NetBSD/sys/dev/dec/qbus/ubavar.h

271 lines
11 KiB
C

/* $NetBSD: ubavar.h,v 1.15 1996/04/08 18:37:36 ragge Exp $ */
/*
* Copyright (c) 1982, 1986 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ubavar.h 7.7 (Berkeley) 6/28/90
*/
/*
* This file contains definitions related to the kernel structures
* for dealing with the unibus adapters.
*
* Each uba has a uba_softc structure.
* Each unibus controller which is not a device has a uba_ctlr structure.
* Each unibus device has a uba_device structure.
*/
#include <sys/buf.h>
#include <sys/device.h>
#include <machine/trap.h> /* For struct ivec_dsp */
/*
* Per-uba structure.
*
* This structure holds the interrupt vector for the uba,
* and its address in physical and virtual space. At boot time
* we determine the devices attached to the uba's and their
* interrupt vectors, filling in uh_vec. We free the map
* register and bdp resources of the uba into the structures
* defined here.
*
* During normal operation, resources are allocated and returned
* to the structures here. We watch the number of passive releases
* on each uba, and if the number is excessive may reset the uba.
*
* When uba resources are needed and not available, or if a device
* which can tolerate no other uba activity (rk07) gets on the bus,
* then device drivers may have to wait to get to the bus and are
* queued here. It is also possible for processes to block in
* the unibus driver in resource wait (mrwant, bdpwant); these
* wait states are also recorded here.
*/
struct uba_softc {
struct device uh_dev; /* Device struct, autoconfig */
int uh_type; /* type of adaptor */
struct uba_regs *uh_uba; /* virt addr of uba adaptor regs */
struct uba_regs *uh_physuba; /* phys addr of uba adaptor regs */
struct pte *uh_mr; /* start of page map */
int uh_memsize; /* size of uba memory, pages */
caddr_t uh_mem; /* start of uba memory address space */
caddr_t uh_iopage; /* start of uba io page */
void (**uh_reset) __P((int));/* UBA reset function array */
int *uh_resarg; /* array of ubareset args */
int uh_resno; /* Number of devices to reset */
struct ivec_dsp *uh_idsp; /* Interrupt dispatch area */
u_int *uh_iarea; /* Interrupt vector array */
struct uba_device *uh_actf; /* head of queue to transfer */
struct uba_device *uh_actl; /* tail of queue to transfer */
short uh_mrwant; /* someone is waiting for map reg */
short uh_bdpwant; /* someone awaits bdp's */
int uh_bdpfree; /* free bdp's */
int uh_hangcnt; /* number of ticks hung */
int uh_zvcnt; /* number of recent 0 vectors */
long uh_zvtime; /* time over which zvcnt accumulated */
int uh_zvtotal; /* total number of 0 vectors */
int uh_errcnt; /* number of errors */
int uh_lastiv; /* last free interrupt vector */
short uh_users; /* transient bdp use count */
short uh_xclu; /* an rk07 is using this uba! */
int uh_lastmem; /* limit of any unibus memory */
#define UAMSIZ 100
struct map *uh_map; /* register free map */
struct ivec_dsp uh_dw780; /* Interrupt handles for DW780 */
};
/* given a pointer to uba_regs, find DWBUA registers */
/* this should be replaced with a union in uba_softc */
#define BUA(uba) ((struct dwbua_regs *)(uba))
/*
* Per-controller structure.
* (E.g. one for each disk and tape controller, and other things
* which use and release buffered data paths.)
*
* If a controller has devices attached, then there are
* cross-referenced uba_drive structures.
* This structure is the one which is queued in unibus resource wait,
* and saves the information about unibus resources which are used.
* The queue of devices waiting to transfer is also attached here.
*/
struct uba_ctlr {
struct uba_driver *um_driver;
short um_ctlr; /* controller index in driver */
short um_ubanum; /* the uba it is on */
short um_alive; /* controller exists */
void (*um_intr) __P((int)); /* interrupt handler(s) XXX */
caddr_t um_addr; /* address of device in i/o space */
struct uba_softc *um_hd;
/* the driver saves the prototype command here for use in its go routine */
int um_cmd; /* communication to dgo() */
int um_ubinfo; /* save unibus registers, etc */
int um_bdp; /* for controllers that hang on to bdp's */
struct buf um_tab; /* queue of devices for this controller */
};
/*
* Per ``device'' structure.
* (A controller has devices or uses and releases buffered data paths).
* (Everything else is a ``device''.)
*
* If a controller has many drives attached, then there will
* be several uba_device structures associated with a single uba_ctlr
* structure.
*
* This structure contains all the information necessary to run
* a unibus device such as a dz or a dh. It also contains information
* for slaves of unibus controllers as to which device on the slave
* this is. A flags field here can also be given in the system specification
* and is used to tell which dz lines are hard wired or other device
* specific parameters.
*/
struct uba_device {
struct uba_driver *ui_driver;
short ui_unit; /* unit number on the system */
short ui_ctlr; /* mass ctlr number; -1 if none */
short ui_ubanum; /* the uba it is on */
short ui_slave; /* slave on controller */
void (*ui_intr) __P((int)); /* interrupt handler(s) XXX */
caddr_t ui_addr; /* address of device in i/o space */
short ui_dk; /* if init 1 set to number for iostat */
int ui_flags; /* parameter from system specification */
short ui_alive; /* device exists */
short ui_type; /* driver specific type information */
caddr_t ui_physaddr; /* phys addr, for standalone (dump) code */
/* this is the forward link in a list of devices on a controller */
struct uba_device *ui_forw;
/* if the device is connected to a controller, this is the controller */
struct uba_ctlr *ui_mi;
struct uba_softc *ui_hd;
};
/*
* Per-driver structure.
*
* Each unibus driver defines entries for a set of routines
* as well as an array of types which are acceptable to it.
* These are used at boot time by the configuration program.
*/
struct uba_driver {
/* see if a driver is really there XXX*/
int (*ud_probe) __P((caddr_t, int, struct uba_ctlr *,
struct uba_softc *));
/* see if a slave is there XXX */
int (*ud_slave) __P((struct uba_device *, caddr_t));
/* setup driver for a slave XXX */
void (*ud_attach) __P((struct uba_device *));
/* fill csr/ba to start transfer XXX */
void (*ud_dgo) __P((struct uba_ctlr *));
u_short *ud_addr; /* device csr addresses */
char *ud_dname; /* name of a device */
struct uba_device **ud_dinfo; /* backpointers to ubdinit structs */
char *ud_mname; /* name of a controller */
struct uba_ctlr **ud_minfo; /* backpointers to ubminit structs */
short ud_xclu; /* want exclusive use of bdp's */
short ud_keepbdp; /* hang on to bdp's once allocated */
int (*ud_ubamem) __P((struct uba_device *, int));
/* see if dedicated memory is present */
};
/*
* uba_attach_args is used during autoconfiguration. It is sent
* from ubascan() to each (possible) device.
*/
struct uba_attach_args {
caddr_t ua_addr;
/* Pointer to int routine, filled in by probe*/
void (*ua_ivec) __P((int));
/* UBA reset routine, filled in by probe */
void (*ua_reset) __P((int));
int ua_iaddr;
int ua_br;
int ua_cvec;
};
/*
* Flags to UBA map/bdp allocation routines
*/
#define UBA_NEEDBDP 0x01 /* transfer needs a bdp */
#define UBA_CANTWAIT 0x02 /* don't block me */
#define UBA_NEED16 0x04 /* need 16 bit addresses only */
#define UBA_HAVEBDP 0x08 /* use bdp specified in high bits */
/*
* Macros to bust return word from map allocation routines.
* SHOULD USE STRUCTURE TO STORE UBA RESOURCE ALLOCATION:
*/
#ifdef notyet
struct ubinfo {
long ub_addr; /* unibus address: mr + boff */
int ub_nmr; /* number of registers, 0 if empty */
int ub_bdp; /* bdp number, 0 if none */
};
#define UBAI_MR(i) (((i) >> 9) & 0x7ff) /* starting map register */
#define UBAI_BOFF(i) ((i)&0x1ff) /* page offset */
#else
#define UBAI_BDP(i) ((int)(((unsigned)(i)) >> 28))
#define BDPMASK 0xf0000000
#define UBAI_NMR(i) ((int)((i) >> 20) & 0xff) /* max 255 (=127.5K) */
#define UBA_MAXNMR 255
#define UBAI_MR(i) ((int)((i) >> 9) & 0x7ff) /* max 2047 */
#define UBA_MAXMR 2047
#define UBAI_BOFF(i) ((int)((i) & 0x1ff))
#define UBAI_ADDR(i) ((int)((i) & 0xfffff)) /* uba addr (boff+mr) */
#define UBAI_INFO(off, mr, nmr, bdp) \
(((bdp) << 28) | ((nmr) << 20) | ((mr) << 9) | (off))
#endif
#ifndef _LOCORE
#ifdef _KERNEL
#define ubago(ui) ubaqueue(ui, 0)
/*
* Ubminit and ubdinit initialize the mass storage controller and
* device tables specifying possible devices.
*/
extern struct uba_ctlr ubminit[];
extern struct uba_device ubdinit[];
extern struct cfdriver uba_cd;
void ubainit __P((struct uba_softc *));
void ubasetvec __P((struct device *, int, void (*) __P((int))));
int uballoc __P((int, caddr_t, int, int));
void ubarelse __P((int, int *));
int ubaqueue __P((struct uba_device *, int));
void ubadone __P((struct uba_ctlr *));
void ubareset __P((int));
int ubasetup __P((int, struct buf *, int));
#endif /* _KERNEL */
#endif !_LOCORE