(cap);
result = crypto_invoke(crp, 0);
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptop's and put
* the op on the queue.
*/
crypto_driver_lock(cap);
cap->cc_qblocked = 1;
crypto_driver_unlock(cap);
TAILQ_INSERT_HEAD(crp_q, crp, crp_next);
cryptostats.cs_blocks++;
/*
* The crp is enqueued to crp_q, that is,
* no error occurs. So, this function should
* not return error.
*/
result = 0;
}
out:
crypto_put_crp_qs(&s);
return result;
}
/*
* Add an asymetric crypto request to a queue,
* to be processed by the kernel thread.
*/
int
crypto_kdispatch(struct cryptkop *krp)
{
int result, s;
struct cryptocap *cap;
struct crypto_crp_qs *crp_qs;
struct crypto_crp_kq *crp_kq;
KASSERT(krp != NULL);
cryptostats.cs_kops++;
crp_qs = crypto_get_crp_qs(&s);
crp_kq = crp_qs->crp_kq;
cap = crypto_checkdriver_lock(krp->krp_hid);
/*
* TODO:
* If we can ensure the driver has been valid until the driver is
* done crypto_unregister(), this migrate operation is not required.
*/
if (cap == NULL) {
TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
result = 0;
goto out;
}
if (cap->cc_kqblocked != 0) {
crypto_driver_unlock(cap);
/*
* The driver is blocked, just queue the op until
* it unblocks and the swi thread gets kicked.
*/
TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
result = 0;
goto out;
}
crypto_driver_unlock(cap);
result = crypto_kinvoke(krp, 0);
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptop's and put
* the op on the queue.
*/
crypto_driver_lock(cap);
cap->cc_kqblocked = 1;
crypto_driver_unlock(cap);
TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
cryptostats.cs_kblocks++;
/*
* The krp is enqueued to crp_kq, that is,
* no error occurs. So, this function should
* not return error.
*/
result = 0;
}
out:
crypto_put_crp_qs(&s);
return result;
}
/*
* Dispatch an assymetric crypto request to the appropriate crypto devices.
*/
static int
crypto_kinvoke(struct cryptkop *krp, int hint)
{
struct cryptocap *cap = NULL;
u_int32_t hid;
int error;
KASSERT(krp != NULL);
/* Sanity checks. */
if (krp->krp_callback == NULL) {
cv_destroy(&krp->krp_cv);
crypto_kfreereq(krp);
return EINVAL;
}
mutex_enter(&crypto_drv_mtx);
for (hid = 0; hid < crypto_drivers_num; hid++) {
cap = crypto_checkdriver(hid);
if (cap == NULL)
continue;
crypto_driver_lock(cap);
if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
crypto_devallowsoft == 0) {
crypto_driver_unlock(cap);
continue;
}
if (cap->cc_kprocess == NULL) {
crypto_driver_unlock(cap);
continue;
}
if ((cap->cc_kalg[krp->krp_op] &
CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
crypto_driver_unlock(cap);
continue;
}
break;
}
mutex_exit(&crypto_drv_mtx);
if (cap != NULL) {
int (*process)(void *, struct cryptkop *, int);
void *arg;
process = cap->cc_kprocess;
arg = cap->cc_karg;
krp->krp_hid = hid;
krp->reqcpu = curcpu();
crypto_driver_unlock(cap);
error = (*process)(arg, krp, hint);
} else {
error = ENODEV;
}
if (error) {
krp->krp_status = error;
crypto_kdone(krp);
}
return 0;
}
#ifdef CRYPTO_TIMING
static void
crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
{
struct timespec now, t;
nanouptime(&now);
t.tv_sec = now.tv_sec - tv->tv_sec;
t.tv_nsec = now.tv_nsec - tv->tv_nsec;
if (t.tv_nsec < 0) {
t.tv_sec--;
t.tv_nsec += 1000000000;
}
timespecadd(&ts->acc, &t, &t);
if (timespeccmp(&t, &ts->min, <))
ts->min = t;
if (timespeccmp(&t, &ts->max, >))
ts->max = t;
ts->count++;
*tv = now;
}
#endif
/*
* Dispatch a crypto request to the appropriate crypto devices.
*/
static int
crypto_invoke(struct cryptop *crp, int hint)
{
struct cryptocap *cap;
KASSERT(crp != NULL);
#ifdef CRYPTO_TIMING
if (crypto_timing)
crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
#endif
/* Sanity checks. */
if (crp->crp_callback == NULL) {
return EINVAL;
}
if (crp->crp_desc == NULL) {
crp->crp_etype = EINVAL;
crypto_done(crp);
return 0;
}
cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
int (*process)(void *, struct cryptop *, int);
void *arg;
process = cap->cc_process;
arg = cap->cc_arg;
crp->reqcpu = curcpu();
/*
* Invoke the driver to process the request.
*/
DPRINTF("calling process for %p\n", crp);
crypto_driver_unlock(cap);
return (*process)(arg, crp, hint);
} else {
struct cryptodesc *crd;
u_int64_t nid = 0;
if (cap != NULL)
crypto_driver_unlock(cap);
/*
* Driver has unregistered; migrate the session and return
* an error to the caller so they'll resubmit the op.
*/
crypto_freesession(crp->crp_sid);
for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
crp->crp_sid = nid;
crp->crp_etype = EAGAIN;
crypto_done(crp);
return 0;
}
}
/*
* Release a set of crypto descriptors.
*/
void
crypto_freereq(struct cryptop *crp)
{
struct cryptodesc *crd;
if (crp == NULL)
return;
DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
/* sanity check */
if (crp->crp_flags & CRYPTO_F_ONRETQ) {
panic("crypto_freereq() freeing crp on RETQ\n");
}
while ((crd = crp->crp_desc) != NULL) {
crp->crp_desc = crd->crd_next;
pool_cache_put(cryptodesc_cache, crd);
}
pool_cache_put(cryptop_cache, crp);
}
/*
* Acquire a set of crypto descriptors.
*/
struct cryptop *
crypto_getreq(int num)
{
struct cryptodesc *crd;
struct cryptop *crp;
struct crypto_crp_ret_qs *qs;
/*
* When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
* by error callback.
*/
qs = crypto_get_crp_ret_qs(curcpu());
if (qs->crp_ret_q_maxlen > 0
&& qs->crp_ret_q_len > qs->crp_ret_q_maxlen) {
qs->crp_ret_q_drops++;
crypto_put_crp_ret_qs(curcpu());
return NULL;
}
crypto_put_crp_ret_qs(curcpu());
crp = pool_cache_get(cryptop_cache, PR_NOWAIT);
if (crp == NULL) {
return NULL;
}
memset(crp, 0, sizeof(struct cryptop));
while (num--) {
crd = pool_cache_get(cryptodesc_cache, PR_NOWAIT);
if (crd == NULL) {
crypto_freereq(crp);
return NULL;
}
memset(crd, 0, sizeof(struct cryptodesc));
crd->crd_next = crp->crp_desc;
crp->crp_desc = crd;
}
return crp;
}
/*
* Release a set of asymmetric crypto descriptors.
* Currently, support one descriptor only.
*/
void
crypto_kfreereq(struct cryptkop *krp)
{
if (krp == NULL)
return;
DPRINTF("krp %p\n", krp);
/* sanity check */
if (krp->krp_flags & CRYPTO_F_ONRETQ) {
panic("crypto_kfreereq() freeing krp on RETQ\n");
}
pool_cache_put(cryptkop_cache, krp);
}
/*
* Acquire a set of asymmetric crypto descriptors.
* Currently, support one descriptor only.
*/
struct cryptkop *
crypto_kgetreq(int num __unused, int prflags)
{
struct cryptkop *krp;
struct crypto_crp_ret_qs *qs;
/*
* When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
* overflow by error callback.
*/
qs = crypto_get_crp_ret_qs(curcpu());
if (qs->crp_ret_kq_maxlen > 0
&& qs->crp_ret_kq_len > qs->crp_ret_kq_maxlen) {
qs->crp_ret_kq_drops++;
crypto_put_crp_ret_qs(curcpu());
return NULL;
}
crypto_put_crp_ret_qs(curcpu());
krp = pool_cache_get(cryptkop_cache, prflags);
if (krp == NULL) {
return NULL;
}
memset(krp, 0, sizeof(struct cryptkop));
return krp;
}
/*
* Invoke the callback on behalf of the driver.
*/
void
crypto_done(struct cryptop *crp)
{
KASSERT(crp != NULL);
if (crp->crp_etype != 0)
cryptostats.cs_errs++;
#ifdef CRYPTO_TIMING
if (crypto_timing)
crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
#endif
DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
/*
* Normal case; queue the callback for the thread.
*
* The return queue is manipulated by the swi thread
* and, potentially, by crypto device drivers calling
* back to mark operations completed. Thus we need
* to mask both while manipulating the return queue.
*/
if (crp->crp_flags & CRYPTO_F_CBIMM) {
/*
* Do the callback directly. This is ok when the
* callback routine does very little (e.g. the
* /dev/crypto callback method just does a wakeup).
*/
crp->crp_flags |= CRYPTO_F_DONE;
#ifdef CRYPTO_TIMING
if (crypto_timing) {
/*
* NB: We must copy the timestamp before
* doing the callback as the cryptop is
* likely to be reclaimed.
*/
struct timespec t = crp->crp_tstamp;
crypto_tstat(&cryptostats.cs_cb, &t);
crp->crp_callback(crp);
crypto_tstat(&cryptostats.cs_finis, &t);
} else
#endif
crp->crp_callback(crp);
} else {
crp->crp_flags |= CRYPTO_F_DONE;
#if 0
if (crp->crp_flags & CRYPTO_F_USER) {
/*
* TODO:
* If crp->crp_flags & CRYPTO_F_USER and the used
* encryption driver does all the processing in
* the same context, we can skip enqueueing crp_ret_q
* and softint_schedule(crypto_ret_si).
*/
DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
CRYPTO_SESID2LID(crp->crp_sid), crp);
} else
#endif
{
int wasempty;
struct crypto_crp_ret_qs *qs;
struct crypto_crp_ret_q *crp_ret_q;
qs = crypto_get_crp_ret_qs(crp->reqcpu);
crp_ret_q = &qs->crp_ret_q;
wasempty = TAILQ_EMPTY(crp_ret_q);
DPRINTF("lid[%u]: queueing %p\n",
CRYPTO_SESID2LID(crp->crp_sid), crp);
crp->crp_flags |= CRYPTO_F_ONRETQ;
TAILQ_INSERT_TAIL(crp_ret_q, crp, crp_next);
qs->crp_ret_q_len++;
if (wasempty && !qs->crp_ret_q_exit_flag) {
DPRINTF("lid[%u]: waking cryptoret,"
"crp %p hit empty queue\n.",
CRYPTO_SESID2LID(crp->crp_sid), crp);
softint_schedule_cpu(crypto_ret_si, crp->reqcpu);
}
crypto_put_crp_ret_qs(crp->reqcpu);
}
}
}
/*
* Invoke the callback on behalf of the driver.
*/
void
crypto_kdone(struct cryptkop *krp)
{
KASSERT(krp != NULL);
if (krp->krp_status != 0)
cryptostats.cs_kerrs++;
krp->krp_flags |= CRYPTO_F_DONE;
/*
* The return queue is manipulated by the swi thread
* and, potentially, by crypto device drivers calling
* back to mark operations completed. Thus we need
* to mask both while manipulating the return queue.
*/
if (krp->krp_flags & CRYPTO_F_CBIMM) {
krp->krp_callback(krp);
} else {
int wasempty;
struct crypto_crp_ret_qs *qs;
struct crypto_crp_ret_kq *crp_ret_kq;
qs = crypto_get_crp_ret_qs(krp->reqcpu);
crp_ret_kq = &qs->crp_ret_kq;
wasempty = TAILQ_EMPTY(crp_ret_kq);
krp->krp_flags |= CRYPTO_F_ONRETQ;
TAILQ_INSERT_TAIL(crp_ret_kq, krp, krp_next);
qs->crp_ret_kq_len++;
if (wasempty && !qs->crp_ret_q_exit_flag)
softint_schedule_cpu(crypto_ret_si, krp->reqcpu);
crypto_put_crp_ret_qs(krp->reqcpu);
}
}
int
crypto_getfeat(int *featp)
{
if (crypto_userasymcrypto == 0) {
*featp = 0;
return 0;
}
mutex_enter(&crypto_drv_mtx);
int feat = 0;
for (int hid = 0; hid < crypto_drivers_num; hid++) {
struct cryptocap *cap;
cap = crypto_checkdriver(hid);
if (cap == NULL)
continue;
crypto_driver_lock(cap);
if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
crypto_devallowsoft == 0)
goto unlock;
if (cap->cc_kprocess == NULL)
goto unlock;
for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
if ((cap->cc_kalg[kalg] &
CRYPTO_ALG_FLAG_SUPPORTED) != 0)
feat |= 1 << kalg;
unlock: crypto_driver_unlock(cap);
}
mutex_exit(&crypto_drv_mtx);
*featp = feat;
return (0);
}
/*
* Software interrupt thread to dispatch crypto requests.
*/
static void
cryptointr(void *arg __unused)
{
struct cryptop *crp, *submit, *cnext;
struct cryptkop *krp, *knext;
struct cryptocap *cap;
struct crypto_crp_qs *crp_qs;
struct crypto_crp_q *crp_q;
struct crypto_crp_kq *crp_kq;
int result, hint, s;
cryptostats.cs_intrs++;
crp_qs = crypto_get_crp_qs(&s);
crp_q = crp_qs->crp_q;
crp_kq = crp_qs->crp_kq;
do {
/*
* Find the first element in the queue that can be
* processed and look-ahead to see if multiple ops
* are ready for the same driver.
*/
submit = NULL;
hint = 0;
TAILQ_FOREACH_SAFE(crp, crp_q, crp_next, cnext) {
u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
cap = crypto_checkdriver_lock(hid);
if (cap == NULL || cap->cc_process == NULL) {
if (cap != NULL)
crypto_driver_unlock(cap);
/* Op needs to be migrated, process it. */
submit = crp;
break;
}
/*
* skip blocked crp regardless of CRYPTO_F_BATCH
*/
if (cap->cc_qblocked != 0) {
crypto_driver_unlock(cap);
continue;
}
crypto_driver_unlock(cap);
/*
* skip batch crp until the end of crp_q
*/
if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
if (submit == NULL) {
submit = crp;
} else {
if (CRYPTO_SESID2HID(submit->crp_sid)
== hid)
hint = CRYPTO_HINT_MORE;
}
continue;
}
/*
* found first crp which is neither blocked nor batch.
*/
submit = crp;
/*
* batch crp can be processed much later, so clear hint.
*/
hint = 0;
break;
}
if (submit != NULL) {
TAILQ_REMOVE(crp_q, submit, crp_next);
result = crypto_invoke(submit, hint);
/* we must take here as the TAILQ op or kinvoke
may need this mutex below. sigh. */
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptop's and put
* the request back in the queue. It would
* best to put the request back where we got
* it but that's hard so for now we put it
* at the front. This should be ok; putting
* it at the end does not work.
*/
/* validate sid again */
cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
if (cap == NULL) {
/* migrate again, sigh... */
TAILQ_INSERT_TAIL(crp_q, submit, crp_next);
} else {
cap->cc_qblocked = 1;
crypto_driver_unlock(cap);
TAILQ_INSERT_HEAD(crp_q, submit, crp_next);
cryptostats.cs_blocks++;
}
}
}
/* As above, but for key ops */
TAILQ_FOREACH_SAFE(krp, crp_kq, krp_next, knext) {
cap = crypto_checkdriver_lock(krp->krp_hid);
if (cap == NULL || cap->cc_kprocess == NULL) {
if (cap != NULL)
crypto_driver_unlock(cap);
/* Op needs to be migrated, process it. */
break;
}
if (!cap->cc_kqblocked) {
crypto_driver_unlock(cap);
break;
}
crypto_driver_unlock(cap);
}
if (krp != NULL) {
TAILQ_REMOVE(crp_kq, krp, krp_next);
result = crypto_kinvoke(krp, 0);
/* the next iteration will want the mutex. :-/ */
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptkop's and put
* the request back in the queue. It would
* best to put the request back where we got
* it but that's hard so for now we put it
* at the front. This should be ok; putting
* it at the end does not work.
*/
/* validate sid again */
cap = crypto_checkdriver_lock(krp->krp_hid);
if (cap == NULL) {
/* migrate again, sigh... */
TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
} else {
cap->cc_kqblocked = 1;
crypto_driver_unlock(cap);
TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
cryptostats.cs_kblocks++;
}
}
}
} while (submit != NULL || krp != NULL);
crypto_put_crp_qs(&s);
}
/*
* softint handler to do callbacks.
*/
static void
cryptoret_softint(void *arg __unused)
{
struct crypto_crp_ret_qs *qs;
struct crypto_crp_ret_q *crp_ret_q;
struct crypto_crp_ret_kq *crp_ret_kq;
qs = crypto_get_crp_ret_qs(curcpu());
crp_ret_q = &qs->crp_ret_q;
crp_ret_kq = &qs->crp_ret_kq;
for (;;) {
struct cryptop *crp;
struct cryptkop *krp;
crp = TAILQ_FIRST(crp_ret_q);
if (crp != NULL) {
TAILQ_REMOVE(crp_ret_q, crp, crp_next);
qs->crp_ret_q_len--;
crp->crp_flags &= ~CRYPTO_F_ONRETQ;
}
krp = TAILQ_FIRST(crp_ret_kq);
if (krp != NULL) {
TAILQ_REMOVE(crp_ret_kq, krp, krp_next);
qs->crp_ret_q_len--;
krp->krp_flags &= ~CRYPTO_F_ONRETQ;
}
/* drop before calling any callbacks. */
if (crp == NULL && krp == NULL)
break;
mutex_spin_exit(&qs->crp_ret_q_mtx);
if (crp != NULL) {
#ifdef CRYPTO_TIMING
if (crypto_timing) {
/*
* NB: We must copy the timestamp before
* doing the callback as the cryptop is
* likely to be reclaimed.
*/
struct timespec t = crp->crp_tstamp;
crypto_tstat(&cryptostats.cs_cb, &t);
crp->crp_callback(crp);
crypto_tstat(&cryptostats.cs_finis, &t);
} else
#endif
{
crp->crp_callback(crp);
}
}
if (krp != NULL)
krp->krp_callback(krp);
mutex_spin_enter(&qs->crp_ret_q_mtx);
}
crypto_put_crp_ret_qs(curcpu());
}
/* NetBSD module interface */
MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
static int
opencrypto_modcmd(modcmd_t cmd, void *opaque)
{
int error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = crypto_init();
#endif
break;
case MODULE_CMD_FINI:
#ifdef _MODULE
error = crypto_destroy(true);
#endif
break;
default:
error = ENOTTY;
}
return error;
}