a403cbd4f5
This change makes struct ifaddr and its variants (in_ifaddr and in6_ifaddr) MP-safe by using pserialize and psref. At this moment, pserialize_perform and psref_target_destroy are disabled because (1) we don't need them because of softnet_lock (2) they cause a deadlock because of softnet_lock. So we'll enable them when we remove softnet_lock in the future.
844 lines
23 KiB
C
844 lines
23 KiB
C
/* $NetBSD: at_control.c,v 1.39 2016/08/01 03:15:30 ozaki-r Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1990,1994 Regents of The University of Michigan.
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and
|
|
* its documentation for any purpose and without fee is hereby granted,
|
|
* provided that the above copyright notice appears in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation, and that the name of The University
|
|
* of Michigan not be used in advertising or publicity pertaining to
|
|
* distribution of the software without specific, written prior
|
|
* permission. This software is supplied as is without expressed or
|
|
* implied warranties of any kind.
|
|
*
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
*
|
|
* Research Systems Unix Group
|
|
* The University of Michigan
|
|
* c/o Wesley Craig
|
|
* 535 W. William Street
|
|
* Ann Arbor, Michigan
|
|
* +1-313-764-2278
|
|
* netatalk@umich.edu
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: at_control.c,v 1.39 2016/08/01 03:15:30 ozaki-r Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/kauth.h>
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
#include <net/if_ether.h>
|
|
#include <netinet/in.h>
|
|
#undef s_net
|
|
|
|
#include <netatalk/at.h>
|
|
#include <netatalk/at_var.h>
|
|
#include <netatalk/aarp.h>
|
|
#include <netatalk/phase2.h>
|
|
#include <netatalk/at_extern.h>
|
|
|
|
static int aa_dorangeroute(struct ifaddr * ifa,
|
|
u_int first, u_int last, int cmd);
|
|
static int aa_addsingleroute(struct ifaddr * ifa,
|
|
struct at_addr * addr, struct at_addr * mask);
|
|
static int aa_delsingleroute(struct ifaddr * ifa,
|
|
struct at_addr * addr, struct at_addr * mask);
|
|
static int aa_dosingleroute(struct ifaddr * ifa, struct at_addr * addr,
|
|
struct at_addr * mask, int cmd, int flags);
|
|
static int at_scrub(struct ifnet * ifp, struct at_ifaddr * aa);
|
|
static int at_ifinit(struct ifnet *, struct at_ifaddr *,
|
|
const struct sockaddr_at *);
|
|
#if 0
|
|
static void aa_clean(void);
|
|
#endif
|
|
|
|
#define sateqaddr(a,b) ((a)->sat_len == (b)->sat_len && \
|
|
(a)->sat_family == (b)->sat_family && \
|
|
(a)->sat_addr.s_net == (b)->sat_addr.s_net && \
|
|
(a)->sat_addr.s_node == (b)->sat_addr.s_node )
|
|
|
|
int
|
|
at_control(u_long cmd, void *data, struct ifnet *ifp)
|
|
{
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
const struct sockaddr_at *csat;
|
|
struct netrange *nr;
|
|
const struct netrange *cnr;
|
|
struct at_aliasreq *ifra = (struct at_aliasreq *) data;
|
|
struct at_ifaddr *aa0;
|
|
struct at_ifaddr *aa = 0;
|
|
|
|
/*
|
|
* If we have an ifp, then find the matching at_ifaddr if it exists
|
|
*/
|
|
if (ifp)
|
|
for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next)
|
|
if (aa->aa_ifp == ifp)
|
|
break;
|
|
|
|
/*
|
|
* In this first switch table we are basically getting ready for
|
|
* the second one, by getting the atalk-specific things set up
|
|
* so that they start to look more similar to other protocols etc.
|
|
*/
|
|
|
|
switch (cmd) {
|
|
case SIOCAIFADDR:
|
|
case SIOCDIFADDR:
|
|
/*
|
|
* If we have an appletalk sockaddr, scan forward of where
|
|
* we are now on the at_ifaddr list to find one with a matching
|
|
* address on this interface.
|
|
* This may leave aa pointing to the first address on the
|
|
* NEXT interface!
|
|
*/
|
|
if (ifra->ifra_addr.sat_family == AF_APPLETALK) {
|
|
for (; aa; aa = aa->aa_list.tqe_next)
|
|
if (aa->aa_ifp == ifp &&
|
|
sateqaddr(&aa->aa_addr, &ifra->ifra_addr))
|
|
break;
|
|
}
|
|
/*
|
|
* If we a retrying to delete an addres but didn't find such,
|
|
* then return with an error
|
|
*/
|
|
if (cmd == SIOCDIFADDR && aa == 0)
|
|
return (EADDRNOTAVAIL);
|
|
/* FALLTHROUGH */
|
|
|
|
case SIOCSIFADDR:
|
|
/*
|
|
* If we are not superuser, then we don't get to do these
|
|
* ops.
|
|
*/
|
|
if (kauth_authorize_network(curlwp->l_cred,
|
|
KAUTH_NETWORK_INTERFACE,
|
|
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
|
|
NULL) != 0)
|
|
return (EPERM);
|
|
|
|
csat = satocsat(ifreq_getaddr(cmd, ifr));
|
|
cnr = (const struct netrange *)csat->sat_zero;
|
|
if (cnr->nr_phase == 1) {
|
|
/*
|
|
* Look for a phase 1 address on this interface.
|
|
* This may leave aa pointing to the first address on
|
|
* the NEXT interface!
|
|
*/
|
|
for (; aa; aa = aa->aa_list.tqe_next) {
|
|
if (aa->aa_ifp == ifp &&
|
|
(aa->aa_flags & AFA_PHASE2) == 0)
|
|
break;
|
|
}
|
|
} else { /* default to phase 2 */
|
|
/*
|
|
* Look for a phase 2 address on this interface.
|
|
* This may leave aa pointing to the first address on
|
|
* the NEXT interface!
|
|
*/
|
|
for (; aa; aa = aa->aa_list.tqe_next) {
|
|
if (aa->aa_ifp == ifp &&
|
|
(aa->aa_flags & AFA_PHASE2))
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ifp == 0)
|
|
panic("at_control");
|
|
|
|
/*
|
|
* If we failed to find an existing at_ifaddr entry, then we
|
|
* allocate a fresh one.
|
|
* XXX change this to use malloc
|
|
*/
|
|
if (aa == (struct at_ifaddr *) 0) {
|
|
aa = (struct at_ifaddr *)
|
|
malloc(sizeof(struct at_ifaddr), M_IFADDR,
|
|
M_WAITOK|M_ZERO);
|
|
|
|
if (aa == NULL)
|
|
return (ENOBUFS);
|
|
|
|
callout_init(&aa->aa_probe_ch, 0);
|
|
|
|
if ((aa0 = at_ifaddr.tqh_first) != NULL) {
|
|
/*
|
|
* Don't let the loopback be first, since the
|
|
* first address is the machine's default
|
|
* address for binding.
|
|
* If it is, stick ourself in front, otherwise
|
|
* go to the back of the list.
|
|
*/
|
|
if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) {
|
|
TAILQ_INSERT_HEAD(&at_ifaddr, aa,
|
|
aa_list);
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&at_ifaddr, aa,
|
|
aa_list);
|
|
}
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list);
|
|
}
|
|
ifaref(&aa->aa_ifa);
|
|
ifa_psref_init(&aa->aa_ifa);
|
|
|
|
/*
|
|
* Find the end of the interface's addresses
|
|
* and link our new one on the end
|
|
*/
|
|
ifa_insert(ifp, &aa->aa_ifa);
|
|
|
|
/*
|
|
* As the at_ifaddr contains the actual sockaddrs,
|
|
* and the ifaddr itself, link them al together
|
|
* correctly.
|
|
*/
|
|
aa->aa_ifa.ifa_addr =
|
|
(struct sockaddr *) &aa->aa_addr;
|
|
aa->aa_ifa.ifa_dstaddr =
|
|
(struct sockaddr *) &aa->aa_addr;
|
|
aa->aa_ifa.ifa_netmask =
|
|
(struct sockaddr *) &aa->aa_netmask;
|
|
|
|
/*
|
|
* Set/clear the phase 2 bit.
|
|
*/
|
|
if (cnr->nr_phase == 1)
|
|
aa->aa_flags &= ~AFA_PHASE2;
|
|
else
|
|
aa->aa_flags |= AFA_PHASE2;
|
|
|
|
/*
|
|
* and link it all together
|
|
*/
|
|
aa->aa_ifp = ifp;
|
|
} else {
|
|
/*
|
|
* If we DID find one then we clobber any routes
|
|
* dependent on it..
|
|
*/
|
|
at_scrub(ifp, aa);
|
|
}
|
|
break;
|
|
|
|
case SIOCGIFADDR:
|
|
csat = satocsat(ifreq_getaddr(cmd, ifr));
|
|
cnr = (const struct netrange *)csat->sat_zero;
|
|
if (cnr->nr_phase == 1) {
|
|
/*
|
|
* If the request is specifying phase 1, then
|
|
* only look at a phase one address
|
|
*/
|
|
for (; aa; aa = aa->aa_list.tqe_next) {
|
|
if (aa->aa_ifp == ifp &&
|
|
(aa->aa_flags & AFA_PHASE2) == 0)
|
|
break;
|
|
}
|
|
} else if (cnr->nr_phase == 2) {
|
|
/*
|
|
* If the request is specifying phase 2, then
|
|
* only look at a phase two address
|
|
*/
|
|
for (; aa; aa = aa->aa_list.tqe_next) {
|
|
if (aa->aa_ifp == ifp &&
|
|
(aa->aa_flags & AFA_PHASE2))
|
|
break;
|
|
}
|
|
} else {
|
|
/*
|
|
* default to everything
|
|
*/
|
|
for (; aa; aa = aa->aa_list.tqe_next) {
|
|
if (aa->aa_ifp == ifp)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (aa == (struct at_ifaddr *) 0)
|
|
return (EADDRNOTAVAIL);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* By the time this switch is run we should be able to assume that
|
|
* the "aa" pointer is valid when needed.
|
|
*/
|
|
switch (cmd) {
|
|
case SIOCGIFADDR: {
|
|
union {
|
|
struct sockaddr sa;
|
|
struct sockaddr_at sat;
|
|
} u;
|
|
|
|
/*
|
|
* copy the contents of the sockaddr blindly.
|
|
*/
|
|
sockaddr_copy(&u.sa, sizeof(u),
|
|
(const struct sockaddr *)&aa->aa_addr);
|
|
/*
|
|
* and do some cleanups
|
|
*/
|
|
nr = (struct netrange *)&u.sat.sat_zero;
|
|
nr->nr_phase = (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
|
|
nr->nr_firstnet = aa->aa_firstnet;
|
|
nr->nr_lastnet = aa->aa_lastnet;
|
|
ifreq_setaddr(cmd, ifr, &u.sa);
|
|
break;
|
|
}
|
|
|
|
case SIOCSIFADDR:
|
|
return at_ifinit(ifp, aa,
|
|
(const struct sockaddr_at *)ifreq_getaddr(cmd, ifr));
|
|
|
|
case SIOCAIFADDR:
|
|
if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr))
|
|
return 0;
|
|
return at_ifinit(ifp, aa,
|
|
(const struct sockaddr_at *)ifreq_getaddr(cmd, ifr));
|
|
|
|
case SIOCDIFADDR:
|
|
at_purgeaddr(&aa->aa_ifa);
|
|
break;
|
|
|
|
default:
|
|
return ENOTTY;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
at_purgeaddr(struct ifaddr *ifa)
|
|
{
|
|
struct ifnet *ifp = ifa->ifa_ifp;
|
|
struct at_ifaddr *aa = (void *) ifa;
|
|
|
|
/*
|
|
* scrub all routes.. didn't we just DO this? XXX yes, del it
|
|
* XXX above XXX not necessarily true anymore
|
|
*/
|
|
at_scrub(ifp, aa);
|
|
|
|
/*
|
|
* remove the ifaddr from the interface
|
|
*/
|
|
ifa_remove(ifp, &aa->aa_ifa);
|
|
TAILQ_REMOVE(&at_ifaddr, aa, aa_list);
|
|
ifafree(&aa->aa_ifa);
|
|
}
|
|
|
|
void
|
|
at_purgeif(struct ifnet *ifp)
|
|
{
|
|
if_purgeaddrs(ifp, AF_APPLETALK, at_purgeaddr);
|
|
}
|
|
|
|
/*
|
|
* Given an interface and an at_ifaddr (supposedly on that interface) remove
|
|
* any routes that depend on this. Why ifp is needed I'm not sure, as
|
|
* aa->at_ifaddr.ifa_ifp should be the same.
|
|
*/
|
|
static int
|
|
at_scrub(struct ifnet *ifp, struct at_ifaddr *aa)
|
|
{
|
|
int error = 0;
|
|
|
|
if (aa->aa_flags & AFA_ROUTE) {
|
|
if (ifp->if_flags & IFF_LOOPBACK)
|
|
error = aa_delsingleroute(&aa->aa_ifa,
|
|
&aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr);
|
|
else if (ifp->if_flags & IFF_POINTOPOINT)
|
|
error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST);
|
|
else if (ifp->if_flags & IFF_BROADCAST)
|
|
error = aa_dorangeroute(&aa->aa_ifa,
|
|
ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
|
|
RTM_DELETE);
|
|
|
|
aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
|
|
aa->aa_flags &= ~AFA_ROUTE;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* given an at_ifaddr,a sockaddr_at and an ifp,
|
|
* bang them all together at high speed and see what happens
|
|
*/
|
|
static int
|
|
at_ifinit(struct ifnet *ifp, struct at_ifaddr *aa, const struct sockaddr_at *sat)
|
|
{
|
|
struct netrange nr, onr;
|
|
struct sockaddr_at oldaddr;
|
|
int s = splnet(), error = 0, i, j;
|
|
int netinc, nodeinc, nnets;
|
|
u_short net;
|
|
|
|
/*
|
|
* save the old addresses in the at_ifaddr just in case we need them.
|
|
*/
|
|
oldaddr = aa->aa_addr;
|
|
onr.nr_firstnet = aa->aa_firstnet;
|
|
onr.nr_lastnet = aa->aa_lastnet;
|
|
|
|
/*
|
|
* take the address supplied as an argument, and add it to the
|
|
* at_ifnet (also given). Remember ing to update
|
|
* those parts of the at_ifaddr that need special processing
|
|
*/
|
|
memset(AA_SAT(aa), 0, sizeof(struct sockaddr_at));
|
|
memcpy(&nr, sat->sat_zero, sizeof(struct netrange));
|
|
memcpy(AA_SAT(aa)->sat_zero, sat->sat_zero, sizeof(struct netrange));
|
|
nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1;
|
|
aa->aa_firstnet = nr.nr_firstnet;
|
|
aa->aa_lastnet = nr.nr_lastnet;
|
|
|
|
#ifdef NETATALKDEBUG
|
|
printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
|
|
ifp->if_xname,
|
|
ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
|
|
ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
|
|
(aa->aa_flags & AFA_PHASE2) ? 2 : 1);
|
|
#endif
|
|
|
|
/*
|
|
* We could eliminate the need for a second phase 1 probe (post
|
|
* autoconf) if we check whether we're resetting the node. Note
|
|
* that phase 1 probes use only nodes, not net.node pairs. Under
|
|
* phase 2, both the net and node must be the same.
|
|
*/
|
|
AA_SAT(aa)->sat_len = sat->sat_len;
|
|
AA_SAT(aa)->sat_family = AF_APPLETALK;
|
|
if (ifp->if_flags & IFF_LOOPBACK) {
|
|
AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net;
|
|
AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
|
|
#if 0
|
|
} else if (fp->if_flags & IFF_POINTOPOINT) {
|
|
/* unimplemented */
|
|
/*
|
|
* we'd have to copy the dstaddr field over from the sat
|
|
* but it's not clear that it would contain the right info..
|
|
*/
|
|
#endif
|
|
} else {
|
|
/*
|
|
* We are a normal (probably ethernet) interface.
|
|
* apply the new address to the interface structures etc.
|
|
* We will probe this address on the net first, before
|
|
* applying it to ensure that it is free.. If it is not, then
|
|
* we will try a number of other randomly generated addresses
|
|
* in this net and then increment the net. etc.etc. until
|
|
* we find an unused address.
|
|
*/
|
|
aa->aa_flags |= AFA_PROBING; /* if not loopback we Must
|
|
* probe? */
|
|
if (aa->aa_flags & AFA_PHASE2) {
|
|
if (sat->sat_addr.s_net == ATADDR_ANYNET) {
|
|
/*
|
|
* If we are phase 2, and the net was not
|
|
* specified * then we select a random net
|
|
* within the supplied netrange.
|
|
* XXX use /dev/random?
|
|
*/
|
|
if (nnets != 1) {
|
|
net = ntohs(nr.nr_firstnet) +
|
|
time_second % (nnets - 1);
|
|
} else {
|
|
net = ntohs(nr.nr_firstnet);
|
|
}
|
|
} else {
|
|
/*
|
|
* if a net was supplied, then check that it
|
|
* is within the netrange. If it is not then
|
|
* replace the old values and return an error
|
|
*/
|
|
if (ntohs(sat->sat_addr.s_net) <
|
|
ntohs(nr.nr_firstnet) ||
|
|
ntohs(sat->sat_addr.s_net) >
|
|
ntohs(nr.nr_lastnet)) {
|
|
aa->aa_addr = oldaddr;
|
|
aa->aa_firstnet = onr.nr_firstnet;
|
|
aa->aa_lastnet = onr.nr_lastnet;
|
|
splx(s);
|
|
return (EINVAL);
|
|
}
|
|
/*
|
|
* otherwise just use the new net number..
|
|
*/
|
|
net = ntohs(sat->sat_addr.s_net);
|
|
}
|
|
} else {
|
|
/*
|
|
* we must be phase one, so just use whatever we were
|
|
* given. I guess it really isn't going to be used...
|
|
* RIGHT?
|
|
*/
|
|
net = ntohs(sat->sat_addr.s_net);
|
|
}
|
|
|
|
/*
|
|
* set the node part of the address into the ifaddr. If it's
|
|
* not specified, be random about it... XXX use /dev/random?
|
|
*/
|
|
if (sat->sat_addr.s_node == ATADDR_ANYNODE) {
|
|
AA_SAT(aa)->sat_addr.s_node = time_second;
|
|
} else {
|
|
AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
|
|
}
|
|
|
|
/*
|
|
* step through the nets in the range starting at the
|
|
* (possibly random) start point.
|
|
*/
|
|
for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) +
|
|
((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) {
|
|
AA_SAT(aa)->sat_addr.s_net = htons(net);
|
|
|
|
/*
|
|
* using a rather strange stepping method,
|
|
* stagger through the possible node addresses
|
|
* Once again, starting at the (possibly random)
|
|
* initial node address.
|
|
*/
|
|
for (j = 0, nodeinc = time_second | 1; j < 256;
|
|
j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) {
|
|
if (AA_SAT(aa)->sat_addr.s_node > 253 ||
|
|
AA_SAT(aa)->sat_addr.s_node < 1) {
|
|
continue;
|
|
}
|
|
aa->aa_probcnt = 10;
|
|
|
|
/*
|
|
* start off the probes as an asynchronous
|
|
* activity. though why wait 200mSec?
|
|
*/
|
|
callout_reset(&aa->aa_probe_ch, hz / 5,
|
|
aarpprobe, ifp);
|
|
if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit",
|
|
0)) {
|
|
/*
|
|
* theoretically we shouldn't time out
|
|
* here so if we returned with an error.
|
|
*/
|
|
printf("at_ifinit: timeout?!\n");
|
|
aa->aa_addr = oldaddr;
|
|
aa->aa_firstnet = onr.nr_firstnet;
|
|
aa->aa_lastnet = onr.nr_lastnet;
|
|
splx(s);
|
|
return (EINTR);
|
|
}
|
|
/*
|
|
* The async activity should have woken us
|
|
* up. We need to see if it was successful in
|
|
* finding a free spot, or if we need to
|
|
* iterate to the next address to try.
|
|
*/
|
|
if ((aa->aa_flags & AFA_PROBING) == 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* of course we need to break out through two loops...
|
|
*/
|
|
if ((aa->aa_flags & AFA_PROBING) == 0)
|
|
break;
|
|
|
|
/* reset node for next network */
|
|
AA_SAT(aa)->sat_addr.s_node = time_second;
|
|
}
|
|
|
|
/*
|
|
* if we are still trying to probe, then we have finished all
|
|
* the possible addresses, so we need to give up
|
|
*/
|
|
if (aa->aa_flags & AFA_PROBING) {
|
|
aa->aa_addr = oldaddr;
|
|
aa->aa_firstnet = onr.nr_firstnet;
|
|
aa->aa_lastnet = onr.nr_lastnet;
|
|
splx(s);
|
|
return (EADDRINUSE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now that we have selected an address, we need to tell the
|
|
* interface about it, just in case it needs to adjust something.
|
|
*/
|
|
if ((error = if_addr_init(ifp, &aa->aa_ifa, true)) != 0) {
|
|
/*
|
|
* of course this could mean that it objects violently
|
|
* so if it does, we back out again..
|
|
*/
|
|
aa->aa_addr = oldaddr;
|
|
aa->aa_firstnet = onr.nr_firstnet;
|
|
aa->aa_lastnet = onr.nr_lastnet;
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
/*
|
|
* set up the netmask part of the at_ifaddr and point the appropriate
|
|
* pointer in the ifaddr to it. probably pointless, but what the
|
|
* heck.. XXX
|
|
*/
|
|
memset(&aa->aa_netmask, 0, sizeof(aa->aa_netmask));
|
|
aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
|
|
aa->aa_netmask.sat_family = AF_APPLETALK;
|
|
aa->aa_netmask.sat_addr.s_net = 0xffff;
|
|
aa->aa_netmask.sat_addr.s_node = 0;
|
|
#if 0
|
|
aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */
|
|
#endif
|
|
|
|
/*
|
|
* Initialize broadcast (or remote p2p) address
|
|
*/
|
|
memset(&aa->aa_broadaddr, 0, sizeof(aa->aa_broadaddr));
|
|
aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
|
|
aa->aa_broadaddr.sat_family = AF_APPLETALK;
|
|
|
|
aa->aa_ifa.ifa_metric = ifp->if_metric;
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
aa->aa_broadaddr.sat_addr.s_net = htons(ATADDR_ANYNET);
|
|
aa->aa_broadaddr.sat_addr.s_node = ATADDR_BCAST;
|
|
aa->aa_ifa.ifa_broadaddr =
|
|
(struct sockaddr *) &aa->aa_broadaddr;
|
|
/* add the range of routes needed */
|
|
error = aa_dorangeroute(&aa->aa_ifa,
|
|
ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD);
|
|
} else if (ifp->if_flags & IFF_POINTOPOINT) {
|
|
struct at_addr rtaddr, rtmask;
|
|
|
|
memset(&rtaddr, 0, sizeof(rtaddr));
|
|
memset(&rtmask, 0, sizeof(rtmask));
|
|
/* fill in the far end if we know it here XXX */
|
|
aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr;
|
|
error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
|
|
} else if (ifp->if_flags & IFF_LOOPBACK) {
|
|
struct at_addr rtaddr, rtmask;
|
|
|
|
memset(&rtaddr, 0, sizeof(rtaddr));
|
|
memset(&rtmask, 0, sizeof(rtmask));
|
|
rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net;
|
|
rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node;
|
|
rtmask.s_net = 0xffff;
|
|
rtmask.s_node = 0x0;
|
|
error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
|
|
}
|
|
/*
|
|
* of course if we can't add these routes we back out, but it's getting
|
|
* risky by now XXX
|
|
*/
|
|
if (error) {
|
|
at_scrub(ifp, aa);
|
|
aa->aa_addr = oldaddr;
|
|
aa->aa_firstnet = onr.nr_firstnet;
|
|
aa->aa_lastnet = onr.nr_lastnet;
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
/*
|
|
* note that the address has a route associated with it....
|
|
*/
|
|
aa->aa_ifa.ifa_flags |= IFA_ROUTE;
|
|
aa->aa_flags |= AFA_ROUTE;
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* check whether a given address is a broadcast address for us..
|
|
*/
|
|
int
|
|
at_broadcast(const struct sockaddr_at *sat)
|
|
{
|
|
struct at_ifaddr *aa;
|
|
|
|
/*
|
|
* If the node is not right, it can't be a broadcast
|
|
*/
|
|
if (sat->sat_addr.s_node != ATADDR_BCAST)
|
|
return 0;
|
|
|
|
/*
|
|
* If the node was right then if the net is right, it's a broadcast
|
|
*/
|
|
if (sat->sat_addr.s_net == ATADDR_ANYNET)
|
|
return 1;
|
|
|
|
/*
|
|
* failing that, if the net is one we have, it's a broadcast as well.
|
|
*/
|
|
for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) {
|
|
if ((aa->aa_ifp->if_flags & IFF_BROADCAST)
|
|
&& (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet)
|
|
&& ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet)))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* aa_dorangeroute()
|
|
*
|
|
* Add a route for a range of networks from bot to top - 1.
|
|
* Algorithm:
|
|
*
|
|
* Split the range into two subranges such that the middle
|
|
* of the two ranges is the point where the highest bit of difference
|
|
* between the two addresses, makes its transition
|
|
* Each of the upper and lower ranges might not exist, or might be
|
|
* representable by 1 or more netmasks. In addition, if both
|
|
* ranges can be represented by the same netmask, then teh can be merged
|
|
* by using the next higher netmask..
|
|
*/
|
|
|
|
static int
|
|
aa_dorangeroute(struct ifaddr *ifa, u_int bot, u_int top, int cmd)
|
|
{
|
|
u_int mask1;
|
|
struct at_addr addr;
|
|
struct at_addr mask;
|
|
int error;
|
|
|
|
/*
|
|
* slight sanity check
|
|
*/
|
|
if (bot > top)
|
|
return (EINVAL);
|
|
|
|
addr.s_node = 0;
|
|
mask.s_node = 0;
|
|
/*
|
|
* just start out with the lowest boundary
|
|
* and keep extending the mask till it's too big.
|
|
*/
|
|
|
|
while (bot <= top) {
|
|
mask1 = 1;
|
|
while (((bot & ~mask1) >= bot)
|
|
&& ((bot | mask1) <= top)) {
|
|
mask1 <<= 1;
|
|
mask1 |= 1;
|
|
}
|
|
mask1 >>= 1;
|
|
mask.s_net = htons(~mask1);
|
|
addr.s_net = htons(bot);
|
|
if (cmd == RTM_ADD) {
|
|
error = aa_addsingleroute(ifa, &addr, &mask);
|
|
if (error) {
|
|
/* XXX clean up? */
|
|
return (error);
|
|
}
|
|
} else {
|
|
error = aa_delsingleroute(ifa, &addr, &mask);
|
|
}
|
|
bot = (bot | mask1) + 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
aa_addsingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask)
|
|
{
|
|
int error;
|
|
|
|
#ifdef NETATALKDEBUG
|
|
printf("aa_addsingleroute: %x.%x mask %x.%x ...",
|
|
ntohs(addr->s_net), addr->s_node,
|
|
ntohs(mask->s_net), mask->s_node);
|
|
#endif
|
|
|
|
error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP);
|
|
#ifdef NETATALKDEBUG
|
|
if (error)
|
|
printf("aa_addsingleroute: error %d\n", error);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
aa_delsingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask)
|
|
{
|
|
int error;
|
|
|
|
#ifdef NETATALKDEBUG
|
|
printf("aa_delsingleroute: %x.%x mask %x.%x ...",
|
|
ntohs(addr->s_net), addr->s_node,
|
|
ntohs(mask->s_net), mask->s_node);
|
|
#endif
|
|
|
|
error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0);
|
|
#ifdef NETATALKDEBUG
|
|
if (error)
|
|
printf("aa_delsingleroute: error %d\n", error);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
aa_dosingleroute(struct ifaddr *ifa, struct at_addr *at_addr, struct at_addr *at_mask, int cmd, int flags)
|
|
{
|
|
struct sockaddr_at addr, mask, *gate;
|
|
|
|
memset(&addr, 0, sizeof(addr));
|
|
memset(&mask, 0, sizeof(mask));
|
|
addr.sat_family = AF_APPLETALK;
|
|
addr.sat_len = sizeof(struct sockaddr_at);
|
|
addr.sat_addr.s_net = at_addr->s_net;
|
|
addr.sat_addr.s_node = at_addr->s_node;
|
|
mask.sat_family = AF_APPLETALK;
|
|
mask.sat_len = sizeof(struct sockaddr_at);
|
|
mask.sat_addr.s_net = at_mask->s_net;
|
|
mask.sat_addr.s_node = at_mask->s_node;
|
|
|
|
if (at_mask->s_node) {
|
|
gate = satosat(ifa->ifa_dstaddr);
|
|
flags |= RTF_HOST;
|
|
} else {
|
|
gate = satosat(ifa->ifa_addr);
|
|
}
|
|
|
|
#ifdef NETATALKDEBUG
|
|
printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net",
|
|
ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node);
|
|
#endif
|
|
return (rtrequest(cmd, (struct sockaddr *) &addr,
|
|
(struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL));
|
|
}
|
|
|
|
#if 0
|
|
static void
|
|
aa_clean(void)
|
|
{
|
|
struct at_ifaddr *aa;
|
|
struct ifaddr *ifa;
|
|
struct ifnet *ifp;
|
|
|
|
while ((aa = TAILQ_FIRST(&at_ifaddr)) != NULL) {
|
|
TAILQ_REMOVE(&at_ifaddr, aa, aa_list);
|
|
ifp = aa->aa_ifp;
|
|
at_scrub(ifp, aa);
|
|
IFADDR_READER_FOREACH(ifa, ifp) {
|
|
if (ifa == &aa->aa_ifa)
|
|
break;
|
|
}
|
|
if (ifa == NULL)
|
|
panic("aa not present");
|
|
ifa_remove(ifp, ifa);
|
|
}
|
|
}
|
|
#endif
|